CrossMark

data reports

OPEN $\widehat{\bigcirc}$ ACCESS

Crystal structure of 1-(4-formylbenzylidene)thiosemicarbazone

Rosa Carballo, Arantxa Pino-Cuevas and Ezequiel M. Vázquez-López*

Departamento de Química Inorgánica, Facultade de Química, Edificio de Ciencias Experimentais, Universidade de Vigo, E-36310 Vigo, Galicia, Spain. *Correspondence e-mail: ezequiel@uvigo.es

Received 15 July 2014; accepted 25 July 2014

Edited by W. T. A. Harrison, University of Aberdeen, Scotland

The asymmetric unit of the title compound, $C_9H_9N_3OS$, contains two approximately planar molecules (r.m.s. deviations for 14 non-H atoms = 0.094 and 0.045 Å), with different conformations. In one of them, the C=O group is *syn* to the S atom and in the other it is *anti*. Each molecule features an intramolecular N-H···N hydrogen bond, which generates an S(5) ring. In the crystal, molecules are linked by N-H···O and N-H···S hydrogen bonds, generating discrete networks; the *syn* molecules form [010] chains and the *anti* molecules form (100) sheets.

Keywords: crystal structure; thiosemicarbazone; hydrogen bonds.

CCDC reference: 1016158

1. Related literature

For further synthetic details, see: Jagst *et al.* (2005). For structure–biological activity relationships in thio-semicarbazones, see: Lukmantara *et al.* (2013). For their biological properties, see: Serda *et al.* (2012).

c = 14.9428 (11) Å

 $\beta = 110.286 (1)^{\circ}$

Z = 8

V = 2048.5 (3) Å³

Mo $K\alpha$ radiation

2. Experimental

2.1. Crystal data

C ₉ H ₉ N ₃ OS
$M_r = 207.25$
Monoclinic, $P2_1/c$
a = 12.3888 (9) Å
b = 11.7972 (8) Å

 $\mu = 0.29 \text{ mm}^{-1}$ T = 293 K

2.2. Data collection

Bruker SMART 1000 CCD	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 1996)	
$T_{\rm min} = 0.693, T_{\rm max} = 0.746$	

 $T_{\min} = 0.693, T_{\max} = 0.746$

2.3. Refinement
$R[F^2 > 2\sigma(F^2)] = 0.040$
$wR(F^2) = 0.119$
S = 1.03
4920 reflections
277 parameters

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.36 \text{ e} \text{ Å}_{-}^{-3}$

 $\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$

 $R_{\rm int} = 0.022$

 $0.51 \times 0.44 \times 0.33 \text{ mm}$

19018 measured reflections 4920 independent reflections 3344 reflections with $I > 2\sigma(I)$

Table 1		
Hydrogen-bond geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1A - H1NA \cdots N3A$	0.84 (3)	2.32 (2)	2.630 (2)	102.0 (19)
$N1A - H1NA \cdots O1A^{i}$	0.84 (3)	2.41 (3)	3.190 (3)	154 (2)
$N1A - H2NA \cdots S1A^{ii}$	0.87 (3)	2.52 (3)	3.391 (2)	172 (2)
$N2A - H3NA \cdots S1B^{iii}$	0.84 (2)	2.50 (2)	3.3270 (19)	166.1 (19)
$N1B - H1NB \cdot \cdot \cdot N3B$	0.91 (3)	2.21 (3)	2.619 (3)	106 (3)
$N1B - H2NB \cdots O1B^{iv}$	0.88 (3)	2.01 (3)	2.857 (3)	161 (3)
$N2B - H3NB \cdot \cdot \cdot S1A^{v}$	0.84 (2)	2.58 (2)	3.409 (2)	171 (2)

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 2, -y + 2, -z; (iii) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$; (iv) x, y + 1, z; (v) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS2013* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2013* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Acknowledgements

This research was supported by the European Rural Development Fund and the Spanish Ministry of Education and Science through project CTQ2010–19386/BQU.

