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Abstract
In this paper, a new class of general set-valued parametric ordered variational
inclusions, θ ∈ M(x,g(x,ρ),ρ), with (α,λ)-NODSMmappings is studied in ordered
Banach spaces. Then, by using fixed point theory and the resolvent operator
associated with (α,λ)-NODSM set-valued mappings, an existence theorem and a
sensitivity analysis of the solution set for this kind of parametric variational inclusion is
proved and discussed in ordered Banach spaces. The obtained results seem to be
general in nature.
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1 Introduction
Generalized nonlinear ordered variational inequalities and inclusions (ordered equation)
have wide applications in many fields including, for example, mathematics, physics, opti-
mization and control, nonlinear programming, economics, and engineering sciences etc.
In recent years, nonlinear mapping fixed point theory and applications have been exten-
sively studied in ordered Banach spaces [–]. In  the author introduced and stud-
ied the approximation algorithm and the approximation solution for a class of general-
ized nonlinear ordered variational inequalities and ordered equations, to find x ∈ X such
that A(g(x)) ≥ θ (A(x) and g(x) are single-valued mappings), in ordered Banach spaces [].
By using the B-restricted-accretive method of the mapping A with constants α, α, the
author introduced and studied a new class of general nonlinear ordered variational in-
equalities and equations in ordered Banach spaces []. By using the resolvent operator
associated with an RME set-valued mapping, the author introduced and studied a class
of nonlinear inclusion problems for ordered MR set-valued mappings and the existence
theorem of solutions and an approximation algorithm for this kind of nonlinear inclu-
sion problems for ordered extended set-valued mappings in ordered Hilbert spaces [].
In , the author introduced and studied a class of nonlinear inclusion problems, to
find x ∈ X such that  ∈ M(x) (M(x) is a set-valued mapping) for ordered (α,λ)-NODM
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set-valued mappings, and he then, applying the resolvent operator associated with (α,λ)-
NODM set-valued mappings, established the existence theorem on the solvability and a
general algorithm applied to the approximation solvability of this class of nonlinear in-
clusion problems, based on the existence theorem and the new (α,λ)-NODM model in
ordered Hilbert space []. For Banach spaces, the author made a sensitivity analysis of
the solution for a new class of general nonlinear ordered parametric variational inequal-
ities, to find x = x(λ) : � → X such that A(g(x,λ),λ) + f (x,λ) ≥ θ (A(x), g(x) and F(·, ·) are
single-valued mappings) in  []. In this field, the obtained results seem to be gen-
eral in nature. In , the author introduced and studied characterizations of ordered
(αA,λ)-weak-ANODD set-valued mappings, which was applied to finding an approximate
solution for a new class of general nonlinear mixed-order quasi-variational inclusions in-
volving the⊕ operator in ordered Banach spaces [], and, applying thematrix analysis and
the vector-valued mapping fixed point analysis method, he introduced and studied a new
class of generalized nonlinear mixed-order variational inequalities systems with ordered
B-restricted-accretive mappings for ordered Lipschitz continuous mappings in ordered
Banach spaces [].
On the other hand, as everyone knows, the sensitivity analysis for a class of general non-

linear variational inequalities (inclusions) has wide applications to many fields. In ,
Noor and Noor have studied a sensitivity analysis for strongly nonlinear quasi-variational
inclusions []. From , Agarwal et al. have discussed a sensitivity analysis for strongly
nonlinear quasi-variations in Hilbert spaces by using the resolvent operator technique
[]; furthermore, Bi et al. [], Lan et al. [, ], Dong et al. [], Jin [], Verma [], Li
et al. [], and Li [] have shown the existence of solutions and made a sensitivity analysis
for a class of nonlinear variational inclusions involving generalized nonlinear mappings
in Banach spaces, respectively. Recently, it has become of the highest interest that we are
studying a new class of nonlinear ordered inclusion problems for ordered (α,λ)-NODSM
set-valuedmappings and a sensitivity analysis of the solution set for this kind of parametric
variational inclusions in ordered Banach spaces by using the resolvent operator technique
[] associated with ordered (α,λ)-NODM set-valued mappings. For details, we refer the
reader to [–] and the references therein.
Let X be a real ordered Banach space with a norm ‖ · ‖, zero θ , and a partial ordering

relation ≤ defined by the normal cone P, and a normal constant N of P []. Let � be a
nonempty open subset of X and we have the parametric ρ ∈ �. Let x = x(ρ) ∈ X (ρ ∈ �),
g(x,ρ) : X × � → X be a single-valued mapping and M(x, g(x,ρ),ρ) : X × X × � → X be
a set-valued mapping. We consider the following problem:

