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Abstract

Because of the good penetration into many common materials and inherent fine resolution, Ultra-Wideband (UWB)
signals are widely used in remote sensing applications. Typically, accurate Time of Arrival (TOA) estimation of the
UWB signals is very important. In order to improve the precision of the TOA estimation, a new threshold selection
algorithm using Artificial Neural Networks (ANN) is proposed which is based on a joint metric of the skewness and
maximum slope after Energy Detection (ED). The best threshold based on the signal-to-noise ratio (SNR) is
investigated and the effects of the integration period and channel model are examined. Simulation results are
presented which show that for the IEEE802.15.4a channel models CM1 and CM2, the proposed ANN algorithm
provides better precision and robustness in both high and low SNR environments than other ED-based algorithms.

Keywords: Artificial Neural Network (ANN), Remote sensing, Ultra-Wideband (UWB), TOA estimation, Ranging,
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Introduction
As a new wireless communications technology, Ultra-
Wideband (UWB) has generated considerable research
interest due to the many potential applications. One of
the most promising areas is remote sensing [1,2]. For ex-
ample, Defense Research and Development Canada
(DRDC) Ottawa has conducted numerous experiments
on indoor through-wall imaging, snow penetration,
stand-off remote sensing of human subjects, and mine
detection using high-resolution UWB signals [1]. In [2],
UWB propagation channel characterization was per-
formed to test the feasibility of using UWB technology
in underground mining to monitor and communicate
with remote sensors.
UWB technology offers many advantages for remote

sensing [1]. First, some frequency components may be
able to penetrate obstacles to provide a Line-Of-Sight
(LOS) signal. Second, the transmission of very short
pulses makes high time resolution (sub-nanosecond to
nanosecond) possible. Third, the wide signal bandwidth
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means a very low power spectral density, which reduces
interference to other Radio Frequency systems.
Among the potential applications, precision ranging or

Time of Arrival (TOA) estimation is the most important
for remote sensing. However, this is a very challenging
problem due to the severe environments encountered,
e.g., thermal noise, multi-path fading, reflection interfer-
ence, and inter-symbol interference. The TOA estimation
problem has extensively been studied [3-6]. There are
two approaches applicable to UWB technology, a
Matched Filter (MF) [3] (such as a Rake or correlation
receiver) with a high sampling rate and high-precision
correlation, or an Energy Detector (ED) [4-6] with a
lower sampling rate and low complexity. An MF is the
optimal technique for TOA estimation, where a correla-
tor template is matched exactly to the received signal.
However, an UWB receiver operating at the Nyquist
sampling rate makes it very difficult to align with the
multipath components of the received signal [7]. In
addition, an MF requires a priori estimation of the chan-
nel, including the timing, amplitude, and phase of each
multipath component of the impulse [7]. Because of the
high sampling rates and channel estimation, an MF may
not be practical in many applications. As opposed to a
more complex MF, an ED is a non-coherent approach to
TOA estimation. It consists of a square-law device,
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followed by an integrator, sampler, and a decision mech-
anism. The TOA estimate is made by comparing the in-
tegrator output with a threshold and choosing the first
sample to exceed the threshold. It is a practical solution
as it directly yields an estimate of the start of the received
signal. An ED is thus a low complexity, low sampling rate
receiver that can be employed without the need for a
priori channel estimation.
The major challenge with ED is the selection of an ap-

propriate threshold based on the received signal samples.
Threshold selection for different signal-to-noise ratios
(SNRs) has been investigated via simulation. In [4], a
normalized threshold selection technique for TOA esti-
mation of UWB signals was proposed which uses expo-
nential and linear curve fitting of the kurtosis of the
received samples. In [5], an approach based on the mini-
mum and maximum sample energy was introduced.
These approaches have limited TOA precision, as the
strongest path is not necessarily the first arriving path.
Neural networks (NNs) have extensively been used in

