
a SpringerOpen Journal

Rodríguez-Puente and Lazo-Cortés SpringerPlus 2013, 2:291
http://www.springerplus.com/content/2/1/291

RESEARCH Open Access

Algorithm for shortest path search in
Geographic Information Systems by using
reduced graphs
Rafael Rodríguez-Puente* and Manuel S Lazo-Cortés

Abstract

The use of Geographic Information Systems has increased considerably since the eighties and nineties. As one of their
most demanding applications we can mention shortest paths search. Several studies about shortest path search show
the feasibility of using graphs for this purpose. Dijkstra’s algorithm is one of the classic shortest path search algorithms.
This algorithm is not well suited for shortest path search in large graphs. This is the reason why various modifications
to Dijkstra’s algorithm have been proposed by several authors using heuristics to reduce the run time of shortest path
search. One of the most used heuristic algorithms is the A* algorithm, the main goal is to reduce the run time by
reducing the search space. This article proposes a modification of Dijkstra’s shortest path search algorithm in reduced
graphs. It shows that the cost of the path found in this work, is equal to the cost of the path found using Dijkstra’s
algorithm in the original graph. The results of finding the shortest path, applying the proposed algorithm, Dijkstra’s
algorithm and A* algorithm, are compared. This comparison shows that, by applying the approach proposed, it is
possible to obtain the optimal path in a similar or even in less time than when using heuristic algorithms.

Keywords: Shortest path search algorithm; Geographic Information Systems; Network analysis; Reduced graphs;
Dijkstra’s algorithm

Introduction
From a practical point of view, a Geographic Information
System (GIS) is a computer system capable of handling
georeferenced data. These kinds of data refer to informa-
tion associated with geographic coordinates (longitude,
latitude). A GIS should also facilitate the relationship
between socio-economic data (i.e. population density) and
geographic data, this can be achieved through the gener-
ation of thematic maps (Jiang et al. 2010), a service for
generating this kind of maps is described by (Rodríguez-
Torres and Rodríguez-Puente 2010). The relevance of a
GIS is closely related to the ability of building mod-
els or representations coming from the real world. This
kind of system is very important because it facilitates the
decision-making process and has a high social impact.
Among the most demanded features in GIS we can men-
tion those related to the analysis of routes, some examples
are as follows:

*Correspondence: rafaelrp@uci.cu
Universidad de las Ciencias Informáticas, Habana, Cuba

- What is the shortest path between places x and y?
- What is the optimal path between places x and y

considering a certain criterion?
- What is the lowest cost path between x and y via

places x1, x2, . . . , xn?

Shortest path search has been widely studied. Many
applications can be found in various branches of science,
specifically in GIS. The road networks used by GIS to
respond to the above requests are usually large and could
have thousands of streets, that is why one should pay
particular attention to how such information is processed.
One of the classic and most used algorithms for calcu-

lating the shortest path from an origin to a destination
is Dijkstra’s algorithm, it was first enunciated by Edsger
Wybe Dijkstra (1959) and is one of the most used and
discussed algorithms in the literature of graphs, the tem-
poral complexity is O(|E| + |V |log|V |), where |E| is the
number of edges and |V | is the number of vertices of
the graph. However, this algorithm is not efficient for

© 2013 Rodríguez-Puente and Lazo-Cortés; licensee Springer. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194692954?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Rodríguez-Puente and Lazo-Cortés SpringerPlus 2013, 2:291 Page 2 of 13
http://www.springerplus.com/content/2/1/291

searching shortest path in large graphs (Fuhao and Jiping
2009).
Various modifications to Dijkstra’s algorithm have been

proposed by several authors. Some of these algorithms use
heuristics to reduce the run time of shortest path search
and we can classify them as follows:

1. Without data preprocessing, i.e.:

- A* (A-star) algorithm (Hart et al. 1968).
Improved Live long planing A* (Huang et al.
2007).

- Bidirectional search (Pohl 1969).
- In (Nazari et al. 2008) an approach based on

restrictions on the search space is proposed.

2. With data preprocessing, i.e.:

- Reach-Based Pruning (Gutman 2004).
- Landmark-A* (Goldberg and Harrelson 2005;

Goldberg and Werneck 2005).
- Highway Hierarchies (Geisberger et al. 2008;

Jagadeesh and Srikanthan 2008; Sanders and
Schultes 2005; Song and Wang 2011; Wang
et al. 2006).

- Edge flags (Koehler et al. 2005; Möhring et al.
2006).

- Geometric containers (Wagner and Willhalm
2007).

- Precomputed Cluster Distances (PCD) (Maue
et al. 2010).

Delling et al. (2009) show an overview of routing
algorithms; all approaches show important advances in
shortest path search and make possible a low response
time in large graphs using heuristics.
One of themost used heuristic algorithms is theA* algo-

rithm, the main goal is to reduce the run time by reducing
the search space analyzing only the vertices that have bet-
ter possibilities to appear in the shortest path. The results
obtained by this algorithm depend on the heuristic func-
tion used to determine the order in which vertices are
visited. If the selected heuristic is optimal the compu-
tational complexity is reduced to O(n). That is why the
A* algorithm is widely used for shortest path search.
One approach studied for shortest path search on large

graphs is related to the use of some properties of the
road networks, mainly to reduce the search space of the
shortest path.
In the following paragraphs we will be referring to some

relevant researches:

- Gutman proposes an approach (Gutman 2004) in
which he defines a formal attribute of vertex called
reach, in order to measure vertex relevance. The

reach attribute is precalculated using the graph to
reduce the run time of shortest path search.

- A relevant approach that uses a property of a road
network is related to the hierarchy present in this kind
of network. Many strategies use this approach, for
example, Sanders and Schultes propose algorithms
for constructing and querying highway hierarchies
achieving a small run time and show the feasibility of
this approach (Sanders and Schultes 2005).

- Bast et al. define an approach based on relevant nodes
(transit nodes) for long-distance travel (Bast et al.
2007). It consists of making precalculations of
shortest path between all pairs of transit nodes and
from each potential source or destination to its access
transit nodes. This approach needs an effective
notion of “far away” and the optimal results are
guaranteed depending on the local filter selected.

- Gonzalez et al. use the hierarchy of roads for
partitioning the network into areas and make
precalculations of shortest path in these areas
(Gonzalez et al. 2007). This approach uses the fact
that some roads are more traveled than others and
drivers usually use the largest roads.

- Geisberger et al. propose an approach that uses only
edges that are related with “important” nodes
(Geisberger et al. 2008). Pfoser et al. present a
shortest path algorithm that imitates human driving
behavior by exploiting road network hierarchies
(Pfoser et al. 2009).

As an important characteristic of the approaches
described above, it may be determined that they are based
on the idea that for calculation of large paths (in large net-
works), only high levels roads (highways, roads more tra-
versed, etc.) of the hierarchical road network are needed.
This consideration can reduce the run time of shortest
path search algorithms, but can not guarantee to return
the optimal path.
Various commercial systems use heuristic algorithms

with the aim of reducing the run time (Bast et al. 2007).
Various authors have defined heuristics for achieving this
goal (Fei et al. 2010; Liu and Yang 2009; Nazari et al.
2008; Sun et al. 2008; Xu 2005). Fu et al. show a review
of this kind of algorithms for shortest path search in
transportation applications (Fu et al. 2006).
Heuristic algorithms are relevant for shortest path

search in large graphs, even when an error is introduced,
acceptable in most of the situations, but they do not
guarantee to obtain the optimal path in all cases.
On the other hand, there are algorithms for reducing

a graph (Liu et al. 2010; Lu and Liu 2007; Sadiq and
Orlowska 2000). With the application of any algorithm
on the reduced graph, obviously, a lower response time is
achieved. However, in this case, reduction of data brings

Rodríguez-Puente and Lazo-Cortés SpringerPlus 2013, 2:291 Page 3 of 13
http://www.springerplus.com/content/2/1/291

loss of information. Thus, obtaining a path that is the
optimal in the original graph can not be guaranteed.
Rodríguez-Puente proposes a graph reduction algo-

rithm without loss of information (Rodríguez-Puente
2010). It specifies a mechanism to obtain the original
graph from which the reduced graph was obtained. This
algorithm can be applied naturally to a GIS because a map
is usually divided into: zip code, states, regions, etc. This
fragmentation of the map contribute to create a partition
according to the algorithm requirements. This algorithm
has a computational complexity O(n4), which is a high
cost for a response in real-time environment. However,
in the proposed approach we make a graph reduction for
each graph, only once, and the execution of the reduction
algorithm is done only for data preprocessing. Highlight-
ing that it does not affect the run time of shortest path
search.
This article presents a modification of Dijkstra’s short-

est path search algorithm. It shows that it is possible to
obtain the lowest cost path in all cases in a time similar
to A* algorithm. Thus, the application of this algorithm
in GIS can make improvements in services provided by
this kind of systems. The use of the proposed algorithm
integrated with the mentioned reduction algorithm will
ensure efficiency in shortest path search, while maintain-
ing accuracy.
The paper is organized as follows: first, a brief descrip-

tion of the graph reduction algorithm is provided. Second,
the algorithm for finding shortest paths in reduced graphs
is presented. Then, correctness of the algorithm is proved.
Finally, some experimental results and conclusions are
discussed.

