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Abstract
Let f be a diffeomorphism on a closed smooth manifoldM. In this paper, we show
that f has the C1-stably limit shadowing property on the chain component Cf (p) of f
containing a hyperbolic periodic point p, if and only if Cf (p) is a hyperbolic basic set.
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1 Introduction
Various closed invariant sets (transitive set, chain transitive set, homoclinic class, chain
component, etc.) in dynamical systems are natural candidates to replace Smale’s hyper-
bolic basic sets in non-hyperbolic theory of differentiable dynamical systems see [–]).
To investigate the above, we deal with the shadowing property. It usually plays an impor-
tant role in the stability theory and ergodic theory (see []).
Let M be a closed C∞ manifold, and let Diff(M) be the space of diffeomorphisms of M

endowed with the C-topology. Denote by d the distance on M induced from a Rieman-
nian metric ‖ · ‖ on the tangent bundle TM. Let f ∈Diff(M). Let � be a closed f -invariant
set. For δ > , a sequence of points {xi}bi=a (–∞ ≤ a < b ≤ ∞) inM is called a δ-pseudo orbit
of f if d(f (xi),xi+) < δ for all a≤ i≤ b–. For given x, y ∈ M, we write x� y if for any δ > ,
there is a δ-pseudo orbit {xi}bi=a (a < b) of f such that xa = x and xb = y. We write x� y if
x� y and y� x. The set of points {x ∈ M : x� x} is called the chain recurrent set of f
and is denoted byR(f ). Denote Cf (p) = {x ∈M : x� p and p� x} the chain component of
f containing p. For a closed f -invariant set � ⊂ M, we say that � is chain transitive if for
any point x, y ∈ � and δ > , there exists a δ-pseudo orbit {xi}bδ

i=aδ
⊂ � (aδ < bδ) of f such

that xaδ
= x and xbδ

= y.
Let � ⊂M be a closed f -invariant set. We say that f has the shadowing property on � if

for every ε > , there is δ >  such that for any δ-pseudo orbit {xi}bi=a ⊂ � of f (–∞ ≤ a <
b ≤ ∞), there is a point y ∈ M such that d(f i(y),xi) < ε for all a≤ i≤ b.
Now, we introduce the limit shadowing property which was introduced and studied by

Lee []. We say that f has the limit shadowing property on � if there exists δ >  with the
following property: if a sequence {xi}i∈Z ⊂ � is a δ-pseudo orbit of f for which relations
d(f (xi),xi+) →  as i → +∞, and d(f –(xi+),xi) →  as i→ –∞ hold, then there is a point
y ∈ M such that d(f i(y),xi) →  as i → ±∞. Here, the sequence {xi}i∈Z is called a δ-limit
pseudo orbit of f . It is easy to see that f has the limit shadowing property on � if and only
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if f n has the limit shadowing property on � for n ∈ Z \ {}, and the identity map does not
have the limit shadowing property.
Note that the above definition is not the shadowing property, also it is not the notion of

the original limit shadowing property in (see [, Examples , ] and [, ]).
We say that � is locally maximal if there is a compact neighborhood U of � such that⋂
n∈Z f n(U) = �. We say that f has the C-stably limit shadowing property on � if there

are a C-neighborhood U (f ) of f and a compact neighborhood U of � such that
() � =�f (U) =

⋂
n∈Z f n(U) (locally maximal),

() for any g ∈ U (f ), g has the limit shadowing property on �g(U), where
�g(U) =

⋂
n∈Z gn(U) is the continuation of � =�f (U).

It is well known that if p is a hyperbolic periodic point of f with period k then the sets

Ws(p) =
{
x ∈M : f kn(x)→ p as n→ ∞}

and

Wu(p) =
{
x ∈M : f –kn(x)→ p as n→ ∞}

are C-injectively immersed submanifolds of M. A point x ∈ Ws(p) ∩ Wu(p) is called a
homoclinic point of f associated to p, and it is said to be a transversal homoclinic point of f
if the above intersection is transverse. The closure of the homoclinic points of f associated
to p is called the non-transversal homoclinic class of f associated to p, say, generalized
homoclinic class, and it is denoted byHf (p), and the closure of the transversal homoclinic
points of f associated to p is called the transversal homoclinic class of f associated to p,
and it is denoted by Hf (p). Let p, q be hyperbolic periodic points of f . We say that p and q
are homoclinically related, and write p ∼ q if

Ws(p) �Wu(q) 
= ∅ and Wu(p) �Ws(q) 
= ∅.