signal processing applications. The weights between the
input and output layers can be adjusted to minimize the
error between the input and output. Because of the com-
plexity of wireless environments, it is difficult to derive a
closed-form expression to estimate the TOA. On the
other hand, an artificial neural network (ANN) can pro-
vide a very flexible mapping based on the training input.
The ANN here intends to solve a regression problem
being J the input and optimal threshold the output.
In this article, we consider the relationship between

the SNR and the statistics of the integrator output in-
cluding skewness, maximum slope, kurtosis and stand-
ard deviation. A metric based on skewness and
maximum slope is then used as the ANN input. A back
propagation (BP) NN is used which is a feed forward
NN. It approximates the relationship between the joint
metric and the optimal threshold by using a nonlinear
continuum rational function. Performance results are
presented which show that in the IEEE 802.15.4a chan-
nel models CM1 and CM2, this ANN provides robust
estimates with high precision for both high and low
SNRs.
The remainder of this article is organized as follows.

In the following section, the system model is presented.
Section “TOA estimation based on ED” discusses TOA
estimation algorithms based on ED. Section “Statistical
characteristics of the signal energy” considers the statis-
tical characteristics of the energy values, and a joint
metric based on skewness and maximum slope is
proposed. In Section “Optimal normalized threshold
with respect to J”, the relationship between the joint
metric and optimal normalized threshold is established.
Section “Threshold selection using an ANN based on
skewness and maximum slope” introduces a novel TOA
estimation algorithm based on an ANN. Some perform-
ance results are presented in Section “Performance
results and discussion”, and Section “Conclusions” con-
cludes the article.
System model
IEEE 802.15.4a [8] is the first international standard
that specifies a wireless physical layer to enable precise
TOA estimation and wireless ranging. It includes chan-
nel models for indoor residential, indoor office, indus-
trial, outdoor, and open outdoor environments, usually
with a distinction between LOS and non-LOS (NLOS)
properties. In this article, a Pulse Position Modulation
Time Hopping UWB (PPM-TH-UWB) signal [9] is
employed for transmission between the transmitter and
receiver.
UWB signal
PPM-TH-UWB signals are very short in time, typically a
few nanoseconds, and can be expressed as

s tð Þ ¼
Xþ1

�1
p t � iTf � ciTc � aiE
� � ð1Þ

where i and Tf are the frame index and frame duration,
respectively. The time hopping TH is provided by a
pseudorandom integer-valued sequence ci, which differs
for each user to allow for multiple access communica-
tions. Tc is the chip time, and the PPM time shift is E,
with the data ai either 0 or 1. If ai =1, the signal is
shifted in time, otherwise there is no PPM shift. The
pulse is given by p(t). For example, the second derivative
Gaussian pulse is given by

p tð Þ ¼ d2f tð Þ
dt2

¼ 1� 4π
t2

α2

� �
e
2πt2

α2 ð2Þ

where α is the shape factor and f(t) is the Gaussian pulse.
A smaller value of α results in a shorter pulse duration
and thus a larger bandwidth.
Multipath fading channel
Because of the multipath channel between the transmit-
ter and receiver, the received signal can be expressed as

r tð Þ ¼
XN
n¼1

αnp t � τnð Þ þ n tð Þ ð3Þ

where N is the number of received multipath compo-
nents, αn and τn denote the amplitude and delay of
the nth path, respectively, and n(t) is additive white
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Gaussian noise with zero mean and two-sided power
spectral density N0/2. Equation (3) can be rewritten as

r tð Þ ¼ s tð Þ � h tð Þ þ n tð Þ ð4Þ
where s(t) is the transmitted signal, and h(t) is the chan-
nel impulse response given by

h tð Þ ¼ X
XNc

n¼1

XK nð Þ

n¼1

αnkδ t � Tn � τnkð Þ ð5Þ

where X is a log-normal random variable representing
the amplitude gain of the channel, Nc is the number of
observed clusters, K(n) is the number of multipath com-
ponents received within the nth cluster, αnk is the coeffi-
cient of the kth component of the nth cluster, Tn is the
TOA of the nth cluster and τnk is the delay of the kth
component within the nth cluster.