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7254).

References

- Bruker (2008). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jagst, A., Sánchez, A., Vázquez-López, E. M. & Abram, U. (2005). Inorg. Chem. 44, 5738–5744.
- Lukmantara, A. Y., Kalinowski, D. S., Kumar, N. & Richardson, D. R. (2013). Bioorg. Med. Chem. Lett. 23, 967–974.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Serda, M., Mrozek-Wilczkiewicz, A., Jampilek, J., Pesko, M., Kralova, K., Vejsova, M., Musiol, R., Ratuszna, A. & Polanski, J. (2012). *Molecules*, 17, 13483–13502.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2014). E70, o970 [doi:10.1107/S1600536814017255]

Crystal structure of 1-(4-formylbenzylidene)thiosemicarbazone

Rosa Carballo, Arantxa Pino-Cuevas and Ezequiel M. Vázquez-López

S1. Chemical context

The study of the thiosemicarbazones is interesting because they are compounds which show diverse biological properties (Serda *et al.*, 2012) and pharmacological activities (Lukmantara *et al.*, 2013). Also the thiosemicarbazones are of interest from a supramolecular point of view since they can be functionalized to give different supramolecular arrays by hydrogen bonds.

S2. Structural commentary

We report here the synthesis and structural characterization of (4-formylbenzylidine)-thiosemicarbazone (Fig.1). The two molecules in the asymmetric unit are structurally different due to the different orientation of the carbonyl group respect to the thiosemicarbazone chain. The thiosemicarbazone moiety in both molecules shows an E conformation with the sulfur atom trans to the iminic nitrogen N3 atom. The molecules labeled as B are linked into lineal chains by N—H···O hydrogen bonds with a d(N···O) of 2.857 (3) Å but the molecules labeled as A use the same kind of hydrogen bond with a longer d(N···O) of 3.190 (3) Å to form helical chains (Fig. 2). The two types of chains are packed by N—H···S hydrogen bonds with d(N—S) in the range 3.32-3.41 Å and (NHS) angles close to linearity (between 166 and 172°).

S3. Synthesis and crystallization

A solution of thiosemicarbazide (342mg, 3.72 mmol) in 50 ml of water was slowly added at 50°C to a solution of terephthaldicarboxaldehyde (500 mg, 3.73 mmol) in 100 ml water. Then the mixture was stirred at 50°C for 30 mins. Once cooled to room temperature, the yellow solid was filtered off and vacuum dried. Yellow prisms were obtained by recrystallization from EtOH/H₂O (1:1) solution. Yield: 78%. M.pt: 212–214°C. IR data (KBr, cm⁻¹): 3452w, 3328m, 3152m v(NH); 2974w, 2863w v(C—H aldehyde); 1686s v(C=O); 1533s, 1281m v(C=N), 830m, 793m v(C=S). ¹H NMR data (DMSO-d₆, ppm): 10.60 (s, 1H, N(2)—H); 10.01 (s, 1H, C(1)—H); 8.32 (s, 1H, N(2)—H); 8.15 (s, 1H, N(2)—H); 8.09 (s, 1H, C(8)—H); 8.02 (d, 2H, J = 8.2 Hz, C(3,7)-H); 7.91 (d, 2H, J = 8.2 Hz, C(4,6)-H).

Figure 1

ORTEP view of the two molecules of the title compound. Displacement ellipsoids shown at the 50% probability level.

Figure 2

View of the crystal packing showing the two different chains.