Graph reduction
In order to achieve a better understanding of the pro-
posal, certain definitions and notations related with graph
theory must be introduced. Then, the selected graph
reduction algorithm, used in the proposed approach, is
presented.

Definitions and notations
Relevant definitions and notations related to the proposed
approach are as follows:

Definition 1. A graph is a pair G = (V , E), where:
- V is a set of vertices.
- E is a set of edges. An edge is an unordered pair of

vertices (vi, vj) such that vi, vj ∈ V .

Definition 2. Aweighted graph is defined as a structure
G = (V , E, fc), where:

- V is a set of vertices.
- E is a set of edges.

- The function fc : E → R
+ assigns to each edge a

positive real value called cost.

Definition 3. A graph rewrite rule R = (Gi,Gj,ψin,ψout)
over a graph G = (V , E, fc) consists of:

- a graph Gi = ({vi}, φ), where vi ∈ V .
- a graph Gj = (Vj, Ej).
- two sets of embedding information ψin,ψout of the

form {(vm, c1, c2, vn)}, where:
c1, c2 ∈ R

+, vm ∈ Vj, vn ∈ {V − Vj}; in the case of
ψin, ∃(vn, vi) ∈ E, such that fc(vn, vi) = c1. After
applying the rewrite rule, a new graph
H = (V1, E1, fc1) is obtained and it holds that
∃(vn, vm) ∈ E1, such that fc1(vn, vm) = c2.
Analogously to ψin, we define ψout , with edges
orientation as the only difference.

- V1 = {V − {vi}} ∪ Vj.
E1 = E − Et ∪ Ej ∪ Ek , (vt1, vt2) ∈ Et if and only if
(vt1 = vi and vt2 ∈ V) or (Vt1 ∈ V and vt2 = vi).
(vm, vn) ∈ Ek if and only if (vm, c1, c2) ∈ (ψin ∪ ψout),
c1, c2 ∈ R

+. fc1 : E → R
+,

fc1(u, v) =
⎧⎨
⎩

fc(u, v) if (u, v) ∈ Eandu, v �= vi
fcj(u, v) if (u, v) ∈ Ej

c2 if ∃(u, c1, c2, v) ∈ (ψin ∪ ψout)

A graph rewrite rule also can be defined over an undi-
rected graph, in this case, the sets ψin and ψout must be
represented as an only set called ψ .
The set of edges that join vertex vi with the vertices of

the graph G − Gi are called pre-embedding edges. After
applying a rewrite rule, the edges that join a vertex of the
graph Gj with a vertex of the graph G − Gj are called
post-embedding edges. The function ψin transforms the
set of pre-embedding edges that are incident in a vertex
vi in post-embedding edges that are incident in one or
more vertices vj ∈ Vj. Similarly, the function ψout trans-
forms pre-embedding outgoing edges from a vertex vi in
one or more post-embedding outgoing edges from several
vertices vj ∈ Vj.

Definition 4. A reduced graph is a tuple Gr =
(Vr , Er, f ,R), where:

- Vr is a set of vertices.
- Er is a set of edges.
- f : Vr × Vr × Vr → (R+ ⋃{0,∞}), is a function that

for each (vi, vj, vk) returns the cost of going from vi to
vk through vj, with vk adjacent to vj and vj adjacent to
vi. Function f is obviously also defined for the cases
where vi = vj and/or vj = vk . In the trivial case,
f (v, v, v) = 0.

- R is a set of rewrite rules over (Vr , Er, fc), where fc is
defined as fc(v,w) = f (v, v,w).

Rodríguez-Puente and Lazo-Cortés SpringerPlus 2013, 2:291 Page 4 of 13
http://www.springerplus.com/content/2/1/291

This definition is particularly important when it is asso-
ciated with another graph, i.e., when a graph is reduced
from another graph. We can state that a graph Gr =
(Vr, Er, f ,R) is reduced from a graph G = (V , E, fc), when
applying the set of rewrite rules R to the graph Gr , the
graph G is obtained.
In the case of function f, for all 3-tuple of vertices

vi, vj, vk ∈ Vr it holds that f (vi, vj, vk) = fc(vi, vj)+fc(vj, vk).
Notice that f (vi, vi, vj) = fc(vi, vj). If vi and vj are not adja-
cent, the image of both functions would be infinite. This
is the way in which we specify that two vertices are not
adjacent.

Graph reduction algorithm
The reduction algorithm enunciated in (Rodríguez-
Puente 2010) has as a key characteristic that it guaran-
tees no loss of information through the incorporation of
rewrite rules. However, an improved version is presented
here, since it is necessary to differentiate between what are
defined as internal and external vertices below.
This algorithm has two variables as input: a reduced

graph G = (V , E, f ,R) and a partition over the set of ver-
tices of the graph. On the other hand, the algorithm has as
output, a reduced graph.
In first place, it is necessary to refine partition P in

order to achieve an optimal path having the same cost
of the optimal path obtained by Dijkstra’s algorithm in
the original graph; to do this, we introduce the following
definition:

Definition 5. Let a graph G = (V , E) and a partition P
on V, a vertex vi ∈ V is internal if ∀vj ∈ V , such that vi
and vj are adjacent, it holds that vi and vj are in the same
class of P; i.e. [vi]=[vj] otherwise vi is external.
For refining P, we use the following strategy:

- Two vertices vi and vj are in the same class of refined
partition if, and only if:

- vi and vj are in the same class in the original
partition P.

- vi and vj are internal vertices.

- For each external vertex a new equivalence class is
created as a singleton containing only this vertex.

In Figure 1, we show an example of how to refine a
partition using definitions of internal and external vertex.
Next, we create a new vertex wi for each Ai ∈ P, |Ai| >

1, i = 1..s. V ′ = wi is a set of reduced vertices and V − V ′
is the set of unreduced vertices in the reduced graph.
We add a vertex in the reduced graph for each class of

the partition calculated in the previous step. If the car-
dinality of the class is 1, the vertex is considered as an
unreduced vertex; in any other case, it is considered as a

Figure 1 Example of partition refinement.

reduced one (GetReducedVertices method). Next, a set of
edges is calculated. One edge can be added to the reduced
graph if the two vertices of the edge belong to different
equivalence classes (GetEdgesmethod). With the addition
of edges to the reduced graph, the cost function fr of the
reduced graph must be updated.
The creation of the set of rewrite rules is an essen-

tial step in the reduction algorithm. With the rewrite
rules, the original graph can be obtained from the reduced
graph. Therefore, rewrite rules guarantee no loss of infor-
mation, and so the reduction process is reversible.
According to Definition 3, a graph rewrite rule is a

quadruple of the form (Gi,Gj,ψin,ψout). Then, we create
a rewrite rule for each reduced vertex in V ′, where:

- Gi = ({wi}, φ), wi ∈ V ′.
- Gj = (Ai, Ei, fcj) is a subgraph of G = (V , E, fc,R),

where exists an edge (u, v) ∈ Ei if and only if
(u, v) ∈ E and u, v ∈ Ai; in addition fcj(u, v) = fc(u, v).

- ψin is a set of quadruples of the form (vm, c1, c2, vn)
such that for vm ∈ Ai and vn ∈ (V − Ai) and
(vn, vm) ∈ E and (vn, vi) ∈ Er it holds that
c1 = fcj(vn, vm); and c2 = fcj(vn, vi).

- ψout is a set of quadruples of the form (vm, c1, c2, vn)
such that for vm ∈ Aj and vn ∈ (V − Aj) and
(vm, vn) ∈ E and (vi, vn) ∈ Er it holds that
c1 = fcj(vm, vn); and c2 = fcj(vi, vn).