Energy detector
As shown in Figure 1, after the Low Noise Amplifier, the
received signal is squared, and then input to an integra-
tor with integration period Tb. Because of the inter-
frame leakage due to multipath signals, the integration
duration is set to 3Tf/2 [4], so the number of signal
values for ED is Nb = (3Tf )/(2Tb). The integrator output
can then be expressed as

z n½ � ¼
XNs

j¼1

Z j�1ð ÞTfþ cjþnð ÞTb

j�1ð ÞTf þ cjþn�1ð ÞTb

r2 tð Þdt ð6Þ

where n = 1, 2, . . ., Nb is the sample index with respect
to the start of the integration period and Ns is the num-
ber of pulses per symbol. Here, Ns is set to 1, so the inte-
grator output is

z n½ � ¼
Z cþnð ÞTb

cþn�1ð ÞTb

r2 tð Þdt ð7Þ

If z[n] is the integration of noise only, it has a centralized
Chi-square distribution, while it has a non-centralized Chi-
square distribution if a signal is present. The mean and
variance of the noise and signal values are given by [4]

m0 ¼ Fs2; s0
2 ¼ 2Fs4; ð8Þ

me ¼ Fs2 þ En; se
2 ¼ 2Fs4 þ 4s2En ð9Þ

respectively, where En is the signal energy within the nth in-
tegration period and F is the number of degrees of freedom
given by F = 2BTb + 1. B is the signal bandwidth.
Figure 1 Block diagram of the ED receiver.
TOA estimation based on ED
TOA estimation algorithms
There are many TOA estimation algorithms based on
ED which can be used to determine the start of a
received signal, as shown in Figure 2. The simplest one
is Maximum Energy Selection (MES), which chooses the
maximum energy value to be the start of the signal. The
TOA is estimated as the center of the corresponding in-
tegration period

τMES ¼ argmax
1≤n≤Nb

z n½ �f g � 0:5

" #
Tb ð10Þ

However, as shown in Figure 2, the maximum energy
value is not always the first [3], especially in NLOS
environments. Often the first energy value z[n̂] is located
before the maximum z[nmax], i.e., n̂ ≤ nmax. Thus,
Threshold Crossing (TC) TOA estimation has been pro-
posed where the received energy values are compared to
an appropriate threshold ξ. In this case, the TOA esti-
mate is given by

τTC ¼ ½ argmin
1≤n≤nmax

n z n½ � >¼ ξj g � 0:5�Tb ð11Þf

It is difficult to determine an appropriate threshold ξ
directly, so a normalized threshold ξnorm is usually
employed with

ξ ¼ ξnorm max z nð Þð Þ � min z nð Þð Þð Þ þmin z nð Þð Þ
ð12Þ

The TOA estimate is then obtained using Equation
(11). The problem in this case becomes one of how to
set the threshold, i.e., how to establish the relationship
between the received energy values and ξnorm. There are
two main methods in the literature, curve fitting and
fixed threshold (FT). In [4], a normalized threshold se-
lection technique for TOA estimation of UWB signals
was proposed which uses exponential and linear curve
fitting of the kurtosis of the received samples. A simpler
approach is the FT algorithm where the threshold is set
to a fixed value, for example ξnorm = 0.4. If ξnorm is set to
1, the algorithm is the same as MES. In this article, an
ANN algorithm is employed to obtain the normalized
threshold based on the signal energy statistics.
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Figure 2 TOA estimation techniques based on received energy.