It is clear that if p ∼ q then index(p) = index(q); i.e., dimWs(p) = dimWs(q). By Smale’s
transverse homoclinic point theorem,Hf (p) coincides with the closure of the set of hyper-
bolic periodic points q of f such that p ∼ q. In this paper, we consider all periodic points
of the saddle type, because, if p ∈ P(f ) is a sink or a source, then Cf (p) is the periodic orbit
of p itself.
Note that if p is a hyperbolic periodic point of f then there is a neighborhoodU of p and

a C-neighborhood U (f ) of f such that for any g ∈ U (f ), there exists a unique hyperbolic
periodic point pg of g inU with the same period as p and index(pg) = index(p). Such a point
pg is called the continuation of p = pf .
Let � be a closed f -invariant set. We say that � is hyperbolic if the tangent bundle T�M

has aDf -invariant splitting Es ⊕Eu and there exist constants C >  and  < λ <  such that

∥∥Dxf n|Esx
∥∥ ≤ Cλn and

∥∥Dxf –n|Eux
∥∥ ≤ Cλn

for all x ∈ � and n≥ .Moreover, we say that� admits a dominated splitting if the tangent
bundle T�M has a continuousDf -invariant splitting E⊕F and there exist constants C > 
and  < λ <  such that

∥∥Dxf n|E(x)
∥∥ · ∥∥Dxf –n|F(f n(x))

∥∥ ≤ Cλn

for all x ∈ � and n≥ .
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The following is the main theorem in this paper.

Theorem. Let p be a hyperbolic periodic point of f , and let Cf (p) be the chain component
of f associated to p. Then f has the C-stably limit shadowing property on Cf (p) if and only
if Cf (p) is hyperbolic.

Let � be a locally maximal subset ofM. In [], Lee showed that if � is hyperbolic then it
is limit shadowable. Note that a hyperbolic set� has the local product structure if and only
if it is locally maximal. Since the chain component Cf (p) has the local product structure, if
Cf (p) is hyperbolic, Cf (p) is locally maximal. Thus by the hyperbolicity of the chain com-
ponent Cf (p), f has the C-stably limit shadowing property. Thus, in this paper, we show
that if f has the C-stably limit shadowing property on Cf (p), then Cf (p) is hyperbolic.

2 Proof of Theorem 1.1
LetM be as before, and let f ∈Diff(M).

Lemma . Let � be a locally maximal subset of M. If f has the limit shadowing property
on � then the shadowing points are taken from �.

Proof Let δ >  be the number of the limit shadowing property of f , and let U be a locally
maximal neighborhood of �. Suppose that f has the limit shadowing property on �. Let
{xi}i∈Z ⊂ � be a δ-limit pseudo orbit of f . To derive a contradiction, we may assume that
there is y ∈M \ � such that

d
(
f i(y),xi

) →  as i→ ±∞.

Since � is compact, there is η >  such that Bη(�)⊂U , where Bη(�) is a η-neighborhood
of �. Since {xi}i∈Z ⊂ � and by the limit shadowing property, we can find l ∈ Z such that
f l(y) ∈ Bη(�). Since � is locally maximal in U and f -invariant,

� =
⋂
n∈Z

f n(�) ⊂
⋂
n∈Z

f n
(
Bη(�)

) ⊂
⋂
n∈Z

f n(U) = �.