Find x = x(ρ) ∈ X (ρ ∈ �) such that

 ∈M
(
x, g(x,ρ),ρ

)
, (.)

and the solution x(ρ) of the inclusion problem (.) is continuous from � and X .
Problem (.) is called a nonlinear generalized set-valued parametric ordered variational

inclusions for ordered (α,λ)-NODSM set-valued mappings in ordered Banach spaces.

Remark . When mapping M is single-valued and M(x, y) = A(g(x)), then the problem
(.) reduces to problem (.) in [].
When the mappingM(x, y) =M(x) is set-valued, then the problem (.) reduces to prob-

lem (.) in [].
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Inspired and motivated by recent research work in this field, in this paper, a new class
of nonlinear generalized parametric ordered variational inclusions with (α,λ)-NODSM
mappings is studied in ordered Banach spaces. Then, by using the resolvent operator as-
sociated with (α,λ)-NODSM set-valued mappings, an existence theorem of this class of
nonlinear inclusions is established, and a sensitivity analysis of the solution set for this kind
of parametric variational inclusions is proved and discussed in ordered Banach spaces.
The obtained results seem to be general in nature.

2 Preliminaries
Let X be a real ordered Banach space with a norm ‖ · ‖, a zero θ , a normal cone P, a
normal constant N and a partial ordering relation ≤ defined by the cone P. For arbitrary
x, y ∈ X, lub{x, y} and glb{x, y} express the least upper bound of the set {x, y} and the great-
est lower bound of the set {x, y} on the partial ordering relation ≤, respectively. Suppose
that lub{x, y} and glb{x, y} exist. Let us recall some concepts and results.

Definition . [, ] Let X be a real Banach space with a norm ‖ · ‖, θ be a zero element
in X.

(i) A nonempty closed convex subset P of X is said to be a cone if () for any x ∈ P and
any λ > , λx ∈ P holds, () if x ∈ P and –x ∈ P, then x = θ ;

(ii) P is said to be a normal cone if and only if there exists a constant N > , a normal
constant of P such that for θ ≤ x≤ y, ‖x‖ ≤N‖y‖ holds;

(iii) for arbitrary x, y ∈ X , x ≤ y if and only if x – y ∈ P;
(iv) for x, y ∈ X , x and y are said to be comparative to each other, if and only if x≤ y (or

y≤ x) holds (denoted by x ∝ y for x ≤ y and y≤ x).

Lemma . If x∝ y, then lub{x, y} and glb{x, y} exist, x– y ∝ y–x, and θ ≤ (x– y)∨ (y–x).

Proof If x∝ y, then x ≤ y or y ≤ x. Let x≤ y, then lub{x; y} = y and glb{x; y} = x, and x– y ≤
θ ≤ y–x. It follows that lub{x; y} and glb{x; y} exist, and x–y ∝ y–x. (x–y)∨ (y–x) = (y–x),
then θ ≤ (x – y)∨ (y – x). �

Lemma . If for any natural number n, x∝ yn, and yn → y∗ (n→ ∞), then x ∝ y∗.

Proof If for any natural number n, x∝ yn and yn → y∗ (n→ ∞), then x– yn ∈ P or yn –x ∈
P for any natural number n. Since P is a nonempty closed convex subsets of X, we have
x – y∗ = limn→∞(x – yn) ∈ P or y∗ – x = limn→∞(yn – x) ∈ P. Therefore, x∝ y∗. �

Lemma . [–] Let X be an ordered Banach space, let P be a cone of X, let ≤ be a
relation defined by the cone P in Definition .(iii). For x, y, v,u ∈ X, the following relations
hold:
() the relation ≤ in X is a partial ordering relation in X ;
() x⊕ y = y⊕ x;
() x⊕ x = θ ;
() θ ≤ x⊕ θ ;
() let λ be a real, then (λx)⊕ (λy) = |λ|(x⊕ y);
() if x, y, and w can be comparative to each other, then (x⊕ y) ≤ x⊕w +w⊕ y;

http://www.fixedpointtheoryandapplications.com/content/2014/1/122
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() let (x + y)∨ (u + v) exist, and if x∝ u, v and y∝ u, v, then
(x + y)⊕ (u + v)≤ (x⊕ u + y⊕ v)∧ (x⊕ v + y⊕ u);

() if x, y, z, w can be compared with each other, then
(x∧ y)⊕ (z∧w) ≤ ((x⊕ z)∨ (y⊕w))∧ ((x⊕w)∨ (y⊕ z));

() if x ≤ y and u≤ v, then x + u ≤ y + v;
() if x ∝ θ , then –x⊕ θ ≤ x≤ x⊕ θ ;
() if x ∝ y, then (x⊕ θ )⊕ (y⊕ θ )≤ (x⊕ y)⊕ θ = x⊕ y;
() (x⊕ θ ) – (y⊕ θ )≤ (x – y)⊕ θ ;
() if θ ≤ x and x = θ , and α > , then θ ≤ αx and αx = θ .

Proof ()-() come from Lemma . in [] and Lemma . in [], and ()-() directly
follow from ()-(). �

Definition . Let X be a real ordered Banach space, let � be a nonempty open subset of
X in which the parametric ρ takes values, let x = x(ρ) ∈ X (ρ ∈ �), g(x,ρ) : X × � → X be
a single-valued mapping and M(x, g(x,ρ),ρ) : X × X × � → X be a set-valued mapping
andM(x, ·,ρ) be a nonempty closed subset in X.
() A set-valued mappingM is said to be a comparison mapping, if for any

vx ∈M(x, ·, ·), x ∝ vx, and if x∝ y, then for any vx ∈M(x, ·, ·) and any vy ∈M(y, ·, ·),
vx ∝ vy (∀x, y ∈ X).

() A set-valued mappingM is said to be a comparison mapping with respect to g , if for
any vx ∈M(·, g(x), ·), x∝ vx, and if x∝ y, then for any vx ∈M(·, g(x), ·) and any
vy ∈M(·, g(y), ·), vx ∝ vy (∀x, y ∈ X).

() A comparison mappingM is said to be an α-non-ordinary difference mapping, if
there exists a constant α > , for each x, y ∈ X , vx ∈M(x, ·, ·), and vy ∈ M(y, ·, ·) such
that

(vx ⊕ vy)⊕ α(x⊕ y) = θ .

() A comparison mappingM is said to be λ-ordered strongly monotonic increase
mapping, if for x ≥ y there exists a constant λ >  such that

λ(vx – vy) ≥ x – y ∀x, y ∈ X, vx ∈M(x), vy ∈M(y, ·, ·).

() A comparison mappingM is said to be a (α,λ)-NODSM mapping, ifM is a
α-non-ordinary difference and λ-ordered strongly monotone increasing mapping,
and (I + λM(x, ·, ·))(X) = X for α,λ > .

Obviously, ifM is a comparison mapping, thenM(x, ·, ·) ∝ I (∀x ∈ X).

Definition. [] LetX be a real orderedBanach space,P be a normal conewith a normal
constant N in X; a mapping A : X × X → X is said to be β-ordered compression, if A is
comparison, and there exists a constant  < β <  such that

(
A(x, ·)⊕A(y, ·)) ≤ β(x⊕ y).

Definition . [] Let X be a real ordered Banach space. A mapping A : X × X → X is
said to be a restricted-accretive mapping with constants (α,α), if A is a comparison, and
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there exist two constants  < β,β ≤  such that for arbitrary x, y ∈ X,

(
A(x, ·) + I(x)

) ⊕ (
A(y, ·) + I(y)

) ≤ β
(
A(x, ·)⊕A(y, ·)) + β(x⊕ y)

holds, where I is the identity mapping on X.