Zhang et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:185 Page 4 of 13
http://asp.eurasipjournals.com/content/2012/1/185
TOA estimation error
In [5], the mean absolute error (MAE) of TC-based
TOA estimation was analyzed, and closed form error
expressions derived. The MAE can be used to evaluate
the quality of an algorithm, and is defined as

MAE ¼ 1
N

XN
n¼1

tn � t̂ n
�� �� ð13Þ

where tn is the nth actual propagation time,t̂ n is the nth
TOA estimate, and N is the number of TOA estimates.

Statistical characteristics of the signal energy
In this section, the skewness, maximum slope, kurtosis
and standard deviation of the energy values are analyzed.

Kurtosis
The kurtosis is calculated using the second- and fourth-
order moments and is given by

k ¼ 1
Nb � 1ð Þσ4

XNb

i¼1

xi � �xð Þ4 ð14Þ

where �x is the mean, and σ is the standard deviation.
The kurtosis for a standard normal distribution is three.
For this reason, k is often redefined as K = k - 3 (referred
to as excess kurtosis), so that the standard normal distri-
bution has a kurtosis of zero. Positive kurtosis indicates
a “peaked” distribution, while negative kurtosis indicates
a “flat” distribution. For noise only (or for a low SNR)
and sufficiently large F (degrees of freedom of the Chi-
square distribution), z[n] has a Gaussian distribution and
K= 0. On the other hand, as the SNR increases, K tends
to increase.
In [4], the normalized threshold with respect to the
kurtosis and the corresponding MAE were investigated.
To model this relationship, a double exponential func-
tion was used for Tb = 4 ns, and a linear function for
Tb=1 ns with K as the x-coordinate and ξbest as the y-co-
ordinate. The resulting expressions are

ξ 4nsð Þ
best ¼ 0:673e�0:75 log2 K þ 0:154e�0:001 log2 K ð15Þ

and

ξ 1nsð Þ
best ¼ �0:082log2 K þ 0:77 ð16Þ

The model coefficients were obtained using data from
both the CM1 and CM2 channels.

Skewness
The skewness is given by

S ¼ 1
Nb � 1ð Þσ3

XNb

i¼1

xi � �xð Þ3 ð17Þ

where �x is the mean, and σ is the standard deviation
of the energy values. The skewness for a normal dis-
tribution is zero, in fact any symmetric data will
have a skewness of zero. Negative values of skewness
indicate that the data are skewed left, while positive
values indicate data that are skewed right. Skewed
left indicates that the left tail is long relative to the
right tail, while skewed right indicates the opposite.
For noise only (or very low SNRs), and sufficiently
large F, S � 0. As the SNR increases, S tends to
increase.
In [6], exponential functions were fit to the skewness

results for Tb = 1 ns and Tb = 4 ns, with S as the x-
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coordinate and ξbest as the y-coordinate. The resulting
functions are

ξ 1nsð Þ
best ¼ 0:9028e�0:1347S ð18Þ
ξ 4nsð Þ
best ¼ 0:9265e�0:2025S ð19Þ

Maximum slope
Kurtosis and skewness cannot account for delay or propa-
gation time, so the slope of the energy values is considered
as an alternative measure. These values are divided into
(Nb -Mb + 1) groups, with Mb values in each group. The
slope for each group is calculated using a least squares line
fit. The maximum slope (M) can then be expressed as

M ¼ max slope
1≤n≤Nb�Mbþ1

linefit z n½ �; z nþ 1½ �; . . . ;ðf

� z nþMb � 1½ �Þg ð20Þ

For example, Figure 3 shows the fitted lines for eight
energy values and Mb = 4, so there are 8-4 + 1 = 5 lines
with 5 corresponding slopes.
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Figure 4 Values of four normalized statistical parameters in channel C
Standard deviation
The standard deviation is a widely used measure of vari-
ability. It shows how much variation or “dispersion”
there is from the average (mean or expected value). The
standard deviation is given by