The previous explanation corresponds to the implemen-
tation of GetRewriteRulesmethod.
Another step that contributes to obtain the optimal path

is the calculation of function fr. Function fr stores the cost
of the shortest path from one vertex to another, traversing
a reduced one.
Function fr is calculated, initially, (Updatefrmethod) for

each reduced vertex. This step is made in this way:

Rodríguez-Puente and Lazo-Cortés SpringerPlus 2013, 2:291 Page 5 of 13
http://www.springerplus.com/content/2/1/291

- Create an auxiliary graph. First, this graph is equal to
the graph Gj = (Vj, Ej, fcj) of the rewrite rule. Second,
we add to this graph, vertices that are adjacent (in the
original graph) to vertices of graph Gj (notice that
these vertices are internal taking into account original
graph and set Vj), and the edges that connect them.

- We apply MDijkstra algorithm (see next section)
using all pairs of related vertices, identified in the
previous step, as origin and destination vertices.

- The obtained costs and path are stored in fr .

Additionally, for all 3-tuples of vertices vi, vj, vk ∈
V , where vj is a non-reduced vertex, fr(vi, vj, vk) =
f (vi, vj, vk).
Path from vi to vk is also stored, with the goal of avoiding

additional run time, when the shortest path search in a
reduced graph is retrieved.
Algorithm 1 provides the detailed pseudo-code of the

graph reduction algorithm.

Algorithm 1 GraphReduction
Input: A reduced graph G = (V , E, f ,R), where R is a set

of rewrite rules. A partition P on V.
Output: A reduced graph Gr = (Vr, Er, fr,Rr).

P = GetPartition(V ,RE) {P = V/RE =
{A1,A2, . . . ,As}, where Ai =[ai] , ai ∈ V , i = 1..s}
GetReducedVertices(P)

GetEdges(P)

GetRewriteRules(P,G)

Create the reduced graph Gr = (Vr, Er, fr,Rr)
for all Ai ∈ P, |Ai| > 1 do

Updatefr(G,Rri.Gi,Rri.Gj, fr) {Rri is the rewrite rule
associated with the class Ai}

end for
return Gr

The complexity of the reduction algorithm would be
determined by steps 6-8. According to the above descrip-
tion of Updatefr, this method calculates shortest path
from all external vertices (taking into account the original
graph) of Vj to all vertices of the auxiliary graph.
In a graph obtained from a network in a map, a ver-

tex represents the intersection of two or more lines and
an edge represents the connection between two intersec-
tions. That is why, in this kind of graph, there are no
edges that intersect among them. Thus, we can assume
that graphs representing the modeled network through a
map are planar.
Moreover, in a graph with these characteristics, the

degree of a vertex is generally equal to 4, except in a few
cases. Thus it is assumed, without loss of generalization,
that the degree of a graph that represents a network of
this type is less than or equal to 10. Let �(G+) the degree

of G, the auxiliary graph has, at most, a · �(G+) vertices.
In Updatefr method, MDijkstra algorithm is called for
each adjacent vertex to any vertex of Vj (see Shortest path
search algorithm section for temporal complexity of this
algorithm), so the temporal complexity, in the worst case,
is:O(a · �(G+) · a · �(G+) log(a · �(G+))) = O(�(G+)2 ·
a2 · log(a) + log(�(G+)))

The terms involving �(G+) are constant, so the tempo-
ral complexity is O(a2 · log(a)).
As a conclusion, the temporal complexity of Algo-

rithm 1 is of polynomial order. The reduction process is
made only once, as data preprocessing. This preprocess-
ing task causes an increased in the spatial complexity but,
with this approach, we can obtain lower run time in every
shortest path computation over the reduced graph.

Reduction example
In this section we explain a very simple example to show
the reduction process.
Let:

- G the graph of Figure 2(a).
- P = ({v1, v2, v3}, {v4}, {v5}, {v6}, {v7}) a partition over

the set of vertices of G.

In first place, we create the reduced vertices, one
per each equivalence class of P. Thus, after this step,
Gr = ({vr1, v4, v6, v5, v7}, {}, {}, {}). Notice that Vr =
{vr1, v4, v6, v5, v7}, Er = {}, fr = {},Rr = {}.
Then, we need to calculate the edges of Gr as is speci-

fied in the description of Algorithm 1. If there is an edge
between two vertices of G, and these vertices are unre-
duced in Gr , this edge is added to the reduced graph; for
example the edge (v5, v7) in G is added to Gr . Addition-
ally, if there is a vertex v ∈ Pi in a class of P(v ∈ Vr),
and there exists an edge from v to other vertex u of G
(u is unreduced vertex in Gr), the edge from the reduced
vertex, that represents the class Pi of P, to the vertex u is
added to Gr ; for example the edge (v2, v4) in G is added to
Gr as the edge (vr1, v4), v2 is in the class of P represented
by vr1.
Therefore, the graph of Figure 2(b) is obtained. In addi-

tion, the rewrite rules are created. The graph Gi of the
rewrite rule is Gi = ({vr1}, {}) (see left of Figure 3), the
graph Gj is created with the vertices of the class of Pi,
represented by vri, and edges among them on G, as is
presented on the right side of Figure 3. Once we created
graphs Gi and Gj, the embedding information (ψin and
ψout) must be specified, as is described in the specification
of the reduction algorithm.
Finally, the function fr is calculated. In the example of

the reduced graph of Figure 2(b), we need to store the path
from v5 to v4 and the path from v5 to v6, both through vr1.
In this case, fr(v5, vr1, v4) = 6, fr(v5, vr1, v6) = 9.

Rodríguez-Puente and Lazo-Cortés SpringerPlus 2013, 2:291 Page 6 of 13
http://www.springerplus.com/content/2/1/291

(a) (b)

Figure 2 Two graph examples: (a) is a graph and (b) is a reduced graph from (a).

The application of the rewrite rules obtained (Figure 3)
toGr (Figure 2(b)) allows us to obtain the original graphG
(Figure 2(a)). For this purpose, we enunciated Algorithm 2
based on Definition 3.
This algorithm has as input a reduced graph and a

rewrite rule. If a reduced graph has more than one
reduced vertex, the application of this algorithm for each
reduced vertex would be sufficient to obtain the original
graph.

Algorithm 2 Graph Rewrite Rule Application
Input: A reduced graph Gr = (Vr , Er, fr,Rr)(Rri =
Gi,Gj,ψin,ψout is a rewrite rule in Rr associated to a
reduced vertex vr of Gr).

Output: A reduced graph G = (V , E, f ,R).
for all e ∈ Ej do

AddEdge(Gr , e) {Add edge e to graph Gr}
end for
for all (u1, c1, c2, u2) ∈ ψin do

AddEdge(Gr , (u2, u1, costo = c2)) {Add an edge from
u2 to u1 of cost c2}

end for
for all (u1, c1, c2, u2) ∈ ψout do

AddEdge(Gr , (u1, u2, costo = c2)) {Add an edge from
u1 to u2 of cost c2}

end for
DeleteVertex(Gr , vr) {Delete vertex vr from Gr}
return Gr

Following, we show an example of application of the
rewrite rule of Figure 3, using Algorithm 2:

- Add to Gr (Figure 2(b)) the graph Gj of the rewrite
rule (Gj is the right side graph of the rewrite rule).

- The pre-embedding edge (vr1, v5) of cost 1 is
transformed in post-embedding edge (v1, v5) of cost 1.

- The pre-embedding edge (vr1, v4) of cost 2 is
transformed in post-embedding edge (v2, v4) of cost 2.

- The pre-embedding edge (vr1, v6) of cost 3 is
transformed in post-embedding edge (v3, v6) of cost 3.

- The pre-embedding edge (vr1, v5) of cost 1 is
transformed in post-embedding edge (v3, v5) of cost 4.

- The vertex vr1 is eliminated from G3.

After applying the rewrite rule we have obtained the
graph G (Figure 2(a)). Thus, in the reduction process does
not exist loss of information, that is, the reduction is
reversible.

Shortest path search algorithm
In this section, a modification of Dijkstra’s shortest
path search algorithm is shown. The goal of the pro-
posal is to obtain an optimal path with the same
cost as the path returned by Dijkstra’s algorithm, for
the same origin and destination, but using a reduced
graph.
Both, Dijkstra’s algorithm and the one proposed, are

based on iterations over the set of vertices. At each itera-
tion, the algorithm will find a vertex so that the distance
from the origin vertex to the selected vertex is minimal.

Figure 3 Rewrite rule example. On the left side is the graph
Gi = ({vr1}, {}), on the right side is the graph
Gj = ({v1, v2, v3}, {(v1, v2), (v2, v1), (v2, v3)}) and on the bottom is the
embedding information ψout .