Definition . Let X be a real ordered Banach space, let � be a nonempty open subset of
X in which the parametric ρ takes values, let x = x(ρ) ∈ X (ρ ∈ �). x = x(ρ) is said to be a
comparison element when, if ρ = ρ then x(ρ) = x(ρ) for any ρ,ρ ∈ �.

Lemma . Let M =M(x, ·, ·) : X×X×X → X . If M is a α-non-ordinary difference map-
ping, then an inverse mapping JM,λ = (I + λM)– : X × X × X → X of (I + λM) is a single-
valued mapping (α,λ > ), where I is the identity mapping on X.

Proof Let u ∈ X, and x and y be two elements in (I + λM)–(u). It follows that u – x ∈
λM(x, ·, ·) and u – y ∈ λM(y, ·, ·), and


λ
(u – x)⊕ 

λ
(u – y) =

∣∣∣∣ λ
∣∣∣∣(x⊕ y).

SinceM is a α-non-ordinary difference mapping, we have

 =
(

λ
(u – x)⊕ 

λ
(u – y)

)
⊕ α(x⊕ y) =

∣∣∣∣ λ
∣∣∣∣(x⊕ y)⊕ α(x⊕ y)

=
∣∣∣∣
∣∣∣∣ λ

∣∣∣∣ + α

∣∣∣∣(x⊕ y)

and x ⊕ y =  from Lemma .. Also, x = y holds. Thus (I + λM)–(u) is a single-valued
mapping. The proof is completed. �

Definition . LetX be a real ordered Banach space, let P be a normal cone with normal
constant N in the X, let M =M(x, ·, ·) : X × X × X → X be a α-non-ordinary difference
mapping. The resolvent operator JM,λ : X ×X ×X → X of theM(x, ·, ·) is defined by

JM,λ(x) = (I + λM)–(x) for all x ∈ X,

where λ >  is a constant.

3 Existence theorem of the solution
In this section, we will show an existence theorem on the solvability of this class of non-
linear inclusion problems (.).

Theorem . Let X be an ordered Banach space, let P be a normal cone with the normal
constant N in X, let ≤ be an ordering relation defined by the cone P. If M = M(x, ·, ·) :
X × X × � → X is an α-non-ordinary difference mapping, then the inclusion problem
(.) has a solution x if and only if g(x, ·) = JM(x,·,·),λg(x, ·) in X.

Proof This directly follows from the definition of the resolvent operator JM,λ of M(x, ·, ·).
�

http://www.fixedpointtheoryandapplications.com/content/2014/1/122
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Theorem . Let X be an ordered Banach space, let P be a normal cone with the normal
constant N in the X, let ≤ be an ordering relation defined by the cone P, the operator ⊕
be a XOR operator. If M =M(x, ·, ·) : X × X × � → X is an (α,λ)-NODSM mapping with
respect to JM,λ, then the resolvent operator JM,λ : X → X is a comparison mapping.

Proof SinceM =M(x, ·, ·) : X×X×� → X is an α-non-ordinary difference mapping and
a comparison mapping with respect to JM,λ so that x ∝ JM,λ(x). For any x, y ∈ X, let x ∝ y,
and vx = 

λ
(x – JM,λ(x)) ∈M(JM(x,·),λ(y)) and vy = 

λ
(y – JM(x,·),λ(y)) ∈M(JM(x,·),λ(y)). Setting

vx – vy =

λ

(
x – y + JM(x,·),λ(y) – JM(x,·),λ(x)

)
,

by using the λ-order strongly monotonicity ofM, we have

θ ≤ λ(vx – vy) – (x – y) = JM,λ(y) – JM,λ(x), (.)

and if y ≤ x then λ(vx – vy) – (x– y) ∈ P, and if x ≤ y then (x– y) –λ(vx – vy) ∈ P. Therefore
JM,λ(y) ∝ JM,λ(x) for Lemma .. �

Theorem . Let X be an ordered Banach space, let P be a normal cone with the normal
constant N in X, let ≤ be an ordering relation defined by the cone P. Let M = M(·,x, ·) :
X × X × � → X be a NODSM set-valued mapping with respect to JM,λ. If α > 

λ
> , then

for the resolvent operator JM,λ : X → X, the following relation holds:

JM,λ(y)⊕ JM,λ(z) ≤ 
(αλ – )

(y⊕ z). (.)