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNb

i¼1

xi � �xð Þ2

Nb � 1

vuuuut ð21Þ

Joint metric
In order to examine the characteristics of the four statis-
tical parameters (skewness, maximum slope, kurtosis,
and standard deviation), the CM1 (residential LOS) and
CM2 (residential NLOS) channel models from the
IEEE802.15.4a standard are employed. For each SNR
value, 1,000 channel realizations were generated and
sampled at Fc = 8 GHz. A second derivative Gaussian
pulse is employed with Tf = 200 ns, Tc = 1 ns, Tb = 4 ns,
and Ns = 1. Each realization has a TOA uniformly dis-
tributed within (0, Tf ).
The four statistical parameters were calculated, and the

results obtained are given in Figures 4 and 5. These fig-
ures show that the characteristics of the four parameters
with respect to the SNR are similar for the two channels.
Further, Figures 4 and 5 show that the kurtosis and skew-
ness increase as the SNR increases, but the skewness
changes more rapidly. Conversely, the maximum slope
and standard deviation decrease as the SNR increases,
but the maximum slope changes more rapidly. Since the
skewness and maximum slope change more rapidly than
the kurtosis and standard deviation, they better reflect
changes in SNR. Therefore, they are more suitable for
TOA estimation. Moreover, when the SNR is less than
19 22 25 28 31
R(db)

Kurtosis

Skewness

Standard Deviation

Maximum Slope

M1.



Table 1 Standard Deviation of the Statistics

SNR Skewness Kurtness Maximum Slope Standard Deviation

(10E-7) (10E-15)

4 0.30 0.92 4.90 1.16

6 0.31 0.95 3.02 0.72

8 0.31 0.93 1.83 0.46

10 0.32 0.97 1.25 0.29

12 0.35 1.22 0.85 0.19

14 0.46 2.23 0.65 0.13

16 0.73 4.36 0.62 0.10

18 1.09 7.82 0.60 0.09

20 1.39 12.04 0.62 0.10

22 1.39 13.46 0.58 0.09

24 1.41 15.11 0.58 0.10

26 1.36 15.20 0.57 0.09

28 1.36 15.73 0.56 0.09

30 1.34 15.65 0.56 0.09

32 1.34 15.76 0.56 0.09
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Figure 5 Values of four normalized statistical parameters in channel CM2.
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15dB, skewness changes slowly while the maximum slope
changes rapidly. On the other hand, when the SNR is
higher than 15dB, the skewness changes rapidly but the
maximum slope changes slowly. Therefore, no single par-
ameter is a good measure of SNR change over a wide
range of values. Thus, the following joint metric based
on skewness and maximum slope is proposed.

J ¼ S �M; ð22Þ

where S is the skewness and M is the maximum slope.
Table 1 shows the standard deviation of the statistics.

In all cases, the standard deviations of Maximum Slope
and Standard Deviation are much less than 0 and the
standard deviations of Skewness and Kurtness increase
with the increase of SNRs but the former is much lower
than the latter. Therefore, the less variability of Skewness
and Maximum Slope implies more confidence about the
statistic.
In order to verify that the proposed metric J is sensi-

tive to both high and low SNRs, 1,000 channel realiza-
tions were generated for many SNR values in each
IEEE802.15.4a channel. In the simulations, because of
the random signal, the J values are not unique for one
SNR, but in order to draw Figure 6, the average J value
with respect to SNR were calculated for each channel
model and integration period. Because there were 29
SNR values simulated, there are 29 J-SNR pairs for each
channel model and integration period. Figure 6 shows
that J is a monotonic function for a large range of SNR
values, and that J is more sensitive to the changes in
SNR than any single parameter. The four curves differ
somewhat due to the channel model and integration
period used. The figure shows that the metric is more
sensitive to Tb than the channel model.
Optimal normalized threshold with respect to J
Before training the ANN, the relationship between J
and the optimal normalized threshold ξopt must be
established. According to Figure 6, the curves for
channel models CM1 and CM2 for a given value of
Tb are similar, so models are derived only for Tb=1
ns and Tb=4 ns. There are four steps to establish the
relationship between J and ξopt.