Rodríguez-Puente and Lazo-Cortés SpringerPlus 2013, 2:291 Page 7 of 13
http://www.springerplus.com/content/2/1/291

This vertex is called pivot. Usually, the vertices are stored
in a priority queue considering, as priority, the distance
from the origin vertex. This data structure is used to facil-
itate the selection of the pivot. Besides, two vectors are
updated during the execution of the algorithm. One of
them (vector D) is updated with the lowest distance from
the origin vertex to each vertex vi (we refer to this distance
as D[vi]). The other one (vector Pr) is updated with the
predecessor of each vertex in the shortest path from the
origin vertex.
Every time that a pivot wn is selected, the distances to

its adjacent vertices are updated. If the distance from the
origin vertex to the pivot (D[wn]) plus the distance from
the pivot to vertex vi is lower than the distance from the
origin vertex to vi (D[vi]), D[vi] is updated.
Additionally, there are two differences between

Dijkstra’s algorithm and the proposed one.
In the first place, a cost function f : V × V × V →

(R+ ∪ {0,∞}) is used for calculating the cost from one
unreduced vertex to another one, traversing a reduced
vertex. Notice that, traditionally, the cost function of a
graph has the cost of an edge.
The other difference in the proposed algorithm, is

related to the actualization of distances to a reduced ver-
tex. Let us consider an unreduced vertex wn as pivot, it is
necessary to update the distances to all adjacent vertices
as described above. If a reduced vertex vr is adjacent to
the pivot, we have to update the distances to all vertices
that are adjacent to vr (see lines 15-22 of Algorithm 3)
using the cost function f, for guaranteeing the optimal
result.
When analyzing the temporal complexity of the

proposed algorithm, there are two differences with
respect to Dijkstra’s algorithm. The first one is the
use of function f, this function is calculated at pre-
processing time, so it does not affect the temporal
complexity.
The second one implies the execution of one cycle.

However, it should be noted that this cycle is repeated
�(G+) (constant, �(G+) < 10) times for each vertex that
is stored in the queue.
Thus, �(G+) < log(|V |) for large graphs, this new

cycle does not affect the temporal complexity. Con-
cluding, temporal complexity of Dijkstra and MDijkstra
algorithms are the same order. Also notice that, in
a planar graph, we can establish a linear relation
between vertices and edges. From the Euler’s formula
(Diestel 2010), it follows that |E| ≤ 3|V | − 6 if |V | ≥
3. So, in the case of Dijkstra’s algorithm in planar
graphs, we can state that the temporal complexity is
O(|E| + |V | log(|V |)) = O(|V | log(|V |)).
For applying the proposed approach, we need to reduce

a graph only once. Then, we can make several shortest
path search computations. In other words, we propose to

make a data preprocessing for achieving a performance
improvement in shortest path search.
This approach brings us the benefit of performing short-

est path search in graphs with less vertices than other
algorithms use, for instance, Dijkstra and A*. Therefore,
it is logical for the proposal to achieve a lower run time.
Nevertheless, it is necessary to demonstrate, that the
path obtained by this proposal is optimal and equal (in
terms of cost) to the one obtained by Dijkstra’s algo-
rithm. These demonstrations are shown in the following
section.
The detailed pseudo-code of the proposed modification

is presented in Algorithm 3.
Table 1 shows a comparison of temporal complexity

of Dijkstra, A* and MDijsktra algorithms. When analyz-
ing A* algorithm considering optimal heuristics, it can be
stated that its temporal complexity is O(n), where n is the
number of vertices of the graph. Besides, the temporal
complexity of Algorithm 3 (MDijkstra) is O(n1 log(n1)) <

O(n21), where n1 is the number of vertices of the reduced
graph. Thus, if in the reduction process we obtain a graph
G = (Vr , Er), such that n1 = |Vr| = √n, the temporal
complexity of both algorithms must be similar.

Algorithm 3mDijkstra
Input: A reduced and weighted graph G = (V , E, f ,R)

and an origin vertex vorigin.
Output: A vector D of minimum distances, a vector P of

predecessors.
1: Cn = {}, queue = PriorityQueue()
2: for all v ∈ V do
3: Dn[v]= f (vorigin, vorigin, v), Prn[v]= vorigin
4: queue.add(Dn[v] , v)
5: end for
6: while not queue.empty() do
7: wn = queue.pop() {The vertex wn is the pivot}
8: Cn = Cn ∪ {wn}
9: for all v ∈ adjacents(wn) do
10: if Dn[v]> Dn[wn]+f (wn,wn, v) then
11: Dn[v]= Dn[wn]+f (wn,wn, v)
12: Prn[v]= wn
13: queue.decreaseKey(Dn[v] , v)
14: end if
15: if v is a reduced vertex then
16: for all s ∈ adjacent(Gr , v) do
17: if Dn[s]> Dn[wn]+fr(wn, v, s) then
18: Dn[s]= Dn[wn]+fr(wn, v, s)
19: Prn[s]= v
20: end if
21: end for
22: end if
23: end for
24: end while

Rodríguez-Puente and Lazo-Cortés SpringerPlus 2013, 2:291 Page 8 of 13
http://www.springerplus.com/content/2/1/291

Table 1 Temporal and spatial complexity of Dijkstra, A* andMDijkstra algorithms

Algorithm Temporal complexity Temporal complexity (using Heap data structure) Spatial complexity

Dijkstra O(|E| + |V|2) O(|V| + log(|V|)) O(|E| + |V|)
A* O(|V|), if the selected heuristic is optimal O(|V|), if the selected heuristic is optimal O(|E| + |V|)
MDijkstra O(|E| + |V|2) O(|V| + log(|V|)) O(|E| + |V|) + |R|

However, as is impractical to obtain an optimal heuris-
tics for this purpose, we can state that the proposal
obtains a response in a lower run time than Dijkstra and
A* algorithm if a condition n1 = |Vr| ≤ √

(n) is satisfied.
Generally, there is a trade off between efficiency and

accuracy in algorithms that have large amount of data
as input. The main result of the present work is the
efficiency improvement of shortest path search in large
graphs without affecting accuracy.
We have the possibility to make a shortest path

search in the reduced graph between any pair of ver-
tices of the original graph. It can be achieved by apply-
ing a rewrite rule to a proper reduced vertex. How-
ever, this involves an additional cost to shortest path
search.
It is hard to state that an algorithm for shortest path

search is better than other in all cases. In this case, our
proposal need a higher space, associated to a prepro-
cessing stage to calculate function f (see Definition 4),
than classical Dijkstra’s and A* algorithms (nevertheless, it
should be highlighted that the preprocessing is made only
once, but shortest path searches are made several times).
However, MDijkstra algorithm gives a response in a lower
run time.
Below, we prove the correctness of MDijkstra algo-

rithm, with the aim of establishing that the proposed
algorithm obtains an optimal path, and the cost of
this path is the same as the cost of the path obtained
by Dijkstra’s algorithm. Next, we state a theoretical
measure to ensure that the response time is lower
than A* algorithm. This is the algorithm selected in
the literature of shortest path search, to compare run
times.

Correctness proof
In this paper, a new shortest path search algorithm is pro-
posed. Therefore, it is necessary to prove that the path
obtained by the proposal is optimal in all cases.
With the aim of facilitating the understanding of this

section, the correctness proof of several lemmas is pre-
sented in Appendix A.
By Lemma 3, DN−1(v) has the minimum distance from

vertex vo to vertex v.
To prove the correctness of Algorithm 3, we shall prove

that for any path Ca = (vo, v1, v2, ..., vd) with distance

vector Dc and predecessors vector P, it holds that ∀v ∈
V ,DN−1(v) ≤ DcN−1(v), where v is an unreduced vertex.
Theorem 1. ∀n ∈ {1, 2, ..,N − 1}[Ca(0) = 0 →
∀m < n + 1(Ca(m) < N) → ∀m < n +
1[Dc(Ca(m)) + fc(Ca(m),Ca(m + 1)) = Dc(Ca(m +
1))]→ DN−1(Ca(n)) ≤ Dc(Ca(n))]

Proof. (By induction on n)
Base case n = 0 immediate by Lemma 2,
For n = k + 1:
By Lemma 1 in step N − 1 all vertices have been visited.

