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Abstract
We consider the following p-Laplacian elliptic equation onW1,p(RN):
–�pu + b(|x|)|u|p–2u = f (|x|,u). For certain f (|x|,u), we are interested in the functional
on a group invariant subspace, and we obtain the existence of infinitely many radial
solutions and non-radial solutions of the equation, which extends the result of
(Bartsch and Willem in J. Funct. Anal. 117:447-460, 1993) to the spaceW1,p(RN).
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1 Introduction
The interesting equation

–�pu + b
(|x|)|u|p–u = f

(|x|,u)
, u ∈ W ,p(

R
N)

, (.)

originates from different problems in physics and mathematical physics. For p = , prob-
lem (.) is interpreted as a stationary state of the reaction-diffusion Klein-Gordon equa-
tion in chemical dynamics, and Schrödinger equations in finding certain solitary waves.
In the s, people searched for the spherically symmetric solutions of the autonomous

equation �u = g(u) (where g :R →R is continuous and odd in u). Berestycki-Lions [, ]
advocated it for the first time; they obtained the existence of infinitely many radial so-
lutions of the autonomous equation. Then Struwe [] got similar results. Gidas et al. []
further demonstrated that any positive solution of the equationwith some propertiesmust
be radial.
Then Bartsch-Willem [] found an unbounded sequence of non-radial solutions of (.)

inH(RN ) with p = , under the assumption that b and f satisfy certain growth conditions
and f is odd in u.
In recent years, the existence and structure of solutions for the p-Laplacian equation has

found considerable interest, and different approaches have been developed. Bartsch-Liu
[] studied the p-Laplacian problem

–�pu = f (x,u), u ∈W ,p
 (�), (.)

on a bounded domain � ⊂R
N with smooth boundary ∂�, provided that the nonlinearity

f is superlinear and subcritical. They proved (.) has a pair of a subsolution and a su-
persolution. In [] they studied problem (.) on a bounded domain � ⊂ R

N , with p > 
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arbitrary, and proved a nodal solution provided that f : � ×R → R is subcritical and su-
perlinear. Infinitely many nodal solutions are obtained if, in addition, f (x, –t) = –f (x, t).
Furthermore Jiu-Su [] applied Morse theory to study the existence of nontrivial solu-

tions of p-Laplacian typeDirichlet boundary value problems. Agarwal-Perera [] obtained
two positive solutions of singular discrete p-Laplacian problems using variational meth-
ods. Chabrowski-Fu [] studied the p-Laplacian problem:

–a(x)�pu + b(x)|u|p(x)–u = f (x,u),

on a bounded domain of RN with Dirichlet boundary condition, where  < p ≤ p(x) ≤
p < N (p, p are positive constants). They applied the mountain pass theorem to prove
the existence of solutions in W ,p(x)

 (�) for the equation in the superlinear and sublinear
cases.
For (.), Drábek-Pohozaev [] proved the existence of multiple positive solutions of

quasilinear problems (.) of second order by using the fibering method. They considered
solutions both in the bounded domain � ⊂R

N and in the whole space RN . Moreover, De
Nápoli-Mariani [] introduced a notion of uniformly convex functional that generalizes
the notion of uniformly convex norm. They proved the existence of at least one solution
of (.), and the existence of infinitely many solutions under further assumptions.
In the present paper, we aim to find the existence of infinitelymany radial and non-radial

solutions of problem (.), and extend the result of [] to the spaceW ,p(RN ).
A direct extension to the case p �=  is faced with serious difficulties. First the energy

functional associated to (.) is defined onW ,p(RN ), which is not a Hilbert space for p �= .
Another difficulty is the lack of a powerful regularity theory. For the Laplace operator there
exists a sequence of Banach spaces E ↪→ E ↪→ ·· · ↪→ En with W , ↪→ En and E ↪→ C.
But the imbedding W ,p(RN ) ↪→ Lq(RN ) (p < q < p∗ := Np/(N – p), for  < p < N ) is not
compact.
We study the functional on a group invariant subspace {u ∈W ,p(RN ) | gu(x) = u(g–x) =

u(x), g ∈O(N)} (whereO(N) is the group of orthogonal linear transformations inRN ), then
we apply the principle of symmetric criticality [, Theorem .] and the fountain theorem
to obtain the existence of multiple solutions.