1-(4-Formylbenzylidene)thiosemicarbazone

Crystal data C₉H₉N₃OS $M_r = 207.25$ Monoclinic, $P2_1/c$ a = 12.3888 (9) Å b = 11.7972 (8) Å c = 14.9428 (11) Å $\beta = 110.286$ (1)° V = 2048.5 (3) Å³ Z = 8

F(000) = 864 $D_x = 1.344 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6097 reflections $\theta = 2.3-27.2^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 293 KPrism, yellow $0.51 \times 0.44 \times 0.33 \text{ mm}$ Data collection

Bruker SMART 1000 CCD diffractometer Radiation source: sealed X-ray tube φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.693, T_{\max} = 0.746$ 19018 measured reflections	4920 independent reflections 3344 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 28.1^{\circ}, \theta_{min} = 1.8^{\circ}$ $h = -16 \rightarrow 16$ $k = -15 \rightarrow 15$ $l = -19 \rightarrow 19$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.119$ S = 1.03 4920 reflections 277 parameters 0 restraints	Hydrogen site location: mixed H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0442P)^2 + 0.8755P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.36$ e Å ⁻³ $\Delta\rho_{min} = -0.35$ e Å ⁻³
Special details	

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N3A	0.89210 (14)	0.63007 (12)	-0.01356 (11)	0.0479 (4)
S1A	0.90693 (5)	0.91696 (4)	-0.13892 (4)	0.06120 (17)
O1A	0.89088 (17)	0.16790 (14)	0.29083 (12)	0.0778 (5)
N1A	0.97843 (19)	0.83357 (16)	0.03697 (14)	0.0646 (5)
C1A	0.92577 (17)	0.81529 (15)	-0.05446 (14)	0.0488 (4)
N2A	0.88481 (15)	0.71091 (13)	-0.08158 (13)	0.0519 (4)
C2A	0.84890 (17)	0.53375 (15)	-0.04474 (14)	0.0499 (4)
H2A	0.8172	0.5214	-0.1102	0.060*
C3A	0.84875 (16)	0.44243 (14)	0.02136 (13)	0.0446 (4)
C4A	0.80002 (18)	0.33905 (16)	-0.01569 (14)	0.0536 (5)
H4A	0.7659	0.3300	-0.0813	0.064*
C5A	0.80199 (18)	0.24931 (15)	0.04467 (14)	0.0549 (5)
H5A	0.7691	0.1803	0.0195	0.066*
C6A	0.85265 (17)	0.26217 (15)	0.14207 (14)	0.0487 (4)
C7A	0.9008 (2)	0.36573 (16)	0.17931 (14)	0.0576 (5)
H7A	0.9348	0.3746	0.2450	0.069*
C8A	0.89848 (19)	0.45524 (16)	0.11987 (14)	0.0550 (5)
H8A	0.9302	0.5245	0.1455	0.066*
C9A	0.8559 (2)	0.16499 (18)	0.20519 (17)	0.0615 (5)
H9A	0.8286	0.0959	0.1763	0.074*
H1NA	0.990 (2)	0.782 (2)	0.0779 (17)	0.069 (7)*
H2NA	1.007 (2)	0.900 (2)	0.0570 (17)	0.075 (7)*
			· · ·	