Then for all n ∈ Z, f n(f l(y)) = f l+n(y) ∈ �. Since � is f -invariant, y ∈ f –n–l(�) = �, this is a
contradiction. Thus the limit shadowing points are in �. �

Let us recall some notions for the proof of the following lemma. A compact invariant
set � is attracting if � =

⋂
n≥ f n(U) for some neighborhood U of � satisfying f n(U)⊂U

for all n > . An attractor of f is a transitive attracting set of f and a repeller is an attractor
for f –n. We say that � is a proper attractor or repeller if ∅ 
=� 
=M. A sink (source) of f is
an attracting (repelling) critical orbit of f .

Lemma . ([, Proposition ]) Let � be a locally maximal set. f |� is chain transitive if
and only if � has no proper attractor for f .

Lemma . Let � be a locally maximal set. If f has the limit shadowing property on �

then f |� is chain transitive.

http://www.advancesindifferenceequations.com/content/2014/1/104
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Proof Suppose � has a proper attractor P in �. Then P 
= ∅ and � \ P 
= ∅. Since P is an
attractor, there exists δ >  such that P attracts the open δ/-neighborhood Bδ/(P) of P
in �. Choose q ∈ � \ Bδ/(P) and p ∈ P such that d(q,p) < δ. Consider a sequence

{
xi = f i(p), i ≤ ,
xi = f i(q), i > 

with i ∈ Z. Clearly, the sequence {xi}i∈Z is a δ-limit pseudo orbit of f in �. Then by
Lemma ., there is y ∈ � such that

d
(
f i(y),xi

) →  as i→ ±∞.

Then there exists N >  large enough such that f –N (y) ∈ Bδ/(P). Therefore, f n(f –N (y)) ∈
Bδ/(P) for n > , since P is an attractor. Taking –N = –ik , we have that y = f ik (f –ik (y)) ∈
Bδ/(P). Thus, by definition of Bδ/(P), we have that

d
(
f i(y), f i(q)

)
�  as i→ ∞.

This contradicts the definition of the limit shadowing property and completes the proof.
�

Lemma . Let � be a locally maximal set. Suppose f has the limit shadowing property
on �. Then for any hyperbolic periodic points p, q in �,

Ws(p)∩Wu(q) 
= ∅ and Wu(p)∩Ws(q) 
= ∅.

Proof Suppose f has the limit shadowing property on locally maximal �, and let p,q ∈ �

be hyperbolic periodic points for f . We will show that Ws(p) ∩ Wu(q) 
= ∅. Other case is
similar. Since f has the limit shadowing property on locally maximal �, by Lemma ., we
can take a δ-chain {xi}ni= from p to q such that x = p, xn = q. Then we can construct a
δ-limit pseudo orbit ξ as follows: (i) xi = f i(p), i < , (ii) d(f (xi),xi+) < δ, i = , . . . ,n–  and
(iii) xn+i = f i(q), i≥ . Then

ξ =
{
. . . , f –(p),x = p,x, . . . ,xn–,xn = q, f (q), . . .

}
.

Clearly, ξ is a δ-limit pseudo orbit of f in�. Then, by Lemma ., there exists a point y ∈ �

such that

d
(
f i(y),xi

) →  as i→ ±∞.

This implies that y ∈Wu(p) and f n(y) ∈Ws(q) (y ∈ Ws(q)). ThusWu(p)∩Ws(q) 
= ∅. �

The following so-called Franks lemma will play essential roles in our proof.

Lemma . Let U (f ) be any given C-neighborhood of f . Then there exist ε >  and a C-
neighborhood U(f ) ⊂ U (f ) of f such that for given g ∈ U(f ), a finite set {x,x, . . . ,xN },
a neighborhood U of {x,x, . . . ,xN } and linear maps Li : TxiM → Tg(xi)M satisfying ‖Li –

http://www.advancesindifferenceequations.com/content/2014/1/104


Lee and Park Advances in Difference Equations 2014, 2014:104 Page 5 of 11
http://www.advancesindifferenceequations.com/content/2014/1/104

Dxig‖ ≤ ε for all ≤ i≤N , there exists g ′ ∈ U (f ) such that g ′(x) = g(x) if x ∈ {x,x, . . . ,xN }∪
(M \U) and Dxig ′ = Li for all ≤ i≤N .