2 Themain results and preliminaries
This paper is devoted to the study of infinitely many radial and non-radial solutions for a
p-Laplacian equation:

–�pu + b
(|x|)|u|p–u = f

(|x|,u)
, u ∈W ,p(

R
N)

,

where �pu = div(|∇u|p–∇u) ( < p < N ), b(r) ∈ C([,∞),R) is bounded from below by a
positive constant a. The growth condition of f (|x|,u) will be given in the following.
The corresponding functional is

J(u) :=
∫
RN

(

p
|∇u|p + 

p
b
(|x|)|u|p – F

(|x|,u))
dx,

where F(|x|,u) = ∫ u
 f (|x|, t)dt, u ∈W ,p(RN ).

We require the following assumptions on the nonlinearity f :
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(f) f ∈ C([, +∞)×R,R), and f (r, t) = o(|t|) for t → , uniformly on [, +∞).
(f) There exists μ > p such that for all r ≥ , t ∈R,  < μF(r, t) ≤ tf (r, t).
(f) For  < p < N , and p < q < p∗, there exists a constant C > , such that for any r ≥ ,

t ∈R, |f (r, t)| ≤ C|t|q–.
The main result of this paper is as follows.

Theorem . If N ≥ , the assumptions (f)-(f) hold, and f is odd in u, then problem (.)
possesses infinitely many radial solutions.

Theorem . Suppose N =  or N ≥ , if the assumptions (f)-(f) hold and f is odd in u,
then for problem (.) there exist infinitely many non-radial solutions.

Remark . The assumptions (f)-(f) are from []. Bartsch-Willem [] considered the
existence of non-radial solutions for the Euclidean scalar field equation –�u + V (|x|)u =
f (|x|,u) (u ∈H(RN )).
(f) means that the nonlinearity f is superlinear, and (f) means that f is subcritical.

These two conditions enable us to use a variational approach for the study of (.).
Condition (f) corresponds to the standard superlinearity condition of Ambrosetti-

Rabinowitz in the case p = . In the case p =  without the assumption (f), the above
theorems may not be true. It can be seen from Pohozaev’s identity for p-Laplacian equa-
tions that (.) has only a trivial solution u = .

Remark . If N =  we fail to define the action of G in the proof of Theorem ..

We shall use the norm

‖u‖p :=
(∫

RN

(|∇u|p + b
(|x|)|u|p)dx) 

p
.

We denote E :=W ,p(RN ) is the completion ofD(RN ) with the norm ‖ ·‖p, whereD(RN ) :=
{u ∈ C∞(RN ) | supp(u) is a compact subset in R

N }. Denote by | · |p the usual norm in
Lp(RN ).
Let G = O(N) be the group of orthogonal linear transformations in R

N , G = Z, and
EG := {u ∈W ,p(RN ) | gu(x) = u(g–x) = u(x), g ∈O(N)}.
Throughout this paper, we will use C and Ci to represent various positive constants.
Now, we recall some definitions for the action of a topological group and the fountain

theorem.

Definition . ([, Definition .]) The action of a topological group G on a normed
space Z is a continuous map G× Z → Z : [g, z] �−→ gz, such that for all g,h ∈G, z ∈ Z,

 · z = z, (gh)z = g(hz), z �−→ gz is linear.

The action is isometric if ‖gz‖ = ‖z‖.
The set of invariant points is defined by FixG := {z ∈ Z; gz = z,∀g ∈ G}. A set A ⊂ Z is

G-invariant if gA = A for every g ∈ G. A function ϕ : Z → R is G-invariant if ϕ ◦ g = ϕ for
every g ∈ G.
A map f : Z → Z is G-equivariant if f ◦ g = g ◦ f , for every g ∈G.

http://www.boundaryvalueproblems.com/content/2014/1/124
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Definition . ([, p.]) Suppose Z is a G-Banach space, that is, there is a G isomet-
ric action on Z. Let A = {A ⊂ Z | A is closed and gA = A, for any g ∈ G} be the set of
G-invariant subsets of Z, and � = {h ∈ C(Z,Z);h ◦ g = g ◦ h, for all g ∈ G} be the class
of G-equivariant mappings of Z.

Definition . ([]) Let Z be a Banach space, I ∈ C(Z,R) and c ∈ R. The functional I
satisfies the (PS)c condition if any sequence {zn} ⊂ Z such that

I(zn) → c, I ′(zn) → , as n→ ∞,

has a convergent subsequence.