H3NA	0.8488 (18)	0.6956 (18)	-0.1392 (16)	0.054 (6)*
S1B	0.70719 (7)	0.87078 (5)	0.20508 (5)	0.0836 (2)
O1B	0.36864 (17)	-0.02352 (14)	0.06781 (17)	0.1027 (7)
N1B	0.5055 (2)	0.77556 (19)	0.11523 (17)	0.0728 (6)
C1B	0.6141 (2)	0.76241 (17)	0.16872 (15)	0.0633 (6)
N2B	0.6506 (2)	0.65472 (15)	0.19199 (15)	0.0659 (5)
C2B	0.61285 (19)	0.46749 (17)	0.18659 (16)	0.0596 (5)
H2B	0.6866	0.4587	0.2310	0.072*
N3B	0.57577 (16)	0.56654 (14)	0.15795 (13)	0.0591 (4)
C3B	0.54146 (18)	0.36782 (16)	0.15082 (15)	0.0539 (5)
C4B	0.5824 (2)	0.26093 (18)	0.18761 (17)	0.0636 (6)
H4B	0.6538	0.2549	0.2358	0.076*
C5B	0.5189 (2)	0.16464 (18)	0.15366 (18)	0.0663 (6)
H5B	0.5477	0.0941	0.1784	0.080*
C6B	0.41212 (19)	0.17280 (17)	0.08275 (16)	0.0574 (5)
C7B	0.37016 (19)	0.27858 (17)	0.04567 (16)	0.0592 (5)
H6B	0.2983	0.2843	-0.0020	0.071*
C8B	0.43420 (19)	0.37484 (17)	0.07894 (16)	0.0583 (5)
H7B	0.4056	0.4451	0.0532	0.070*
C9B	0.3412 (2)	0.07213 (19)	0.0444 (2)	0.0723 (6)
H9B	0.2691	0.0838	-0.0017	0.087*
H1NB	0.463 (3)	0.712 (3)	0.093 (2)	0.107 (10)*
H2NB	0.478 (2)	0.844 (2)	0.1003 (19)	0.085 (8)*
H3NB	0.717 (2)	0.642 (2)	0.2304 (17)	0.065 (7)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N3A	0.0572 (9)	0.0343 (7)	0.0505 (8)	0.0015 (7)	0.0167 (7)	0.0081 (6)
S1A	0.0797 (4)	0.0362 (2)	0.0594 (3)	-0.0022 (2)	0.0134 (3)	0.0123 (2)
O1A	0.1133 (14)	0.0633 (10)	0.0600 (10)	0.0069 (9)	0.0341 (9)	0.0169 (8)
N1A	0.0936 (15)	0.0363 (9)	0.0541 (10)	-0.0053 (9)	0.0130 (10)	0.0050 (8)
C1A	0.0554 (11)	0.0351 (9)	0.0545 (11)	0.0034 (8)	0.0174 (9)	0.0043 (8)
N2A	0.0682 (11)	0.0343 (7)	0.0479 (9)	-0.0020 (7)	0.0135 (8)	0.0067 (7)
C2A	0.0602 (11)	0.0375 (9)	0.0477 (10)	-0.0014 (8)	0.0131 (8)	0.0043 (8)
C3A	0.0498 (10)	0.0347 (8)	0.0480 (10)	0.0006 (7)	0.0151 (8)	0.0032 (7)
C4A	0.0647 (12)	0.0430 (9)	0.0447 (10)	-0.0084 (9)	0.0082 (9)	0.0010 (8)
C5A	0.0638 (12)	0.0367 (9)	0.0586 (12)	-0.0116 (8)	0.0141 (10)	-0.0017 (8)
C6A	0.0576 (11)	0.0383 (9)	0.0507 (10)	-0.0004 (8)	0.0193 (9)	0.0057 (8)
C7A	0.0817 (15)	0.0445 (10)	0.0439 (10)	-0.0040 (10)	0.0183 (10)	-0.0002 (8)
C8A	0.0774 (14)	0.0351 (9)	0.0498 (10)	-0.0068 (9)	0.0187 (10)	-0.0045 (8)
C9A	0.0775 (15)	0.0449 (10)	0.0641 (13)	-0.0005 (10)	0.0271 (11)	0.0082 (9)
S1B	0.1164 (6)	0.0470 (3)	0.0657 (4)	-0.0135 (3)	0.0042 (3)	0.0020 (3)
O1B	0.0916 (13)	0.0436 (9)	0.158 (2)	-0.0036 (9)	0.0239 (13)	-0.0026 (11)
N1B	0.0818 (15)	0.0507 (11)	0.0826 (14)	0.0090 (11)	0.0243 (12)	0.0030 (11)
C1B	0.0916 (17)	0.0453 (11)	0.0517 (11)	0.0007 (11)	0.0233 (11)	-0.0012 (9)
N2B	0.0739 (13)	0.0445 (9)	0.0669 (12)	-0.0017 (9)	0.0088 (10)	-0.0003 (8)
C2B	0.0632 (13)	0.0471 (11)	0.0647 (13)	0.0019 (10)	0.0172 (10)	0.0008 (9)