DN−1(Ca(k + 1)) ≤ DN−1(Ca(k − 1)) + f (Ca(k − 1),
Ca(k),Ca(k + 1))

(1)

The distance to a vertex vi is less than or equal to the
distance to a visited vertex vj plus the distance from vj to
vi, by Lemma 5
By induction hypothesis,DN−1(Ca(k−1)) ≤ Dc(Ca(k−

1)), replacing DN−1(Ca(k − 1)) in (1),

DN−1(C(k + 1)) ≤ Dc(Ca(k − 1)) + f (Ca(k − 1),
Ca(k),Ca(k + 1))

(2)

Note that Ca(k) = PcN+1(Ca(k + 1)) and Ca(k − 1) =
PcN−1(PcN−1(Ca(k + 1))), replacing Ca(k) y Ca(k − 1) in
(2),

DN−1(Ca(k + 1)) ≤ Dc(PcN−1(PcN−1(Ca(k + 1))))
+ f (PcN−1(PcN−1(Ca(k + 1))), PcN−1(Ca(k + 1)),

Ca(k + 1))
(3)

By Lemma 3,Dc(Ca(k+1)) = Dc(PcN−1(PcN−1(Ca(k+
1)))) + f (PcN−1(PcN−1(Ca(k + 1))), PcN−1(Ca(k +
1)),Ca(k + 1)), replacing in (3), DN−1(Ca(k + 1)) ≤
Dc(Ca(k + 1)).

We can prove the correctness of Dijkstra’s algorithm
with a similar reasoning because the same invariants
are satisfied. Thus, for the next proof we assume that

Rodríguez-Puente and Lazo-Cortés SpringerPlus 2013, 2:291 Page 9 of 13
http://www.springerplus.com/content/2/1/291

Dijkstra’s algorithm is correct and satisfies invariants anal-
ogous to those defined for Algorithm 3.
As demonstrated before, Algorithm 3 returns the short-

est path in the reduced graph. However, it remains to
prove that the cost of the shortest path obtained by the
proposed algorithm and the one obtained by Dijkstra’s
algorithm (in the original graph without reducing it) are
the same.
Let:

- G = (V , E, fc) a graph.
- Gr = (Vr, Er, f) a reduced graph obtained from the

graph G.

Theorem 2. Let Ca = (v1, ..., vn) be a path of cost c
obtained by applying Dijkstra’s algorithm on the graph G,
where v1 and vn are unreduced vertices on the graph Gr,
then ∃Ca′ = (u1, u2, . . . , ut) with cost c, u1 = v1, ut = vn,
such that Ca′ is an optimal path on Gr.

Proof. From Ca we can build a path Ca′ of cost c on the
graph Gr as follows:

- Substitute each sub-path vi, vi+1, . . . , vi+m for a path
vi, vk, vi+m where:

- vi+j ∈[vi] , j = 1..m
- vi, vi+m are external vertices. The other

vertices are internal
- vk is the reduced vertex (in the graph Gr) that

represents the equivalence class [vi]

The cost of the path vi, vk , vi+m is equal to the cost of the
path vi, vi+1, . . . , vi+m, by definition of function f. Thus,
the paths Ca and Ca′ have the same cost.
Suppose that exists a path Cb′ = (u1, u2, . . . , up) of cost

c1 < c in the graph Gr , where ui ∈ Vr, i = 1..p. Then we
can obtain a path Cb of cost c1 on the graph G as follows:

- Substitute each sub-path ui−1, ui, ui+1 by a path
ui−1, uj, uj+1, uj+m, . . . , ui+1 of cost c3 where:

- ui−1, ui+1 are unreduced vertices
- uj+t ∈[ui] , j = 1..m
- c3 = f (ui−1, ui, ui+1)

Therefore paths Cb and Cb′ have the same cost (c1), this
leads a contradiction. Thus, there is no path that has less
cost than Ca.

Corollary 1. Let Ca = (v1, ..., vn) a path obtained by
applying Dijkstra’s algorithm on graph G, ∀i ∈ {1, 2, ..., n}
such that Ca[i] is an unreduced vertex in Gr, it holds that
the distance to Ca[i] is equal to the distance obtained
by MDijkstra algorithm on the reduced graph from v1 to
Ca[i].

Theorem 2 establishes that the cost of the shortest path
from a vertex vi to any vertex vj (vi and vj being unre-
duced vertices in Gr) obtained by applying Algorithm 3
is the same as the cost of the shortest path calculated
by Dijkstra’s algorithm in the original graph (without
reduction).
The fact that both source and destination must be unre-

duced vertices could be a limiting factor (in terms of the
number of vertices to which one can calculate the short-
est path) if one does not have a mechanism that allows
obtaining a reduced graph Gri from Gr where vi ∈ V (vi is
a vertex in the original graph G = (V , E)) is an unreduced
vertex on Gri. This can be accomplished by one or more
expansions applying rewrite rules to the reduced vertex
that contains vertex vi.

Experimental results
The comparison of the results of shortest path search,
applying Algorithm 3 (MDijkstra), Dijkstra’s algorithm
and A* algorithm, provides elements emphasizing the
advantages of the proposed approach. Besides, correct-
ness proof of the proposed shortest path search algorithm
is made.
Algorithm 3 was coded in Python, using the NetworkX

library (Hagberg et al. 2008). This library provides an
implementation of Dijkstra’s and A* algorithms, allowing
to compare the three algorithms on the same technol-
ogy and with efficient data structures. NetworkX uses
a priority queue, implemented with a Heap, to find the
shortest path using Dijkstra and A* algorithms. With this
implementation, the complexity is O(|E| + |V | log(|V |)).
It is well-known that there are several techniques to

make performance improvement on shortest path search,
based on Dijkstra’s and A* algorithms; Zeng and Church
compare some of them (Zeng and Church 2009). This
performance improvement depends on several things, for
example: programming language, data structures used in
the implementation of algorithms, among others. There-
fore, in order to be impartial with the proposal, we
compare the proposed algorithm only with the implemen-
tation of Dijkstra’s and A* algorithms in the NetworkX
library.
The algorithms were run on a Pentium 4 (3.2 GHz) with

1.5 Gb of RAM and the Kubuntu 11.10 operating system.
Two graphs were used for experimental test: one was

obtained from a cartography of the North Carolina
Statea and the other represents the road network of San
Franciscob. The first graph, obtained fromNorth Carolina
cartography, has 41810 vertices. This graph was reduced
twice. First, we arbitrarily construct two sets of polygons
using zip codes. The first one has 30 polygons. The sec-
ond one has 5 polygons (the second set of polygons does
not depend of the first one). Obviously in the second
case polygons are larger. In both reductions we use the

Rodríguez-Puente and Lazo-Cortés SpringerPlus 2013, 2:291 Page 10 of 13
http://www.springerplus.com/content/2/1/291

equivalence relation “in”. If two points are into the same
polygon, then they are related through relation “in”. We
obtain a reduced graph of 1826 using the first set of poly-
gons, and a reduced graph of 250 vertices using the second
set.
The second graph, obtained from San Francisco cartog-

raphy, has 149756 vertices and it was also reduced twice,
using the equivalence relation defined above and two new
arbitrary sets of polygons. The first set has 10 polygons
and the second one has 4 polygons. In the first reduction,
using the first set of polygons we obtain a reduced graph of
2617 vertices. Using the second set of polygons, we obtain
another reduced graph of 769 vertices.
Dijkstra’s and A* algorithms were executed on the orig-

inal graphs and the proposed algorithm was applied to
the reduced ones. Each algorithm was executed 10 times;
the highest and lowest values were discarded. Finally, the
average time among the remaining 8 values are shown.
Table 2 shows a comparison among the three selected

algorithms based on the run time of shortest path
search.

Discussion
The results shown in Table 2 confirm the fact that, for
large graphs, the run time of shortest path search with the
proposed approach would be smaller than the run time
obtained with classical approaches.
If in the reduction process we obtain a graph G =

(Vr, Er), such that n1 = |Vr| = √n, the temporal com-
plexity of both algorithms (Dijkstra and MDijkstra) must
be similar. However, as is impractical to obtain an opti-
mal heuristics for this purpose, we can state that the
proposal obtains a response in a lower run time than
Dijkstra’s and A* algorithm if a condition n1 = |Vr| ≤

Table 2 Time of shortest path searchwith Dijkstra’s and A*
algorithms in two original graphs (G1,G2) and time of
shortest path search in four reduced graphs with the
proposed approach

Graph Algorithm NVa Time (seconds) Optimal path

G1 Dijkstra

41810

0.6160 yes

A* (h=0) 0.4938 yes

A* (h=Euclidean distance) 0.0200 no

Gr1.1 Algorithm 3 (MDijkstra) 250 0.0036 yes

Gr1.2 Algorithm 3 (MDijkstra) 1826 0.0265 yes

G2 Dijkstra

149756

3.0249 yes

A* (h=0) 2.2108 yes

A* (h=Euclidean distance) 0.1011 no

Gr2.1 Algorithm 3 (MDijkstra) 765 0.0193 yes

Gr2.2 Algorithm 3 (MDijkstra) 2617 0.0722 yes
a
Number of vertices of the graph.