Theorem . (Fountain theorem [, Theorem .]) The compact group G acts isomet-
rically on the Banach space X =

⊕
j∈N Xj, the spaces Xj are invariant and there exists a

finite-dimensional space V such that for every j ∈ N , Xj � V . The action of G on V is ad-
missible.
Let I ∈ C(X,R) be an G-invariant functional. If for every k ∈ N, there exists ρk > rk > 

such that

(A) ak :=maxu∈Yk ,‖u‖=ρk I(u) ≤ , where Yk :=
⊕k

j=Xj.
(A) bk := infu∈Zk ,‖u‖=rk I(u) → ∞, as k → ∞, where Zk :=

⊕∞
j=k Xj.

(A) I satisfies the (PS)c condition, for every c > .

Then I possesses an unbounded sequence of critical values ck . ck can be characterized as

ck = inf
γ∈�k

sup
u∈Bk

I
(
γ (u)

)
,

where �k = {γ ∈ C(Bk ,X) | γ is equivariant and γ |∂Bk = id}, Bk := {u ∈ Yk | ‖u‖ ≤ ρk}.
In fact, for each k ≥ , if bk > ak , then there exists a critical value ck > bk .

3 Proof of theorems
Definition . ([, Definition A.]) On the space Lp(RN )∩ Lq(RN ), we define the norm

|u|p∧q = |u|p + |u|q.

On the space Lp(RN ) + Lq(RN ), we define the norm

|u|p∨q = inf
{|v|p + |ω|q | v ∈ Lp

(
R

N)
,ω ∈ Lq

(
R

N)
,u = v +ω

}
.

Lemma . ([, Theorem A.]) Assume  ≤ p,q, r, s < ∞, f ∈ C([, +∞) × R,R) and
f (|x|,u) ≤ C(|u| pr + |u| qs ), then for every u ∈ Lp(RN ) ∩ Lq(RN ), f (·,u) ∈ Lp(RN ) + Lq(RN ),
the operator

T : Lp
(
R

N) ∩ Lq
(
R

N) → Lp
(
R

N)
+ Lq

(
R

N)
: u �−→ f

(|x|,u)

is continuous.

http://www.boundaryvalueproblems.com/content/2014/1/124
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Lemma . Let T : EG → E∗
G

be the mapping given by

〈Tu, v〉 =
∫
RN

(|∇u|p–∇u∇v + b
(|x|)|u|p–uv)dx,

then T is bounded and continuous.

Proof By the definition of T,

‖Tu‖E∗
G

= sup
‖v‖p≤

∫
RN

(|∇u|p–∇u∇v + b
(|x|)|u|p–uv)dx

≤ sup
‖v‖p≤

(|∇u|p–p |∇v|p + b
(|x|)|u|p–p |v|p

)
≤ |∇u|p–p + b

(|x|)|u|p–p . (.)

Therefore T is bounded. If un → ũ in EG , by (.), then ‖Tun –Tũ‖E∗
G

→ . Hence T

is continuous. �

Lemma. Suppose the nonlinearity f satisfies (f)-(f), then the functional J ∈ C(EG ,R),
and

〈
J ′(u), v

〉
=

∫
RN

|∇u|p–∇u∇vdx +
∫
RN

b
(|x|)|u|p–uvdx – 〈

φ′(u), v
〉
,

where 〈φ′(u), v〉 = ∫
RN f (|x|,u)vdx, here φ′(u) is compact. In addition, each critical point of

J is a weak solution of problem (.).

Proof By Lemma ., we only need to prove φ′(u) is continuous. By Hölder inequality

∣∣〈φ′(un), v
〉
–

〈
φ′(u), v

〉∣∣ ≤
∫
RN

∣∣f (|x|,un) – f
(|x|,u)∣∣|v|dx

≤ ∣∣f (|x|,un) – f
(|x|,u)∣∣

p′∨q′ |v|p∧q,

where /p + /p′ = , /q + /q′ = . If un → u in EG , then un → u in Lp(RN ) ∩ Lq(RN ). It
follows from (f) and Lemma . that

f
(|x|,un) → f

(|x|,u)
in Lp

′(
R

N)
+ Lq

′(
R

N)
.