(1) Generate a large number of channel realizations for
each channel model, integration period, and SNR
value in the range [4, 32] dB.
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(2) Calculate the average MAE value with respect to
normalized threshold ξnorm for each J value,
channel model, and integration period as shown in
Section “Average MAE with respect to the
normalized threshold”. In the simulation, because
of the random signal, there are many MAE values
with respect to one normalized threshold, so the
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Figure 7 MAE with respect to ξnorm (CM1, Tb = 1 ns).
average MAE should be calculated. At the same
time, because J is a real value, J should be rounded
to the nearest discrete value, for example integer
value or half-integer value.

(3) Select the normalized threshold with the lowest
MAE as the best threshold ξbest with respect to J
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Figure 8 MAE with respect to ξnorm (CM2, Tb = 1 ns).
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for each channel model and integration period, as
shown in Section “Optimal thresholds”.

(4) Calculate the average normalized thresholds of
channels CM1 and CM2 for each J as the optimal
normalized threshold ξopt, as shown in Section
“Optimal thresholds”.
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Average MAE with respect to the normalized threshold
To determine the optimal threshold ξopt based on J, the
relationship between the average MAE and the normal-
ized threshold ξnorm for different J, channel model and
Tb was determined. ξ is the threshold which is compared
to the energy values to find the first TC, as defined (12).
When ξ is larger than the maximum energy value zmax,
no value is found for τ, so in this case ξ is set to zmax,
and ξnorm is set to 1.
In the simulation, all J values were rounded to the

nearest integer and half-integer values for all SNR
values, that is, the range [−9, 16] and [−4, 8] for Tb =1
ns and Tb =4 ns. Figures 7, 8, 9 and 10 only show the
MAE for integer J = 1 to 8 for the CM1 and CM2 chan-
nels, and Tb = 1 ns and Tb = 4 ns. The relationship is al-
ways that the MAE decreases as J increases. In addition,
the minimum MAE is lower as J increases.
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Figure 9 MAE with respect to ξnorm (CM1, Tb = 4 ns).

Figure 10 MAE with respect to ξnorm (CM2, Tb = 4 ns).
Optimal thresholds
The normalized threshold ξnorm with respect to the
minimum MAE is called the best threshold ξbest for
a given J. Therefore, the lowest points of the curves in
Figures 7, 8, 9, and 10 for each J are selected as the ξbest.
These best thresholds are given in Figures 11 and 12.
These results show that the relationship between the

two parameters is not affected significantly by the chan-
nel model, but is more dependent on the integration
period, so the values for channels CM1 and CM2 can be
combined. Therefore, the average of the two values is
used as the optimal normalized threshold

ξ Tb¼1nsð Þ
opt Jð Þ ¼ ξ CM1;Tb¼1nsð Þ

best Jð Þ þ ξ CM2;Tb¼1nsð Þ
best Jð Þ

2
ð23Þ

ξ Tb¼4nsð Þ
opt Jð Þ ¼ ξ CM1;Tb¼4nsð Þ

best Jð Þ þ ξ CM2;Tb¼4nsð Þ
best Jð Þ

2
ð24Þ

Threshold selection using an ANN based on
skewness and maximum slope
Structure of the ANN
A BP NN is used which consists of an input layer, a hid-
den layer and an output layer, as shown in Figure 13.
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Figure 13 The structure of the ANN.
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The weights between the layers are adjusted according
to the output layer error.
The number of neurons in the hidden layer is difficult