√n is satisfied. Thus, if we assume that we have suffi-
cient memory for storing reduced graphs, the proposed
approach is better than Dijkstra’s and A* algorithms; tak-
ing into account that if we reduce original graph as pro-
posed before, always we can obtain a response in a lower
runtime. The proposal is not useful when the available
memory is low and does not permit to store reduced
graphs.
In the case of the run time of Algorithm 3 (MDijkstra)

on the graph Gr1.2, the obtained time is higher than the
one obtained by A* algorithm. The reason of this result is
that the graph Gr1.2 has a number of vertices considerably
higher than the square root of the number of vertices of
G1. Notice that we state that the number of vertices of the
reduced graph must be less than or equal to the square
root of the number of vertices of the original graph. In
the case of the graph Gr2.2 a lower run time than the one
obtained by A* algorithm is achieved, although the num-
ber of vertices is higher than the square root of the number
of vertices of G2.
The selection of origin and destination of the shortest

path search in a GIS is usually made using a map, i.e. a
user selects these points by clicking in the map shown by
the GIS. We believe that, at any time that a user selects an
origin or a destination point, the GIS can make an expan-
sion of the reduced graph, using the extent of the map
that is visualized and the selected point. If a system for
shortest path search is implemented in this way, the time
needed to expand a reduced vertex would be irrelevant
for the shortest path search, considering that the temporal
complexity of expanding a reduced vertex is O(a), where
a = max{|Ai|,Ai ∈ P}.
Most algorithms developed lately for shortest path

search make efficiency improvement by reducing the
search space, these approaches cause loss in accuracy. The
presented approach makes use of a graph reduction algo-
rithm without loss of information, in order to obtain a
better run time of the search. This approachmaintains the
accuracy because the reduction algorithm guarantees no
loss of data (see Table 1).
Generally, heuristic algorithms are developed in order

to reduce the run time of a specific algorithm, which
solves some problems whose optimal solution involves
a high computational cost. Many heuristic algorithms
are developed for shortest path search in GIS, with the
assumption that a low bound of error is admissible in this
area. However, with the proposed approach, it is possi-
ble to obtain the optimal path in a similar time, and even
in less time, than with heuristic algorithms, as shown in
Table 2.

Conclusions
In this paper, an algorithm for shortest path search
on reduced graphs is developed. Experimental results

Rodríguez-Puente and Lazo-Cortés SpringerPlus 2013, 2:291 Page 11 of 13
http://www.springerplus.com/content/2/1/291

show that the proposed algorithm is more efficient than
Dijkstra’s algorithm on large graphs. In addition, we can
conclude the following:

- The proposed approach is particularly applicable to
GIS, due to the way in which users perform a shortest
path search in this kind of systems. This allows us to
expand vertices avoiding the influence of the time
used in this operation on the shortest path search.

- The use of reduced graphs significantly reduces the
response time in the shortest path search. That is one
of the two main approaches used in literature to
reduce the computational cost of this operation.

- The shortest path search on a reduced graph ensures
scalability regarding the size of the graph on which
the analysis is performed.

- We prove that the proposed algorithm allows us to
obtain an optimal path in a reduced graph. The cost
of the obtained path is equal to the cost of the path
found using Dijkstra’s algorithm on the original graph.

- We have developed a method capable of performing
shortest path search in a run time similar to A*
algorithm (with h=0 and h=Euclidean distance).

Future work
The modifications made on Dijkstra’s algorithm are
related to the use of a new function that has the cost of
going through a reduced vertex. Therefore, we canmodify
other algorithms to make shortest path search in reduced
graph (like A* algorithm), whenever the cost of going
through a reduced vertex is considered as the cost of the
path.

Appendix
A Demonstration of cycle invariants of Algorithm 3
Preconditions that must be met to prove the correctness
of Algorithm 3 are expressed by the following definitions
and notations:

- G = (V , E, fc) is a weighted graph. Without loss of
generality we assume that V = {0, 1, ...,M− 1} to
make demonstrations less complex.

- Gr = (Vr, Er, f ,R) is a reduced graph from G and the
equivalence relation RE. Without loss of generality
we assume that Vr = {0, 1, ...,N − 1}. It is important
to notice that in each path of a reduced graph,
between two reduced vertices there are, at least, two
unreduced vertices, as is shown in Figure 4.

- ∀n < N , in the execution of Algorithm 3 we define:

- A vertex wn, the vertex selected in step n.
- A set Cn ⊆ Vr , the set of vertices visited in

step n. C0 = {vo}, Cn+1 = Cn
⋃{wn}.

Figure 4 Reduced graph example. Vertices 1,2,3 and 4 are reduced
vertices, the rest are unreduced ones.

- Dn represents the minimum distance from vo
to each vertex v ∈ Vr as far as it is known in
step n. D0(vo) = 0,
Dn+1(v) = Min(Dn(wn) + fc(wn, v),Dn(v)) =
Min(Dn(Pn(wn)) + f (Pn(wn),wn, v),Dn(v)).

- Pn store, for each vertex, the predecessor in
the shortest path from vo to vd, as far as it is
known in step n. P0(vo) = vo,

Pn+1(v) =
{

wn ifDn(v) > Dn(wn) + fc(wn, v)
Pn(v) in other case

For the correctness proof it is necessary to demonstrate
that the following cycle invariants are held:

∀n < N :

1. |Cn| = n + 1. In the iteration n, there are n + 1
visited vertices.

2. Dn(vo) = 0 ∧ Pn(vo) = vo. The distance from origin
vertex to itself is 0 at any iteration. The predecessor
of the origin vertex is the vertex itself.

3. Dn(v) = Dn(Pn(Pn(v))) + f (Pn(Pn(v)), Pn(v), v). The
distance to a vertex depends on the distance to its
predecessor in the shortest path.

4. ∀v ∈ Cn Dn+1(v) = Dn(v). The distance to a vertex
in the step n is the same that the distance in the step
n + 1, for all visited vertices.

5. ∀vi, vj ∈ V [vj ∈ Cn+1 → Dn+1(vi) ≤
Dn+1(Pn(vj)) + f (Pn(vj), vj, vi)]. The distance to any
vertex vi is less than or equal to the distance to a
visited vertex vj plus the distance from vj to vi.

Lemma 1. ∀n < N , |Cn| = n + 1

Rodríguez-Puente and Lazo-Cortés SpringerPlus 2013, 2:291 Page 12 of 13
http://www.springerplus.com/content/2/1/291

Proof. (By induction on n)
From the definition of the algorithm, at each step a ver-

tex w is visited, in step 0 vertex vo is visited, thus in the
base case we have C0 = {vo}, |C0| = 1,
For n = k+1,Ck+1 = Ck

⋃{v}, being v the visited vertex
in step k + 1, therefore |Ck+1| = |Ck | + |{v}| = k + 2.

Lemma 2. ∀n < N , Dn(vo) = 0 ∧ Pn(vo) = vo

Proof. First, we visit vertex vo and update Dn(vo) =
0, i.e., the minimum distance from vo to itself is
0, the function Dn has its domain in R

+ ⋃{0,∞},
so the smallest possible value that can be achieved
is 0;
Let cost = Dn(Pn(wn)) + f (Pn(wn),wn, v), ∀wn, v ∈ V , it

holds that 0 ≤ 0+ cost, because the image of the function
f is R+ ∪ {0,∞} and the vectorD(Vr) is initialized from f.
The condition Dn(vo) > Dn(wn) + f (Pn(wn),wn, vo)

is never satisfied, thus Dn[vo] and Pn[vo] never
change.

Lemma 3. ∀n < N , Dn(v) = Dn(Pn(Pn(v))) +
f (Pn(Pn(v)), Pn(v), v)

Proof. (By induction on n)
The base case n = 0, ∀v ∈ Vr,D0(v) = fc(vo, v), by
preconditions.
f (vo, vo, v) = fc(vo, vo) + fc(vo, v) = fc(vo, v), by definition
of f and fc, replacing f by fc:
D0(v) = 0 + f (vo, vo, v)D0(v) = D0(vo) + f (vo, vo, v), by
Lemma 2
D0(v) = D0(P0(vo)) + f (P0(vo), vo, v), by Lemma 2
For n = k + 1:

Choose wk+1 ∈ V \ Ck such that Dk+1(wk+1) is minimal,
Ck+1 = Ck

⋃{wk+1}.
Case 1: If Dk+1(v) > Dk+1(Pk+1(wk+1)) + f (Pk+1

(wk+1),wk+1, v), then Dk+1(v) = Dk+1(Pk+1 (wk+1)) +
f (Pk+1(wk+1),wk+1, v) ∧ Pk+1(v) = wk+1
Case 2: If case 1 is not satisfied, Dk+1(v) =

Dk(v), Pk+1(v) = Pk(v), Dk+1(v) = Dk(Pk(Pk(v))) +
f (Pk(Pk(v)), Pk(v), v), by induction hypothesis, replac-
ing Pk(v) by Pk+1(v) Dk+1(v) = Dk(Pk+1(Pk+1(v))) +
f (Pk+1(Pk+1(v)), Pk+1(v), v).