Proof Let M = M(·,x, ·) : X × X × � → X be a NODSM set-valued mapping with re-
spect to JM,λ. For y, z ∈ X, let uy = JM,λ(y) ∝ uz = JM,λ(z), vy = 

λ
(y – uy) ∈ M(·,uy, ·) and

vz = 
λ
(z – uz) ∈ M(·,uz, ·), then vy ∝ vz for y ∝ z. Since M(·,x, ·) : X × X × X → X

is an (α,λ)-NODSM mapping with respect to the JM,λ, the following relation holds by
Lemma . and the condition (vy ⊕ vz)⊕ α(uy ⊕ uz) = θ :


λ

(
(y⊕ z) + (uy ⊕ uz)

) ≥ vy ⊕ vz = α(uy ⊕ uz).

It follows that (λα – )(uy ⊕ uz) ≤ (y ⊕ z) and JM,λ(y) ⊕ JM,λ(z) ≤ 
(αλ–) (y ⊕ z) from the

condition α > 
λ
> . The proof is completed. �

Theorem . Let X be an ordered Banach space, let P be a normal cone with the normal
constant N in the X, let ≤ be an ordering relation defined by the cone P. Let M =M(x, ·, ·) :
X × X × � → X be an (α,λ)-NODSM set-valued mapping with respect to the first argu-
ment and g : X×� → X be a γ -ordered compression and an -ordered strongly monotonic
increase with respect to the first argument and range(g)∩ domM(·,x, ·) = ∅, and JM,λ for M
with respect to the first argument and (JM,λ – I) for M with respect to the second argument
be two restricted-accretive mappings with constants (ξ, ξ) and (β,β), respectively, and
g ∝ JM,λ. Suppose that for any x, y, z ∈ X

JM(x,·,·),λ(z)⊕ JM(y,·,·),λ(z) ≤ δ(x⊕ y) (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/122
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and

γ

(
ξ

αλ – 
⊕ ξ

)
⊕ δ <

 –Nβ

Nβ
(.)

hold. For any parametric ρ ∈ �, for the nonlinear parametric inclusion problem (.) there
exists a solution x∗.

Proof Let X be a real ordered Banach space, let P be a normal cone with normal constant
N in the X, let ≤ be an ordering relation defined by the cone P, let � be a nonempty open
subset ofX in which the parametric ρ takes values, letM =M(x, ·, ·) : X×X×� → X , and
for any given ρ ∈ � and x = x(ρ),x = x(ρ) ∈ X for λ > . If x(ρ)∝ x(ρ), and setting

F
(
xi(ρ),ρ

)
= xi(ρ) – g(xi,ρ) + JM,λ

(
g(xi,ρ)

)
, (.)

where i = , , by (.) and the λ-ordered strongly monotonicity ofM,

F
(
x(ρ),ρ

)
– F

(
x(ρ),ρ

)
=

(
x(ρ) – x(ρ)

)
+

(
g(x,ρ) – g(x,ρ)

)
+

(
JM,λ

(
g(x,ρ)

)
– JM,λ

(
g(x,ρ)

))
=

(
x(ρ) – x(ρ)

)
+ λ(vg(x) – vg(x))

≤ (
x(ρ) – x(ρ)

)
–

(
g(x,ρ) – g(x,ρ)

)
≤ θ ;

by (I + λM)(X) = X, the comparability of JM,λ, and the -ordered monotonic increase
of g(x, ·), it follows from x(ρ) ∝ x(ρ) that F(x(ρ),ρ) ∝ F(x(ρ),ρ). Using (.), (.),
Lemma ., Theorem ., and α > 

λ
> , from the conditions that JM,λ forM with respect

to the first argument and (JM,λ – I) for M with respect to the second argument are two
restricted-accretive mappings with constants (ξ, ξ) and (β,β), respectively, it follows
that

θ ≤ F
(
x(ρ),ρ

) ⊕ F
(
x(ρ),ρ

)
≤ (

x(ρ) – g(x,ρ) + JM,λ
(
g(x,ρ)