So

∥∥φ′(un) – φ′(u)
∥∥
p = sup

‖v‖p≤

∣∣〈φ′(un) – φ′(u), v
〉∣∣ → . (.)

Assume un ⇀ u in EG . Since EG ↪→ Lq(RN ) is compact, then un → u in Lq(RN ). By
Lemma . and (.), φ′(u) is compact. �

Lemma . ([, Lemma .]) There exist constants C and C, such that for all ξ ,η ∈R
N ,

N ≥ , we have

(|ξ |p–ξ – |η|p–η)
(ξ – η)≥ C

(|ξ | + |η|)p–|ξ – η|, if  < p < ,(|ξ |p–ξ – |η|p–η)
(ξ – η)≥ C|ξ – η|p, if p≥ .

http://www.boundaryvalueproblems.com/content/2014/1/124
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Lemma. Let T be defined in Lemma .. If un ⇀ ũ in EG and 〈Tun–Tũ,un– ũ〉 → ,
then un → ũ in EG .

Proof If un ⇀ ũ in EG , then {un} is bounded in EG .
If p≥ , by Lemma .,

〈Tun – Tũ,un – ũ〉 =
∫
RN

(|∇un|p–∇un – |∇ũ|p–∇ũ
)
(∇un –∇ũ)dx

+
∫
RN

(
b
(|x|)|un|p–un – b

(|x|)|ũ|p–ũ)
(un – ũ)dx

≥ C
(‖un‖pp – ‖ũ‖pp

)
so un → ũ in EG .
If  < p < , by Lemma . and the Hölder inequality,

‖un – ũ‖pp ≤
∫
RN

|∇un –∇ũ|p(|∇un| + |∇ũ|) p(p–)


(|∇un| + |∇ũ|) p(–p)
 dx

+
∫
RN

b
(|x|)|un – ũ|p(|un| + |ũ|) p(p–)


(|un| + |ũ|) p(–p)

 dx

≤
(∫

RN
|∇un –∇ũ|(|∇un| + |∇ũ|)p– dx)

p


·
(∫

RN

(|∇un| + |∇ũ|)p dx)
–p


+
(∫

RN
b
(|x|)|un – ũ|(|un| + |ũ|)p– dx)

p
 ·

(∫
RN

(|un| + |ũ|)p dx)
–p


≤
(


C

∫
RN

(|∇un|p–∇un – |∇ũ|p–∇ũ
)
(∇un –∇ũ)dx

) p
 ·C

+
(


C

∫
RN

b
(|x|)(|un|p–un – |ũ|p–ũ)

(un – ũ)dx
) p

 ·C → . �

Lemma . Assume that f satisfies (f)-(f). Let {un} ⊂ EG be a sequence such that

J(un) → c, J ′(un) → , as n → ∞, (.)

then {un} has a subsequence which converges to a critical point of the functional J .

Proof First we show that each sequence {un} ⊂ EG satisfying J(un) → c, J ′(un) → , as
n→ ∞, is bounded. By (f) and (f),

c +  + ‖un‖p ≥ J(un) –μ–〈J ′(un),un〉
=

(

p
–


μ

)
‖un‖pp +

∫
RN


μ
f
(|x|,un)un – F

(|x|,un)dx
≥

(

p
–


μ

)
‖un‖pp,

where μ > p in the assumption (f), so {un} is bounded in EG .

http://www.boundaryvalueproblems.com/content/2014/1/124
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Since E is reflexive, EG is reflexive, then {un} has a weakly convergent subsequence.
Going if necessary to a subsequence, let un ⇀ ū. By Lemma . φ′(un) → φ′(ū), and by
the definition of T, 〈Tun, v〉 = 〈J ′(un), v〉+ 〈φ′(un), v〉, then Tun converges. So we assume
Tun → u∗. Observe that

〈Tun – Tū,un – ū〉 = 〈
Tun – u∗,un – ū

〉
+

〈
u∗ – Tū,un – ū

〉 → . (.)

By Lemma ., un → ū.
Next we want to show that ū is a critical point of J , i.e. J ′(ū) = . By Lemma ., Tun →

Tū,

J ′(un) = Tun – φ′(un) → Tū – φ′(ū) = J ′(ū).