Lemma 4. ∀v ∈ Cn Dn+1(v) = Dn(v)

Proof. Let v ∈ Cn,wn ∈ V \ Cn
wn ∈ Cn+1 by definition.
Dn(v) ≤ Dn(wn), otherwise vertex wn was visited before
vertex v,
Dn(v) ≤ Dn(wn) + fc(wn, v) = Dn(Pn(wn)) +
f (Pn(wn),wn, v),
Dn+1(v) = Dn(v), by definition of Dn+1(v).

Lemma 5. ∀n < N , ∀vi, vj ∈ V [vj ∈ Cn+1 →
Dn+1(vi) ≤ Dn+1(Pn(vj)) + f (Pn(vj), vj, vi)]

Proof. (By induction on n)
The base case n = 0, C0 = {vj},D0(vj) = 0, by definition,
notice that vj is the only vertex in C0 (in the base case, if
vj ∈ C0, vj is the origin vertex).
Pn(vj) = vj by Lemma 2.

∀vi ∈ V , f (vj, vj, vi) = f (P0(vj), vj, vi), by definition of f,
andD0(vi) = f (vj, vj, vi). ThusD0(vi) ≤ 0+f (P0(vj), vj, vi),
D0(vj) = 0 = D0(P0(Vj)) D0(vi) ≤ D0(P0(vj)) +
f (P0(vj), vj, vi)
D1(vi) ≤ D0(vi), from the definition (Dn+1(v) =
Min(Dn(wn) + fc(wn, v),Dn(v))) and D1(vj) = D0(vj) = 0
(notice that vj is the origin vertex). Replacing D0 by D1:
D1(vi) ≤ D1(P0(vj)) + f (P0(vj), vj, vi)
For n = k + 1:
Case 1: vj ∈ Ck Dk+1(vi) ≤ Dk(vi), by definition

Dk+1(vi) ≤ Dk(Pk(vj)) + f (Pk(vj), vj, vi), by induction
hypothesis Dk+1(vi) ≤ Dk+1(Pk(vj)) + f (Pk(vj), vj, vi) by
Lemma 4
Case 2: vj = wk .

Dk+1(vi) ≤ Dk(Pk(wk)) + f (Pk(wk),wk , vi), by definition
Dk+1(vi) ≤ Dk+1(Pk(wk))+f (Pk(wk),wk , vi), by Lemma 4,
replacing wn by vj:
Dk+1(vi) ≤ Dk+1(Pk(vj)) + f (Pk(vj), vj, vi).

Endnotes
aAvailable in

http://grass.osgeo.org/sampledata/north_carolina/
bAvailable in

http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm

Competing interests
We declare that we have no conflict of interest.

Authors’ contributions
Both authors, viz. RRP and MSLC, were involved in drafting the article and
revising it critically, until the final approval of the version to be submitted.
Programming and experiments were carried out by RRP. Both authors read
and approved the final manuscript.

Acknowledgements
Authors are very grateful to Yvonne Collada Peña and Yoan Martínez Márquez
for the detailed revision of the manuscript. Authors also acknowledge the
critical, thorough and detailed revision of the anonymous reviewer as well as
all the valuable comments and suggestions.

Received: 14 November 2012 Accepted: 14 May 2013
Published: 1 July 2013

References
Bast H, Funke S, Sanders P, Schultes D (2007) Fast routing in road networks

with transit nodes. Science 316(5824): 566. http://www.ncbi.nlm.nih.gov/
pubmed/17463281

Delling D, Sanders P, Schultes D, Wagner D (2009) Algorithmics of large and
complex networks. chap. Engineering Route Planning Algorithms.

http://grass.osgeo.org/sampledata/north_carolina/
http://www.cs.fsu.edu/~lifeifei/SpatialDataset.htm
http://www.ncbi.nlm.nih.gov/pubmed/17463281
http://www.ncbi.nlm.nih.gov/pubmed/17463281

Rodríguez-Puente and Lazo-Cortés SpringerPlus 2013, 2:291 Page 13 of 13
http://www.springerplus.com/content/2/1/291

Springer-Verlag, Berlin, Heidelberg, pp 117–139.
doi:http://dx.doi.org/10.1007/978-3-642-02094-0_7

Diestel R (2010) Graph Theory, fourth edn. Graduate Text in Mathematics.
Springer-Verlag. URL http://diestel-graph-theory.com/index.html

Dijkstra EW (1959) A note on two problems in connection with graphs.
Numerische Mathematik 1: 269–271

Fei S, Wei D, Bing Z (2010) Traffic information management and promulgating
system based on gis In: 2010 International Conference on Optoelectronics
and Image Processing (ICOIP), ICOIP ’10, vol. 2. IEEE Computer Society, Los
Alamitos, pp 676–679. doi:http://dx.doi.org/10.1109/ICOIP.2010.243

Fu L, Sun D, Rilett LR (2006) Heuristic shortest path algorithms for
transportation applications: state of the art. Comput Oper Res 33:
3324–3343. doi:10.1016/j.cor.2005.03.027. URL http://dl.acm.org/citation.
cfm?id=1143184.1143201

Fuhao Z, Jiping L (2009) An algorithm of shortest path based on dijkstra for
huge data. In: Chen Y, Deng H, Zhang D, Xiao Y (eds) Sixth International
Conference on Fuzzy Systems and Knowledge Discovery, 2009. FSKD ’09,
vol. 4. IEEE Computer Society, Los Alamitos, pp 244–247. http://dl.acm.org/
citation.cfm?id=1800875.1800929

Geisberger R, Sanders P, Schultes D, Delling D (2008) Contraction hierarchies:
faster and simpler hierarchical routing in road networks. In: Proceedings of
the 7th international conference on Experimental algorithms, WEA’08.
Springer-Verlag, Berlin, Heidelberg, pp 319–333. http://dl.acm.org/citation.
cfm?id=1788888.1788912

Goldberg AV, Harrelson C (2005) Computing the shortest path: A search meets
graph theory. In: Proceedings of the sixteenth annual ACM-SIAM
symposium on Discrete algorithms, SODA ’05. Society for Industrial and
Applied Mathematics, Philadelphia, pp 156–165. http://dl.acm.org/citation.
cfm?id=1070432.1070455

Goldberg AV, Werneck RF (2005) Computing point-to-point shortest paths
from external memory. Area. http://www.cs.princeton.edu/courses/
archive/spr06/cos423/Handouts/GW05.pdf

Gonzalez H, Han J, Li X, Myslinska M, Sondag JP (2007) Adaptive fastest path
computation on a road network: a traffic mining approach. In: Proceedings
of the 33rd international conference on Very large data bases, VLDB ’07.
VLDB Endowment, Vienna, Austria, pp 794–805. http://dl.acm.org/citation.
cfm?id=1325851.1325942

Gutman RJ (2004) Reach-based routing: A new approach to shortest path
algorithms optimized for road networks. In: Arge L, Italiano GF, Sedgewick
R (eds) Proceedings of the Sixth Workshop on Algorithm Engineering and
Experiments and the First Workshop on Analytic Algorithmics and
Combinatorics. SIAM, New Orleans, pp 100–111

Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):
100–107. doi:10.1109/TSSC.1968.300136

Huang B, Wu Q, Zhan FB (2007) A shortest path algorithm with novel heuristics
for dynamic transportation networks. Int J Geogr Inf Sci 21(6): 625–644.
doi:10.1080/13658810601079759

Jagadeesh G, Srikanthan T (2008) Route computation in large road networks: a
hierarchical approach. Intell Transp Syst, IET 2(3): 219–227.
doi:10.1049/iet-its:20080012

Jiang L, Qi Q, Zhang A (2010) The thematic mapping system on internet. In: Liu
Y, Chen A (eds) 2010 18th International Conference on Geoinformatics.
IEEE Computer Society, Piscataway, pp 1–4.
doi:10.1109/GEOINFORMATICS.2010.5567802