)) ⊕ (
x(ρ) – g(x,ρ) + JM,λ

(
g(x,ρ)

))
≤ β

(
x(ρ)⊕ x(ρ)

)
+ β

[(
JM(x(ρ),·,ρ),λ

(
g
(
x(ρ),ρ

))
– g

(
x(ρ),ρ

))
⊕ (

JM(x(ρ),·,ρ),λ
(
g
(
x(ρ),ρ

))
– g

(
x(ρ),ρ

))]
≤ β

(
x(ρ)⊕ x(ρ)

)
+ β

{[(
JM(x(ρ),·,ρ),λ

(
g
(
x(ρ),ρ

))
– g

(
x(ρ),ρ

))
⊕ (

JM(x(ρ),·,ρ),λ
(
g
(
x(ρ),ρ

))
– g

(
x(ρ),ρ

))]
⊕ [(

JM(x(ρ),·,ρ),λ
(
g
(
x(ρ),ρ

))
– g

(
x(ρ),ρ

))
⊕ (

JM(x(ρ),·,ρ),λ
(
g
(
x(ρ),ρ

))
– g

(
x(ρ),ρ

))]}
≤ β

(
x(ρ)⊕ x(ρ)

)
+ β

{
δ
(
x(ρ)⊕ x(ρ)

) ⊕ [
ξ

(
g
(
x(ρ),ρ

) ⊕ g
(
x(ρ),ρ

))
+ ξ

(
JM(x(ρ),·,ρ),λ

(
g
(
x(ρ),ρ

)) ⊕ JM(x(ρ),·,ρ),λ
(
g
(
x(ρ),ρ

)))]}

≤ β
(
x(ρ)⊕ x(ρ)

)
+ β

{
δ
(
x(ρ)⊕ x(ρ)

)

http://www.fixedpointtheoryandapplications.com/content/2014/1/122
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⊕
[
ξγ

(
x(ρ)⊕ x(ρ)

)
+

ξ

αλ – 
(
g
(
x(ρ),ρ

) ⊕ g
(
x(ρ),ρ

))]}

≤ β
(
x(ρ)⊕ x(ρ)

)

+ β

{
δ
(
x(ρ)⊕ x(ρ)

) ⊕
[
ξγ

(
x(ρ)⊕ x(ρ)

)
+

ξ

αλ – 
(
γ (xn ⊕ xn–)

)]}

≤ β(xn ⊕ xn–) + β

{
δ
(
x(ρ)⊕ x(ρ)

) ⊕
[(

ξ ⊕ ξ

αλ – 

)
γ
(
x(ρ)⊕ x(ρ)

)]}

≤ β
(
x(ρ)⊕ x(ρ)

)
+ β

(∣∣∣∣δ –
(

ξ ⊕ ξ

αλ – 

)
γ

∣∣∣∣(x(ρ)⊕ x(ρ)
))

≤ β
(
x(ρ)⊕ x(ρ)

)
+ β

[(
ξ ⊕ ξ


αλ – 

)
γ ⊕ δ

](
x(ρ)⊕ x(ρ)

)

≤ β
(
x(ρ)⊕ x(ρ)

)
+ β

[(
ξ

αλ – 
⊕ ξ

)
γ ⊕ δ

](
x(ρ)⊕ x(ρ)

)

≤
[
β + β

(
γ

(
ξ

αλ – 
⊕ ξ

)
⊕ δ

)](
x(ρ)⊕ x(ρ)

)
, (.)

and, by Definition .(), we obtain

∥∥F(
x(ρ),ρ

)
– F

(
x(ρ),ρ

)∥∥ ≤ hN
∥∥x(ρ) – x(ρ)

∥∥, (.)

where h = β + β(γ ( ξ
αλ– ⊕ ξ)) ⊕ δ. It follows from the condition (.) that  < hN < ,

and F(x(ρ),ρ) has a fixed point x∗ ∈ X and the x∗ is a solution of the generalized nonlinear
ordered parametric equation

x∗(ρ) = x∗(ρ) – g
(
x∗(ρ),ρ

)
+ JM,λ

(
g
(
x∗(ρ),ρ

))
.