supporting information

N3B	0.0685 (11)	0.0429 (9)	0.0635 (10)	-0.0031 (8)	0.0199 (9)	-0.0036 (8)
C3B	0.0603 (12)	0.0434 (10)	0.0616 (12)	0.0037 (9)	0.0259 (10)	-0.0003 (9)
C4B	0.0605 (13)	0.0517 (11)	0.0738 (14)	0.0066 (10)	0.0172 (11)	0.0103 (10)
C5B	0.0705 (15)	0.0419 (10)	0.0884 (16)	0.0083 (10)	0.0299 (13)	0.0111 (10)
C6B	0.0607 (13)	0.0434 (10)	0.0742 (14)	0.0031 (9)	0.0312 (11)	-0.0022 (9)
C7B	0.0583 (12)	0.0483 (11)	0.0697 (13)	0.0068 (9)	0.0207 (10)	-0.0036 (10)
C8B	0.0650 (13)	0.0423 (10)	0.0672 (13)	0.0103 (9)	0.0225 (11)	0.0015 (9)
C9B	0.0709 (15)	0.0517 (12)	0.0965 (18)	-0.0014 (11)	0.0320 (13)	-0.0068 (12)

Geometric parameters (Å, °)

N3A—C2A	1.274 (2)	S1B—C1B	1.681 (2)
N3A—N2A	1.374 (2)	O1B—C9B	1.195 (3)
S1A—C1A	1.6976 (18)	N1B—C1B	1.314 (3)
O1A—C9A	1.201 (3)	N1B—H1NB	0.91 (3)
N1A—C1A	1.312 (3)	N1B—H2NB	0.88 (3)
N1A—H1NA	0.84 (3)	C1B—N2B	1.353 (3)
N1A—H2NA	0.87 (3)	N2B—N3B	1.369 (2)
C1A—N2A	1.340 (2)	N2B—H3NB	0.84 (2)
N2A—H3NA	0.84 (2)	C2B—N3B	1.274 (3)
C2A—C3A	1.462 (2)	C2B—C3B	1.457 (3)
C2A—H2A	0.9300	C2B—H2B	0.9300
C3A—C4A	1.388 (2)	C3B—C8B	1.392 (3)
C3A—C8A	1.393 (3)	C3B—C4B	1.399 (3)
C4A—C5A	1.386 (3)	C4B—C5B	1.375 (3)
C4A—H4A	0.9300	C4B—H4B	0.9300
C5A—C6A	1.379 (3)	C5B—C6B	1.382 (3)
C5A—H5A	0.9300	C5B—H5B	0.9300
C6A—C7A	1.388 (3)	C6B—C7B	1.391 (3)
C6A—C9A	1.476 (3)	C6B—C9B	1.470 (3)
C7A—C8A	1.374 (3)	C7B—C8B	1.376 (3)
C7A—H7A	0.9300	С7В—Н6В	0.9300
C8A—H8A	0.9300	C8B—H7B	0.9300
С9А—Н9А	0.9300	С9В—Н9В	0.9300
C2A—N3A—N2A	115.92 (16)	C1B—N1B—H1NB	118 (2)
C1A—N1A—H1NA	122.5 (16)	C1B—N1B—H2NB	119.2 (18)
C1A—N1A—H2NA	120.1 (16)	H1NB—N1B—H2NB	122 (3)
H1NA—N1A—H2NA	117 (2)	N1B—C1B—N2B	116.6 (2)
N1A—C1A—N2A	117.74 (17)	N1B—C1B—S1B	123.36 (18)
N1A—C1A—S1A	123.28 (15)	N2B—C1B—S1B	120.0 (2)
N2A—C1A—S1A	118.98 (15)	C1B—N2B—N3B	119.7 (2)
C1A—N2A—N3A	119.56 (17)	C1B—N2B—H3NB	120.4 (17)
C1A—N2A—H3NA	121.2 (15)	N3B—N2B—H3NB	119.7 (16)
N3A—N2A—H3NA	119.0 (15)	N3B—C2B—C3B	121.0 (2)
N3A—C2A—C3A	120.60 (17)	N3B—C2B—H2B	119.5
N3A—C2A—H2A	119.7	C3B—C2B—H2B	119.5
СЗА—С2А—Н2А	119.7	C2B—N3B—N2B	116.96 (19)