By (.), ū is a critical point of J . �

Now we give the proof of Theorems . and . by applying the fountain theorem and
the principle of symmetric criticality. First we recall some properties of Banach space.
According to the results in [], there exists a Schauder basis {e′n}∞n= for E. Let en =∫

O(N) e
′
n(g(x))dμg , then {en}∞n= is a Schauder basis for EG . Since EG is reflexive, there are

{e∗
n}∞n=, which are characterized by the relations 〈e∗

m, en〉 = δm,n, forming a basis for E∗
G
.

We denote

E(n)
G

= span{e, . . . , en}, E(n)⊥
G

= span{en+, . . .},

and define a group action of G = {, τ} ∼= Z.

Lemma . If p < q < p∗, then

δk := sup
u∈E(k)⊥G

,‖u‖p=
|u|q → , as k → ∞.

Proof It is clear that  < δk+ ≤ δk , so we assume for δ ≥ , δk → δ, as k → ∞. For every
k ≥ , there exists uk ∈ E(k)⊥

G
such that ‖uk‖p =  and |uk|q > δk

 . By the definition of E(k)⊥
G

,
uk ⇀  in EG . Since the imbedding EG ↪→ Lq(RN ) is compact, then uk →  in Lq(RN ).
Thus we get δ = . �

Proof of Theorem . Note that J is G-invariant, by the principle of symmetric criticality
[, Theorem .], any critical point of J|EG is a solution of problem (.). J is invariant
with respect to the action G.
Now we claim that J|EG satisfies the assumptions of the fountain theorem.
By the assumptions (f) and (f), for u ∈ EG ,

J(u) =

p
‖u‖pp –

∫
RN

F
(|x|,u)

dx

≥ 
p
‖u‖pp –

C
q

∫
RN

|u|q dx

≥ 
p
‖u‖pp –

Cδ
q
k

qa
‖u‖qp,

http://www.boundaryvalueproblems.com/content/2014/1/124
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where a >  is the lower bound of b(|x|). Choose rk = (Cqδqk )


p–q , by Lemma ., for u ∈
E(k–)⊥
G

, ‖u‖p = rk , J(u) ≥ ( p –


qa
)(Cqδqk )

p
p–q , and as k → ∞,

bk = inf
u∈E(k–)⊥G

,‖u‖p=rk
J(u) → ∞.

This proves (A).
Now we want to show that the condition (A) is satisfied. By integrating, we obtain from

(f) and (f) that, there exist two constants C,C > , such that for any x ∈ R
N , F(|x|,u) ≤

C|u|μ +C|u|q. Hence,

J(u) =

p
‖u‖pp –

∫
RN

F
(|x|,u)

dx ≥ 
p
‖u‖pp –C

∫
RN

|u|q dx –C|u|μμ.

Since E(k)
G

is finite dimensional, all norms are equivalent on E(k)
G
. Therefore, μ > p and q > p

imply that

sup
u∈Ek ,‖u‖p≥R

J(u) → –∞, as R → ∞.

So there exists ρk > rk >  such that (A) is satisfied.
(PS)c condition is proved above. By Theorem ., we find, for k ≥ , that

ck = inf
γ∈�k

sup
u∈Bk

I
(
γ (u)

)

are critical values of the functional J . So we can get an unbounded sequence of solutions
of (.), and the solutions are radial. �

Proof of Theorem . In this proof, we will show that it suffices to find the critical points
of J restricted to a subspace of invariant functions. The proof is similar to Theorem .
in [].
Let  ≤m ≤N/ be a fixed integer different from (N – )/. The action of G :=O(m)×

O(m)×O(N – m) on E is defined by gu(x) := u(g–x). For RN is compatible with G, the
embedding EG ↪→ Lp(RN ) ( < p < ∗) is compact (or see [] for details).
Let τ be the involution defined on R

N =R
m ⊕R

m ⊕R
N–m by

τ(x,x,x) := (x,x,x).

The action of H := {id, τ} on EG is defined by

hu(x) =

{
u(x), h = id,
–u(h–x), h = τ.

It is clear that  is the only radial function on the set

EG,H := {u | u ∈ EG ,hu = u,∀h ∈H}.

Moreover, the embedding EG,H ↪→ Lp(RN ) is compact. As in the proof of Theorem .,
we obtain a sequence of non-radial solutions ±uk of (.). �

http://www.boundaryvalueproblems.com/content/2014/1/124
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