Further, x∗ satisfies the generalized nonlinear ordered parametric equation

g
(
x∗(ρ),ρ

)
= JM,λ

(
g
(
x∗(ρ),ρ

))
.

Then for the nonlinear parametric inclusion problems (.) there exists a solution x∗ ∈ X
for any parametric ρ ∈ �. This completes the proof. �

Remark . Though themethod of solving problem by the resolvent operator is the same
as in [, –] and [] for the nonlinear inclusion problem, the character of the ordered
(α,λ)-ANODM set-valued mapping is different from the one of the (A,η)-accretive map-
ping [], the (H ,η)-monotone mapping [], the (G,η)-monotone mapping [] and the
monotone mapping [].

4 Sensitivity analysis of the solution
Theorem . Let X be an ordered Banach space, let P be a normal cone with the normal
constant N in the X, let ≤ be an ordering relation defined by the cone P. Let M =M(x, ·, ·) :
X × X × � → X be a (α,λ)-NODSM set-valued mapping and g : X × � → X be a γ -
ordered compression, continuous and -ordered monotonic increase of g(x, ·) with respect
to first argument ρ ∈ �, and range(g)∩domM(·,x,ρ) = ∅, and JM,λ forMwith respect to first
argument and (JM,λ – I) for M with respect to second argument be two restricted-accretive

http://www.fixedpointtheoryandapplications.com/content/2014/1/122
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mappings with constants (ξ, ξ) and (β,β), respectively, and g ∝ JM,λ. Suppose that for
any x, y, z ∈ X

JM(x,·,·),λ(z)⊕ JM(y,·,·),λ(z) ≤ δ(x⊕ y) (.)

and

γ

(
ξ

αλ – 
⊕ ξ

)
⊕ δ <

 –Nβ

Nβ
(.)

hold; if the solution x(ρ) of the nonlinear parametric inclusion problem (.) is a comparison
element, which is said to be a comparison solution of the nonlinear parametric inclusion
problem (.), then x(ρ), a comparison solution, is continuous on �.

Proof For any given ρ, ρ̄ ∈ �, by Theorem ., let x(ρ) be a comparison solution, and x(ρ)
and x(ρ̄) satisfy parametric problem (.), then for any λ > , we have

x(ρ) = F
(
x(ρ),ρ

)
= x(ρ) – g

(
x(ρ),ρ

)
+ JM,λ

(
g
(
x(ρ),ρ

))
,

x(ρ̄) = F
(
x(ρ̄), ρ̄

)
= x(ρ̄) – g

(
x(ρ̄), ρ̄

)
+ JM,λ

(
g
(
x(ρ̄), ρ̄

))
.

(.)

By the condition that M, g , JM,λ, and JM,λ – I are comparisons for each other and by
Lemma ., we have

θ ≤ x(ρ)⊕ x(ρ̄)≤ F
(
x(ρ),ρ

) ⊕ F
(
x(ρ̄), ρ̄

)
≤ F

(
x(ρ),ρ

) ⊕ θ ⊕ F
(
x(ρ̄), ρ̄

)
≤ [

F
(
x(ρ),ρ

) ⊕ F
(
x(ρ̄),ρ

)] ⊕ [
F
(
x(ρ̄),ρ

) ⊕ F
(
x(ρ̄), ρ̄

)]
. (.)

Further, JM,λ and (JM,λ – I) are two restricted-accretive mappings with constants (ξ, ξ)
and (β,β), respectively, so that from Lemma . and Theorem ., α > 

λ
> , and from

(.), it follows that

F
(
x(ρ),ρ

) ⊕ F
(
x(ρ̄),ρ

)
≤ (

x(ρ) – g
(
x(ρ),ρ

)
+ JM,λ

(
g
(
x(ρ),ρ

))) ⊕ (
x(ρ̄) – g

(
x(ρ̄),ρ

)
+ JM,λ

(
g
(
x(ρ̄),ρ

)))
≤ h

(
x(ρ)⊕ x(ρ̄)

)
, (.)