to choose [10], but it can be estimated based on
repeated training results. In [11], several ANNs are initi-
alized and trained and the best one is selected. More-
over, in [11], an algorithm (implemented in Matlab) for
initializing the ANN weights and biases is used, which
warrants the stability and convergence at the beginning
of the training. Here, the number of neurons in the hid-
den layer is varied from 2 to 40, and for each value, the
ANN was trained 200 times and the mean squared error
(MSE) calculated. The percentage of the MSE values
which were less than 1e–10 is given in Figure 14. This
shows that as the number of neurons in the hidden layer
increases, the percentage also increases, so the effective-
ness of the model improves. However, the computational
complexity also increases. For Tb = 1 ns, when the num-
ber of neurons in the hidden layer is more than 20, the
percentage is greater than 90% and changes only slightly
with increasing values, so 20 is selected as the number
of neurons in the proposed ANN. For Tb = 4 ns, when
this number of neurons is more than 10, the percentage
is greater than 95% and changes very little with increas-
ing values, so 10 is selected in this case.
The value of ξnorm ranges from 0 to 1, so the logsig

function is selected as the transfer function for the neu-
rons of both the hidden and output layers. This function
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Figure 15 Validation results of the ANN.
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Table 2 Validation Results of the ANN

Validation Tb (ns) Input of ANN ( J ) Coefficient of
Determination

Internal Tb =1 [-9, -8, .., 15, 16] 1

External Tb =1 [-8.5, -7.5, .. , 14.5, 15.5] 0.9774

Internal Tb =4 [-4, -3, .. , 7, 8] 1

External Tb =4 [-3.5, -2.5, .. , 6.5, 7.5] 0.9727
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is defind as logsig(x) = 1/(1 + exp(−x)). The Levenberg-
Marquardt (LM) algorithm is used in the network train-
ing to update the weight and bias values according to
LM optimization [12]. Although this algorithm requires
more memory than other algorithms, it is often the fast-
est BP algorithm. Because there is only one input and
one output element in the proposed ANN, and only 39
ξnorm-J pairs (J = −9 to 16 for Tb =1 ns and J = −4 to 8
for Tb =4 ns), the memory requirements are modest.
The weight and bias values before training were set to
random values uniformly distributed between −1 and 1.

ANN training
In order to train the ANN, i.e., to determine the rela-
tionship between J and the normalized threshold ξnorm,
1,000 CM1 and CM2 channel realizations for each value
of SNR from 4 to 32 dB were generated for both Tb = 1
ns and Tb = 4 ns. The integer J values in the range [−9,
16] and [−4, 8] for Tb =1 ns and Tb =4 ns, respectively,
were used to train the ANN. Thus, there were 39 sam-
ples to train the ANN. On the other hand, the half-
integer J values in the range [−0.85, 15.5] and [−3.5, 7.5]
for Tb =1 ns and Tb =4 ns, respectively, were used to
conduct the external validation for the trained ANN. To
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Figure 16 MSE for channels CM1 and CM2 with Tb = 1 ns and 4 ns.
obtain the best ANN, 100 separate training iterations
were conducted for each value of Tb, and the one with
the lowest MSE was selected.
Validation of the ANN
In order to evaluate the performance of the trained
ANN, the internal validation and the external validation
were both conducted as shown in Table 1 and Figure 15.
The J values from −9 to 16 for the internal validation
with Tb =1 ns, from −8.5 to 15.5 for the external valid-
ation with Tb =1 ns, from −4 to 8 for the internal valid-
ation with Tb =4 ns and from −3.5 to 7.5 for the external
validation with Tb =4 ns were input to the ANN to get
the estimated normalized thresholds. As shown in
Table 2, the two coefficients of determination of the in-
ternal validation for Tb =1 ns and Tb =4 ns are both
nearly equal to 1 and the two coefficients of determin-
ation of the external validation for Tb =1 ns and Tb =4
ns are both more than 0.97, so the trained ANN output
fits well with the optimal normalized thresholds for Tb