Proof See the proof of Lemma . []. �

Lemma . ([, Lemma .]) Let � be locally maximal in U , and let U (f ) be given. If
p ∈ �g(U) ∩ P(g) (g ∈ U (f )) is not hyperbolic, then there is g ∈ U (f ) possessing hyperbolic
periodic points q and q in �g (U) with different indices.

In this section, we will prove Theorem . by making use of the technique developed by
Mañé in []. That is, we use the notion of uniform hyperbolicity for a family of periodic
sequences of linear isomorphisms of RdimM . For this, we need several lemmas.
We say that a diffeomorphism f is Kupka-Smale if for any periodic point of f is hyper-

bolic and their invariant manifolds intersect transversely and denote the set of Kupka-
Smale diffeomorphisms by KS(M). It is well known that KS(M) is residual in Diff(M).

Lemma . Let f ∈ Diff(M), and let � be a closed f -invariant set. Suppose that f has the
C-stably limit shadowing property on �. Then there exist a C-neighborhood U (f ) of f
and a compact neighborhood U of � such that for any g ∈ U (f ), every p ∈ �g(U) ∩ P(g) is
hyperbolic for g , where �g(U) =

⋂
n∈Z gn(U).

Proof Since f has the C-stably limit shadowing property on �, there exist a C-
neighborhood U (f ) of f and a compact neighborhood U of � such that for any g ∈ U (f ),
g has the limit shadowing property on �g(U) =

⋂
n∈Z gn(U). Let ε >  and U(f ) ⊂ U (f )

be the corresponding number and C-neighborhood of f given by Lemma . with re-
spect to U (f ). Suppose there is a point q ∈ �g(U) ∩ P(g) which is not hyperbolic. Then
by Lemma ., we can choose g ∈ U(f ) such that indexpg 
= indexqg , where pg ,qg ∈
�g (U) ∩ P(g). Then dimWs(pg ) + dimWu(qg ) < dimM or dimWu(pg ) + dimWs(qg ) <
dimM. We may assume that dimWs(pg ) + dimWu(qg ) < dimM. By Lemma ., we can
take h ∈ U (g) ∩KS(M) such that index(pg ) = index(ph) and index(qg ) = index(qh) where
ph, qh are the continuation of pg , qg for h, respectively. Then, since h is Kupka-Smale,
Ws(ph) ∩ Wu(qh) = ∅. On the other hand, since h ∈ U (f ), h|�h(U) satisfies the limit shad-
owing property so that Ws(ph) ∩ Wu(qh) 
= ∅ by Lemma .. This is a contradiction and
completes the proof. �

It is a well-known result that the transversal homoclinic classHf (p) is a subset of the gen-
eralized homoclinic classHf (p), and it is a subset of the chain component Cf (p). However,
under the notion of the limit shadowing property with locally maximal, Hf (p) = Cf (p). It
is obtained by the following lemma.

Lemma. Let U be a locallymaximal neighborhood of Cf (p). If f has the limit shadowing
property on Cf (p) then Cf (p) =Hf (p).

Proof Let p be a hyperbolic saddle. For simplify we may assume that f (p) = p. Let U be a
locally maximal neighborhood of Cf (p). Suppose that f has the limit shadowing property
on a locally maximal Cf (p). For any x ∈ Cf (p), we show that x ∈ Hf (p). Let δ >  be the
number of the limit shadowing property of f . Since x� p, there is a periodic δ-pseudo

http://www.advancesindifferenceequations.com/content/2014/1/104
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orbit {xi}ki=–l of f such that x–l = p, x = x and xk = p for some l = l(δ), k = k(δ) > . Then
the periodic δ-pseudo orbit {xi}k–l ⊂ Cf (p) (see [, Proposition .]). Now we construct
a δ-limit pseudo orbit as follows: (i) x–l–i = f –i(p) for all i ≥ , and (ii) xk+i = f i(p) for all
i≥ . Then we know the δ-limit pseudo orbit

{
. . . ,x–l–,x–l(= p),x–l+, . . . ,x(= x),x, . . . ,xk(= p),xk+, . . .