Koehler E, Moehring RH, Schilling H (2005) Acceleration of shortest path and
constrained shortest path computation. Exp Efficient Algorithms
3503(1126): 126–138

Liu YC, Yang DH (2009) A spatial restricted heuristic algorithm of shortest path.
In: International conference on artificial intelligence and computational
intelligence, 2009. AICI ’09, vol. 2. IEEE Computer Society, Los Alamitos,
pp pp 36–39. http://www.computer.org/csdl/proceedings/icsssm/2005/
8971/02/01500172-abs.html

Liu QX, Cao BX, Zhao YW (2010) An improved verification method for workflow
model based on petri net reduction. In: 2010 The 2nd IEEE International
Conference on Information Management and Engineering (ICIME), vol. 2.
IEEE Computer Society, Piscataway, pp 252–256.
doi:10.1109/ICIME.2010.5477436

Lu K, Liu Q (2007) An algorithm combining graph-reduction and graph-search
for workflow graphs verification. In: Shen W, Yang Y, Yong J,

Hawryszkiewycz I, Lin Z, Barthès JPA, Maher ML, Hao Q, Tran MH (eds) 11th
International conference on computer supported cooperative work in
design, 2007. CSCWD 2007. IEEE Computer Society, Washington,
pp 772–776. doi:10.1109/CSCWD.2007.4281534

Maue J, Sanders P, Matijevic D (2010) Goal-directed shortest-path queries
using precomputed cluster distances. J Exp Algorithmics 14: 2:3.2–2:3.27.
doi:http://doi.acm.org/10.1145/1498698.1564502

Möhring RH, Schilling H, Schütz B, Wagner D, Willhalm T (2006) Partitioning
graphs to speedup dijkstra’s algorithm. ACM J Exp Algorithmics 11(2.8):
1–29

Nazari S, Meybodi MR, Salehigh MA, Taghipour S (2008) An advanced
algorithm for finding shortest path in car navigation system. In: Zheng H, Li
L, Eguchi K, Wang W (eds) First international conference on intelligent
networks and intelligent systems, 2008. ICINIS ’08. IEEE Computer Society,
Los Alamitos, pp 671–674, doi:10.1109/ICINIS.2008.147. http://dl.acm.org/
citation.cfm?id=1471609.1472922

Pfoser D, Efentakis A, Voisard A, Wenk C (2009) Exploiting road network
properties in efficient shortest path computation. Tech. rep., International
Computer Science Institute. http://www.icsi.berkeley.edu/pubs/
techreports/TR-09-007.pdf

Pohl IS (1969) Bi-directional and heuristic search in path problems. Ph.D. thesis,
Stanford University, Stanford, CA , USA. AAI7001588

Rodríguez-Puente R (2010) Aplicación de las gramáticas de grafo en sistemas
de información geográfica. Revista Cubana de Ciencias Informáticas (RCCI)
4(1/2): 5–10

Rodríguez-Torres A, Rodríguez-Puente R (2010) Servicio de mapas temáticos.
Mapping: Revista internacional de ciencias de la tierra (139): 36–39

Sadiq W, Orlowska ME (2000) Analyzing process models using graph reduction
techniques. Inf Syst 25(2): 117–134. doi:10.1016/S0306-4379(00)00012-0.
http://portal.acm.org/citation.cfm?id=344358.344369

Sanders P, Schultes D (2005) Highway hierarchies hasten exact shortest path
queries. Europe 3669(October): 568–579. http://www.springerlink.com/
index/5XG8NG9CWXEQYVD9.pdf

Song Q, Wang X (2011) Efficient routing on large road networks using
hierarchical communities. Intell Transportation Syst, IEEE Trans 12(1):
132–140. doi:10.1109/TITS.2010.2072503

Sun L, Hu X, Li Y, Lu J, Yang D (2008) A heuristic algorithm and a system for
vehicle routing with multiple destinations in embedded equipment In: 7th
International Conference on Mobile Business, 2008. ICMB ’08. IEEE
Computer Society, Washinton, pp 1–8, doi:10.1109/ICMB.2008.47. http://dl.
acm.org/citation.cfm?id=1439274.1439769

Wagner D, Willhalm T (2007) Speed-up techniques for shortest-path
computations. In: Thomas W, Weil P (eds) 24th Annual Symposium on
Theoretical Aspects of Computer Science (STACS). Springer, Aachen,
pp 23–36

Wang Z, Che O, Chen L, Lim A (2006) An efficient shortest path computation
system for real road networks. In: Ali M, Dapoigny R (eds) Advances in
applied artificial intelligence, 19th international conference on industrial,
engineering and other applications of applied intelligent systems, IEA/AIE
2006, Lecture notes in computer science. Springer-Verlag, Germany,
pp 711–720

Xu L (2005) A decision support model based on gis for vehicle routing. In:
Chen J (ed) 2005 International conference on services systems and
services management, 2005. Proceedings of ICSSSM ’05., vol. 2. IEEE
Computer Society, Piscataway, pp 1126–1129.
doi:http://doi.ieeecomputersociety.org/10.1109/ICSSSM.2005.1500172

Zeng W, Church RL (2009) Finding shortest paths on real road networks: the
case for a*. Int J Geograp Inf Sci 23(4): 531–543.
doi:10.1080/13658810801949850

doi:10.1186/2193-1801-2-291
Cite this article as: Rodríguez-Puente and Lazo-Cortés: Algorithm for short-
est path search in Geographic Information Systems by using reduced
graphs. SpringerPlus 2013 2:291.

http://dx.doi.org/http://dx.doi.org/10.1007/978-3-642-02094-0_7
http://diestel-graph-theory.com/index.html
http://dx.doi.org/http://dx.doi.org/10.1109/ICOIP.2010.243
http://dx.doi.org/10.1016/j.cor.2005.03.027
http://dl.acm.org/citation.cfm?id=1143184.1143201
http://dl.acm.org/citation.cfm?id=1143184.1143201
http://dl.acm.org/citation.cfm?id=1800875.1800929
http://dl.acm.org/citation.cfm?id=1800875.1800929
http://dl.acm.org/citation.cfm?id=1788888.1788912
http://dl.acm.org/citation.cfm?id=1788888.1788912
http://dl.acm.org/citation.cfm?id=1070432.1070455
http://dl.acm.org/citation.cfm?id=1070432.1070455
http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/GW05.pdf
http://www.cs.princeton.edu/courses/archive/spr06/cos423/Handouts/GW05.pdf
http://dl.acm.org/citation.cfm?id=1325851.1325942
http://dl.acm.org/citation.cfm?id=1325851.1325942
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1080/13658810601079759
http://dx.doi.org/10.1049/iet-its:20080012
http://dx.doi.org/10.1109/GEOINFORMATICS.2010.5567802
http://www.computer.org/csdl/proceedings/icsssm/2005/8971/02/01500172-abs.html
http://www.computer.org/csdl/proceedings/icsssm/2005/8971/02/01500172-abs.html
http://dx.doi.org/10.1109/ICIME.2010.5477436
http://dx.doi.org/10.1109/CSCWD.2007.4281534
http://dx.doi.org/http://doi.acm.org/10.1145/1498698.1564502
http://dx.doi.org/10.1109/ICINIS.2008.147
http://dl.acm.org/citation.cfm?id=1471609.1472922
http://dl.acm.org/citation.cfm?id=1471609.1472922
http://www.icsi.berkeley.edu/pubs/techreports/TR-09-007.pdf
http://www.icsi.berkeley.edu/pubs/techreports/TR-09-007.pdf
http://dx.doi.org/10.1016/S0306-4379(00)00012-0
http://portal.acm.org/citation.cfm?id=344358.344369
http://www.springerlink.com/index/5XG8NG9CWXEQYVD9.pdf
http://www.springerlink.com/index/5XG8NG9CWXEQYVD9.pdf
http://dx.doi.org/10.1109/TITS.2010.2072503
http://dx.doi.org/10.1109/ICMB.2008.47
http://dl.acm.org/citation.cfm?id=1439274.1439769
http://dl.acm.org/citation.cfm?id=1439274.1439769
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICSSSM.2005.1500172
http://dx.doi.org/10.1080/13658810801949850

	Abstract
	Keywords

	Introduction
	Graph reduction
	Definitions and notations
	Graph reduction algorithm
	Reduction example

	Shortest path search algorithm
	Correctness proof
	Experimental results

	Discussion
	Conclusions
	Future work
	Appendix
	A Demonstration of cycle invariants of Algorithm 3

	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	References