where h = β + β(γ( ξ
αλ– ⊕ ξ))⊕ δ < 

N for the condition (.), and

F
(
x(ρ̄),ρ

) ⊕ F
(
x(ρ̄), ρ̄

)
≤ (

x(ρ̄) – g
(
x(ρ̄),ρ

)
+ JM,λ

(
g
(
x(ρ̄),ρ

))) ⊕ (
x(ρ̄) – g

(
x(ρ̄), ρ̄

)
+ JM,λ

(
g
(
x(ρ̄), ρ̄

)))
≤ βθ + β

[(
JM(x(ρ̄),·,ρ),λ

(
g
(
x(ρ̄),ρ

))
– g

(
x(ρ̄),ρ

))
⊕ (

JM(x(ρ̄),·,ρ̄),λ
(
g
(
x(ρ̄), ρ̄

))
– g

(
x(ρ̄), ρ̄

))]
≤ βθ + β

[
ξ

(
g
(
x(ρ̄),ρ

) ⊕ g
(
x(ρ̄), ρ̄

))
+ ξ

(
JM(x(ρ̄),·,ρ),λ

(
g
(
x(ρ̄),ρ

)) ⊕ JM(x(ρ̄),·,ρ̄),λ
(
g
(
x(ρ̄), ρ̄

)))]

http://www.fixedpointtheoryandapplications.com/content/2014/1/122
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≤ βθ + β
[
ξ

(
g
(
x(ρ̄),ρ

) ⊕ g
(
x(ρ̄), ρ̄

))
+ ξ

(
(ρ ⊕ ρ̄)⊕ (

JM(x(ρ̄),·,ρ̄),λ
(
g
(
x(ρ̄),ρ

)) ⊕ JM(x(ρ̄),·,ρ̄),λ
(
g
(
x(ρ̄), ρ̄

))))]
≤ βθ + β

[
ξ

(
g
(
x(ρ̄),ρ

) ⊕ g
(
x(ρ̄), ρ̄

))
+ ξ

(
(ρ ⊕ ρ̄)⊕ (

δ
(
g
(
x(ρ̄),ρ

) ⊕ g
(
x(ρ̄), ρ̄

))))]
≤ βθ + βξ

(
g
(
x(ρ̄),ρ

) ⊕ g
(
x(ρ̄), ρ̄

))
+ βξ

(
(ρ ⊕ ρ̄)⊕ (

δ
(
g
(
x(ρ̄),ρ

) ⊕ g
(
x(ρ̄), ρ̄

))))
. (.)

Combining (.), (.), and (.), and by using Lemma ., we get

(
x(ρ)⊕ x(ρ̄)

) ≤ h
(
x(ρ)⊕ x(ρ̄)

) ⊕ [
βθ + βξ

(
g
(
x(ρ̄),ρ

) ⊕ g
(
x(ρ̄), ρ̄

))
+ βξ

(
(ρ ⊕ ρ̄)⊕ (

δ
(
g
(
x(ρ̄),ρ

) ⊕ g
(
x(ρ̄), ρ̄

))))]
.

Therefore,

(
x(ρ)⊕ x(ρ̄)

) ⊕ h
(
x(ρ)⊕ x(ρ̄)

)
≤ βθ + βξ

(
g
(
x(ρ̄),ρ

) ⊕ g
(
x(ρ̄), ρ̄

))
+ βξ

(
(ρ ⊕ ρ̄)⊕ (

δ
(
g
(
x(ρ̄),ρ

) ⊕ g
(
x(ρ̄), ρ̄

))))
.

It follows that

(
x(ρ)⊕ x(ρ̄)

) ≤ 
⊕ h

[
βθ + βξ

(
g
(
x(ρ̄),ρ

) ⊕ g
(
x(ρ̄), ρ̄

))

+ βξ
(
(ρ ⊕ ρ̄)⊕ (

δ
(
g
(
x(ρ̄),ρ

) ⊕ g
(
x(ρ̄), ρ̄

))))]
. (.)

By Lemma ., βθ = θ , and continuity of g with respect to the first argument ρ ∈ �, we
have

lim
ρ→ρ̄

x(ρ)⊕ x(ρ̄) = θ

and

lim
ρ→ρ̄

∥∥x(ρ) – x(ρ̄)
∥∥ = , (.)

which implies that the solution x(ρ) of problem (.) is continuous at ρ = ρ̄ . This completes
the proof. �
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