} ⊂ Cf (p).

Since Cf (p) is locally maximal, by Lemma ., for small η >  we can take a point y ∈ Cf (p)
such that d(x, y) < η and d(f i(y),xi) →  as i→ ±∞. Since d(f i(y),xi) →  as i→ ±∞, we
know

y ∈ Ws(p)∩Wu(p).

Furthermore, by Theorem . in [], we see that y ∈ Bη(x) where Bη(x) denotes the η-
neighborhood of x. Thus we conclude that

y ∈ Ws(p)∩Wu(p)∩ Bη(x).

This means Cf (p) ⊂Hf (p), and therefore Cf (p) =Hf (p). �

It is well known that a dominated splitting is always extended to a neighborhood. More
precisely, let � be a closed f -invariant set. Then if � admits a dominated splitting T�M =
E ⊕ F such that dimEx (x ∈ �) is constant, then there are a C-neighborhood U (f ) of f
and a compact neighborhood U of � such that for any g ∈ U (f ),

⋂
n∈Z gn(U) admits a

dominated splitting

T⋂
n∈Z gn(U)M = E′(g)⊕ F ′(g)

with dimE′(g) = dimE.
FromLemma ., the family of periodic sequences of linear isomorphisms ofRdimM gen-

erated byDg (g ∈ U(f )) along the hyperbolic periodic points p ∈ �g(U)∩P(g) is uniformly
hyperbolic. That is, there exists ε >  such that for any g ∈ U(f ), p ∈ �g(U)∩P(g), and any
sequence of linearmaps Li : Tgi(p)M → Tgi+(p)M with ‖Li–Dgi(p)g‖ < ε for  ≤ i≤ π (p)–,∏π (p)–

i= Li is hyperbolic. Here U(f ) is theC-neighborhood of f given by Lemma .. Thus
by Proposition II. in [] and Lemma . above, we get the following proposition.

Proposition . Suppose that f has the C-stably limit shadowing property on the
chain component Cf (p) of f associated to a hyperbolic periodic point p and let U(f ) as
Lemma .. Then there are constants C > , λ ∈ (, ) and m >  such that
(a) for any g ∈ U(f ), if q ∈ �g(U)∩ P(g) has the minimum period π (q) ≥m, then

k–∏
i=

∥∥Dgim(q)gm|Es
gim(q)

∥∥ < Cλk and
k–∏
i=

∥∥Dg–im(q)g–m|Eu
g–im(q)

∥∥ < Cλk ,

where k = [π (q)/m], and �g(U) =
⋂

n∈Z gn(U).
(b) Cf (p) admits a dominated splitting TCf (p)M = E ⊕ F with dimE = index(p).

http://www.advancesindifferenceequations.com/content/2014/1/104
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Remark From Proposition .(b) and Lemma ., Cf (p) =Hf (p) =Hf (p).

In general, a non-hyperbolic homoclinic classHf (p) contains saddle periodic points with
different indices. Let p be a hyperbolic periodic point of f .

Proposition . Suppose that f has the C-stably limit shadowing property on Cf (p).
Then for any q ∈ Cf (p)∩ P(f ),

index(p) = index(q),

where index(p) = dimWs(p).

Proof Suppose that f has the C-stably limit shadowing property on Cf (p). Let U be a
compact neighborhood of Cf (p), and let U (f ) be a C-neighborhood of f . Then for any
g ∈ U (f ), g has the limit shadowing property on �g(U) =

⋂
n∈Z gn(U). By Lemma ., for

any q ∈ Cf (p)∩P(f ), q is hyperbolic. By contradiction, suppose that there is q ∈ Cf (p)∩P(f )
such that index(p) 
= index(q). This implies that

dimWs(q) + dimWu(p) < dimM or dimWu(q) + dimWs(p) < dimM.