=1 ns and Tb =4 ns. However, the ANN is able to pro-
vide values for any J, and not just discrete values. The
ANN also eliminates the complicated and time-
consuming optimization process used in Section “Opti-
mal normalized threshold with respect to J”. The
IEEE802.15.4a channel models reflect the statistical
properties in specific environments, and the choice of
ANN parameters depends on the characteristics of the
channel. Our ANN can easily be employed with any
channel, and the parameters adjusted to fit any environ-
ment. This is particularly useful when the channel is not
static.
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Table 3 MAE averaged over all the simulated realizations

Channel model Tb MAE (ns)

ANN Fixed-Threshold MES Kurtosis

CM1 1 ns 29.54 50.48 38.09 42.74

4 ns 29.66 50.13 38.93 63.57

CM2 1 ns 37.88 58.51 47.12 50.12

4 ns 36.64 57.03 46.00 69.20

Zhang et al. EURASIP Journal on Advances in Signal Processing 2012, 2012:185 Page 12 of 13
http://asp.eurasipjournals.com/content/2012/1/185
Performance results and discussion
In this section, the MAE is examined for different ED
based TOA estimation algorithms in the IEEE 802.15.4a
channel model CM1 and CM2. As before, 1,000 channel
realizations were generated for each case. A second de-
rivative Gaussian pulse with a 1 ns pulse width was
employed, and the received signal sampled at Fc = 8
Ghz. The other system parameters were Tf = 200 ns and
Ns =1. Each realization had a TOA uniformly distributed
within (0, Tf ).
Figure 16 presents MAE of the TOA estimation based

on the ANN for SNR values from 4 to 32 dB in the LOS
(CM1) and NLOS (CM2) channels with Tb = 1 ns and 4
ns. This shows that the ANN algorithm performs well at
high SNRs. The performance in CM1 is better than in
CM2 by at most 18 ns. When SNR > 22 dB, the MAE
for CM1 is less than 3.85 ns while for CM2 it is less than
11 ns. In most cases, the performance with Tb = 1 ns is
better than that with Tb = 4 ns, regardless of the chan-
nel, but the difference is less than 4 ns.
Table 3 shows the MAE averaged over all the simu-

lated realizations. Here “ANN” refers to the proposed al-
gorithm, “MES” to the MES algorithm, and the
normalized threshold for the FT algorithm is set to 0.4.
In all cases, the average MAE of ANN is the lowest
among the four algorithms.
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Figure 17 MAE for different algorithms with channel CM1.
Figures 17 and 18 present the MAE for four TOA
algorithms in channels CM1 and CM2, respectively. As
expected based on the results in Section “Statistical
characteristics of the signal energy”, the MAE with the
proposed algorithm is lower than with the other algo-
rithms, particularly at low to moderate SNR values. The
proposed algorithm is better than the Kurtosis algorithm
except when the SNR is greater than 27 dB. For these
large SNR values, the Kurtosis algorithm is slightly bet-
ter. For example, when SNR > 27 dB, the MAE of the
proposed ANN algorithm is at most 2 ns greater than
that of the Kurtosis algorithm.
The performance of the proposed algorithm is more

robust than the other algorithms, as the difference be-
tween Tb = 1 ns and 4 ns is very small compared to the
difference with the Kurtosis algorithm. For almost all
SNR values the proposed algorithm is the best. Con-
versely, the performance of the Kurtosis algorithm varies
greatly with respect to the other algorithms, and is very
poor for low to moderate SNR values.

Conclusions
A low complexity ANN-based (TOA) estimation algo-
rithm has been developed for UWB remote sensing
applications. Four statistical parameters were investi-
gated, and from the results obtained, a joint metric
based on skewness and maximum slope was developed
for TC TOA estimation. The optimal normalized thresh-
old was determined using performance results for the
CM1 and CM2 channels. The effects of the integration
period and channel model were investigated. It was
determined that the proposed threshold selection tech-
nique is largely independent of the channel model. The
performance of the proposed algorithm is shown to be
better than several well-known algorithms. In addition,
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the proposed algorithm is more robust to changes in the
SNR and integration period.
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