C4A—C3A—C8A	119.25 (16)	C8B—C3B—C4B	118.45 (19)
C4A—C3A—C2A	118.70 (17)	C8B—C3B—C2B	122.07 (18)
C8A—C3A—C2A	122.03 (16)	C4B—C3B—C2B	119.5 (2)
C5A—C4A—C3A	120.31 (17)	C5B—C4B—C3B	121.1 (2)
C5A—C4A—H4A	119.8	C5B—C4B—H4B	119.5
СЗА—С4А—Н4А	119.8	C3B—C4B—H4B	119.5
C6A—C5A—C4A	120.11 (17)	C4B—C5B—C6B	119.92 (19)
С6А—С5А—Н5А	119.9	C4B—C5B—H5B	120.0
С4А—С5А—Н5А	119.9	C6B—C5B—H5B	120.0
C5A—C6A—C7A	119.67 (17)	C5B—C6B—C7B	119.61 (19)
C5A—C6A—C9A	119.37 (17)	C5B—C6B—C9B	121.8 (2)
C7A—C6A—C9A	120.96 (18)	C7B—C6B—C9B	118.6 (2)
C8A—C7A—C6A	120.50 (18)	C8B—C7B—C6B	120.5 (2)
С8А—С7А—Н7А	119.8	C8B—C7B—H6B	119.7
С6А—С7А—Н7А	119.8	C6B—C7B—H6B	119.7
C7A—C8A—C3A	120.15 (17)	C7B—C8B—C3B	120.43 (19)
С7А—С8А—Н8А	119.9	C7B—C8B—H7B	119.8
СЗА—С8А—Н8А	119.9	C3B—C8B—H7B	119.8
O1A—C9A—C6A	125.3 (2)	O1B—C9B—C6B	125.3 (3)
О1А—С9А—Н9А	117.3	O1B—C9B—H9B	117.4
С6А—С9А—Н9А	117.3	С6В—С9В—Н9В	117.4

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N1 <i>A</i> —H1 <i>NA</i> ···N3 <i>A</i>	0.84 (3)	2.32 (2)	2.630 (2)	102.0 (19)
$N1A$ — $H1NA$ ···· $O1A^{i}$	0.84 (3)	2.41 (3)	3.190 (3)	154 (2)
N1A—H2NA····S1A ⁱⁱ	0.87 (3)	2.52 (3)	3.391 (2)	172 (2)
N2A— $H3NA$ ···· $S1B$ ⁱⁱⁱ	0.84 (2)	2.50 (2)	3.3270 (19)	166.1 (19)
N1 <i>B</i> —H1 <i>NB</i> ····N3 <i>B</i>	0.91 (3)	2.21 (3)	2.619 (3)	106 (3)
$N1B$ — $H2NB$ ···· $O1B^{iv}$	0.88 (3)	2.01 (3)	2.857 (3)	161 (3)
$N2B$ — $H3NB$ ···· $S1A^v$	0.84 (2)	2.58 (2)	3.409 (2)	171 (2)

Symmetry codes: (i) -x+2, y+1/2, -z+1/2; (ii) -x+2, -y+2, -z; (iii) x, -y+3/2, z-1/2; (iv) x, y+1, z; (v) x, -y+3/2, z+1/2.