Then we can choose g ∈ U (f ) ∩ KS(M) such that index(pg) = index(p) and index(qg) =
index(q) for the continuations pg ,qg ∈ �g(U) ∩ P(g) of p, q, respectively. Then we may
assume that dimWs(qg) + dimWu(pg) < dimM. Other case is similar. Since g is Kupka-
Smale, dimWs(qg) + dimWu(pg) < dimM implies thatWs(qg)∩Wu(pg) = ∅. On the other
hand, by the definition of theC-stably limit shadowing property, for pg ,qg ∈ �g(U)∩P(g),

Ws(qg)∩Wu(pg) 
= ∅.

This is a contradiction and completes the proof. �

Note that for any hyperbolic periodic point q in Cf (p) for a hyperbolic periodic point p,
there exist a C-neighborhood U (f ) of f and a neighborhood U of Cf (p) such that for any
g ∈ U (f ), there is unique pg ∈ Cg(pg) ∩ P(g) which contained in �g(U) ∩ P(g), where pg is
the continuation of p for g .
We denote the index(p) by j ( < j < dimM) and let Pj(f |Hf (p)) be the set of periodic points

q ∈ Hf (p) ∩ P(f ) such that index(q) = j for all  < j < dimM. Set �j(f ) = Pj(f |Hf (p)), then
Hf (p) = �j(f ) = Cf (p).

Lemma . Let U(f ) be the C-neighborhood of f given by Lemma . and Proposi-
tion . and let V(f ) ⊂ U(f ) be a small connected C-neighborhood of f . If g ∈ V(f ) satis-
fying g = f on M \Uj, then

index(q) = index(p)

for any q ∈ �g(U)∩ Pg .

http://www.advancesindifferenceequations.com/content/2014/1/104
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Proof Suppose the property is not true then there are g ′ ∈ V(f ) and q ∈ �g′ ∩ P(g ′) such
that g ′ = f on M \ Uj and index(q) 
= index(p). Suppose that (g ′)n(q) = q, i = index(q), and
define ϕ : V(f ) → Z by

ϕ(g) = 

{
y ∈ �g(U)∩ P(g) : gn(y) = y and index(y) = i

}
,

where 
A is the number of elements of A. By Lemma ., the function ϕ is continuous,
and since V(f ) is connected, it is constant. But the property of g ′ implies ϕ(g ′) > ϕ(f ). This
is a contradiction, so that the lemma is proved. �

For any ε > , denote by Bε(x, f ) a ε-tubular neighborhood of f -orbit of x, that is,

Bε(x, f ) =
{
y ∈M : d

(
f n(x), y

)
< ε, for some n ∈ Z

}
.

We say that a point x ∈ M is well closable for f ∈ Diff(M) if for any ε >  there are
g ∈ Diff(M) with d(f , g) < ε and p ∈ M such that p ∈ P(g), g = f on M \ Bε(x, f ) and
d(f n(x), gn(p)) ≤ ε for any  ≤ n ≤ π (p), where π (p) is the period of p, and d is the C-
metric. Let �f denote the set of well closable points of f . Then we know the following
fact.

Lemma . ([, Theorem A]) For any f -invariant probability measure μ, we have
μ(�f ) = .

Proof of Theorem . Suppose that f has the C-stably limit shadowing property on Cf (p).
Then there are a C-neighborhood U (f ) of f and a compact neighborhood U of Cf (p)
as in the definition. Let U(f ) ⊂ U (f ) of f given by Lemma . and Proposition ..
Define �j as the set such that every periodic orbit in it has index j. To get the conclu-
sion, it is sufficient to show that �j(f ) is hyperbolic since Hf (p) = Cf (p) = �j(f ), where
 < j = index(p) < dimM. Now Cf (p) admits a dominated splitting TCf (p)M = E ⊕ F such
that dimE = index(p) by Proposition .(b). Thus, as in the proof of [, Theorem B], we
can show that

lim inf
n→∞

∥∥Dxf n|E(x)
∥∥ =  and lim inf

n→∞
∥∥Dxf –n|F(x)

∥∥ = ,

for all x ∈ Cf (p) and therefore the splitting is hyperbolic.
More precisely, we will prove the case of lim infn→∞ ‖Dxf n|E(x)‖ =  (other case is simi-

lar). It is enough to show that for any x ∈ Cf (p), there exists n = n(x) >  such that

n–∏
j=

∥∥Df m|Efmj(x)

∥∥ < .

If it is not true, then there is x ∈ Cf (p) such that

n–∏
j=

∥∥Df m|Efmj(x)

∥∥ ≥ ,

http://www.advancesindifferenceequations.com/content/2014/1/104
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for all n ≥ . Thus


n

n–∑
j=

log
∥∥Df m|Efmj(x)

∥∥ ≥ 

for all n ≥ .
From now, let Cf (p) = �. Define a probability measure

μn :=

n

n–∑
j=

δf mj(x).

Then there exists μnk (k ≥ ) such that μnk → μ ∈ Mf m (M), as k → ∞, where M is
compact metric space. Thus

∫
log

∥∥Df m|Ex
∥∥dμ = lim

k→∞

∫
log

∥∥Df m|Ex
∥∥dμnk

= lim
n→∞


n

n–∑
j=

log
∥∥Df m|Efmj(x)

∥∥ ≥ .

By Mañé ([], p.),

∫
�

log
∥∥Df m|Ex

∥∥dμ =
∫

�

lim
n→∞


n

n–∑
j=

log
∥∥Dfmj(x)f

m|Efmj(x)

∥∥dμ ≥ ,

where μ is a f m-invariant measure. Let

Bε(f ,x) =
{
y ∈M : d

(
f n(x), y

)
< ε for some n ∈ Z

}
,

and �f as in Lemma ..
Note that if x /∈ P(f ), ≤ π (y) =N such that d(f N (x), f N (y)) = d(f N (x), y)→  asN → ∞,

then d(x, y) → . So it cannot be.
By Lemma ., we know that for any μ ∈Mf (M),

μ(�f ) = .

Then, for any μ ∈Mf (�),

μ(� ∩ �f ) = ,

since μ(Cf (p)) =  and μ(�f ) = . Hence it defines an f -invariant probability measure ν on
Cf (p) by

ν =

m

m–∑
i=

f l∗(μ).

http://www.advancesindifferenceequations.com/content/2014/1/104
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Thus, Cf (p) = Cf (p)∩ �(f ) almost everywhere. Therefore,

∫
Cf (p)∩�(f )

lim
n→∞


n

n–∑
j=

log
∥∥Df m|Efmj(x)

∥∥dμ ≥ .

By Birkhoff’s theorem and the ergodic closing lemma, we can take z ∈ Cf (p)∩ �(f ) such
that

lim
n→∞


n

n–∑
j=

log
∥∥Df m|Efmj(z)

∥∥ ≥ .

By Proposition ., this is a contradiction. Thus by Proposition ., z /∈ P(f ).
Let C > ,m >  and λ ∈ (, ) be given by Proposition ., and let us take λ < λ <  and

n >  such that


n

n–∑
j=

log
∥∥Df m|Efmj(z)

∥∥ ≥ logλ, if n ≥ n.

Then, by Mañé’s ergodic closing lemma (Lemma .), we can find g ∈ V(f ), g = f on
M \Uj and zg ∈ �g(U)∩P(g) nearby z. Moreover, we know that index(zg) = index(p) since
g = f on M \Uj. By applying Lemma ., we can construct g ∈ V(f ) (⊂ V(f )) C-nearby
g such that

λk
 ≤

k–∏
i=

∥∥Dgim (zg )
gm |Egim (zg )

∥∥

(see [, pp.-]). On the other hand, by Proposition ., we see that

k–∏
i=

∥∥Dgim (zg )
gm |Egim (zg )

∥∥ < Cλk .

We can choose the period π (zg ) (> n) of zg as large as λk
 ≥ Cλk . Here k = [π (zg )/m].

This is a contradiction. Thus,

lim inf
n→∞

∥∥Dxf n|Ex
∥∥ = 

for all x ∈ Cf (p). Therefore, Cf (p) is hyperbolic. This completes the proof of the ‘only if
part’ of Theorem .. �
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