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Abstract
Various generalizations of the Hurwitz-Lerch zeta function have been actively
investigated by many authors. Very recently, Srivastava presented a systematic
investigation of numerous interesting properties of some families of generating
functions and their partial sums which are associated with various classes of the
extended Hurwitz-Lerch zeta functions. In this paper, firstly, we show that by using
the Poisson summation formula, the analytic continuation of the Lerch zeta function
can be explained and the functional relation for the Lerch zeta function can be
obtained in a very elementary way. Secondly, we present another functional relation
for the Lerch zeta function and derive the well-known functional relation for the
Hurwitz zeta function from our formula by following the lines of Apostol’s argument.
MSC: Primary 11M99; 33B15; 42A24; secondary 11M35; 11M36; 11M41; 42A16

Keywords: gamma function; Riemann zeta function; generalized (or Hurwitz) zeta
function; Poisson summation formula; Lerch zeta function; Hurwitz-Lerch zeta
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1 Introduction and preliminaries
The Hurwitz-Lerch zeta function is defined as follows:

�(z,a, s) =
∞∑
n=

zn

(a + n)s(
a ∈C \Z–

; s ∈C when |z| < ;�(s) >  when |z| = 
)
, (.)

where C and Z
–
 denote the set of complex numbers and the set of nonpositive integers,

respectively. The function �(z,a, s) in (.) has been studied in various ways (see, e.g., []).
Recently, its generalizations have been investigated (see [–]). Very recently, Srivastava
[], motivated essentially by recent works of several authors, presented a systematic in-
vestigation of numerous interesting properties of some families of generating functions
and their partial sums which are associated with various classes of the extended Hurwitz-
Lerch zeta functions (see also the references in []). Here we consider only the case |z| = ,
i.e., z = eπ ix (x ∈R), R being the set of real numbers:

�
(
eπ ix,a, s

)
=

∞∑
n=

enπ ix

(a + n)s
(�(s) > ;x ∈R;  < a≤ 

)
. (.)

It is noted that, for convenience, �(eπ ix,a, s) in (.) is denoted simply by �(x,a, s)
throughout this paper.
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The function �(x,a, s) in (.) was investigated by Lipschitz [, ], Lerch [], Apostol
[, ], and so on. This function �(x,a, s) can be extended to the whole s-plane by means
of the contour integral

�(x,a, s) = �( – s)I(x,a, s), (.)

where I(x,a, s) is given by

I(x,a, s) =


π i

∫
C

zs–eaz

 – ez+π ix
dz, (.)

the pathC being a loopwhich begins at –∞, encircles the origin once in the positive direc-
tion, and returns to –∞. Since I(x,a, s) is an entire function of s, equation (.) provides the
analytic continuation of �(x,a, s). For integer values of x, �(x,a, s) reduces to the Hurwitz
(or generalized) zeta function ζ (s,a) defined by

ζ (s,a) =
∞∑
n=


(a + n)s

(�(s) > ;a ∈ C \Z–

)
, (.)

which, by means of (.), is a meromorphic function with only a simple pole at s = . For
nonintegral x, �(x,a, s) becomes an entire function s.
Lerch [] presented the functional equation

�(x,a,  – s) =
�(s)
(π )s

[
eπ i(s/–ax)�(–a,x, s) + eπ i{–s/+a(–x)}�(a,  – x, s)

]
( < x < ;  < a ≤ ) (.)

by following the lines of the first Riemann proof of the functional equation for the Riemann
zeta function []:

ζ ( – s) = (π )–s�(s) cos
(

πs


)
ζ (s) (.)

and using Cauchy’s theorem in connection with the contour integral (.).
Apostol [] gave the following functional relation:

�(x,a,  – s) = (π )–s cos
(

πs


)
�(s) exp(–π iax)�(–a,x, s), (.)

where

�(x,a, s) :=�(x,a, s) + exp(–π ix)�(–x,  – a, s) (.)

by making a basic use of the transformation theory of theta-functions. Apostol [] noted
that his proof is of particular interest because the usual approach (Riemann’s second
method []) does not lead to the functional equation (.) and carried hismethod through
to obtain (.) with further properties of �(x,a, s), having no analogue in the case of ζ (s).
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The Hurwitz zeta function (see [, ]) defined in (.) is given [] in the negative
half-plane by means of

ζ ( – s,a) =
�(s)
(π )s

∞∑
n=

cos(πs/ – πan)
ns

(�(s) > 
)
, (.)

which, upon setting a = , yields the Riemann functional equation (.).
Mordell [] see also [] proved the functional relation for ζ (s,a) in (.) and that

ζ (s,a) can be continued meromorphically to the whole s plane except for a simple pole
at s = , in a very elementary way, by using Poisson’s summation formula. Apostol []
showed that (.) could be derived from (.) by giving an elaborate argument.
It is pointed out that in order to obtain (.), a phrase in the fourth line of [, p.]

‘replacing s by  – s, x by –a, a by x’ should be changed to ‘replacing s by  – s, x by a, a by
–x’. In fact, if the phrase ‘replacing s by  – s, x by –a, a by x’ as it was in [, p.] is used,
the following analogue of (.) is obtained:

�(x,a,  – s) = (π )–s cos
(

πs


)
�(s) exp(–π iax)�(a, –x, s), (.)

which, upon employing Apostol’s method, yields another functional relation analogous to
(.):

�(x,a,  – s) =
�(s)
(π )s

[
eπ i(–s/–ax)�(a, –x, s) + eπ i{s/–a(+x)}�(a,  + x, s)

]
(– < x < ; < a ≤ ). (.)

Here we aim mainly at, first, showing that �(x,a, s) in (.) becomes an entire function
of s for nonintegral x ∈ R and the functional relation for �(x,a, s) can be obtained by
using Poisson’s summation formula in a very elementary way; and, secondly, deriving the
relations (.) and (.) and showing how the functional relation (.) for the Hurwitz
zeta function ζ (s,a) can be obtained from (.) by just following Apostol’s arguments []
and [], respectively.

2 An analytic continuation of�(x,a, s)
If x is an integer, then �(x,a, s) in (.) reduces to the Hurwitz zeta function ζ (s,a) in (.).
Since �(x + ,a, s) = �(x,a, s) for all x ∈ R, throughout this argument, it is supposed that
�(x,a, s) is defined at �(s) > ,  < x <  (x being fixed) and  < a ≤ .
Recall Poisson’s summation formula [, p.] (see also [, pp.-]):

β∑
α

′f (n) =
∞∑

n=–∞

∫ β

α

enπ it f (t)dt, (.)

where the prime ′ denotes that n =  is omitted from the summation. The summation
on the left refers to the integral values of n given by α ≤ n ≤ β ; but, when either α or
β is an integer, the corresponding term is halved. On the right, the summation means
limN→∞

∑N
n=–N . It is supposed that

http://www.fixedpointtheoryandapplications.com/content/2013/1/70
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(p) f (t) and f ′(t) are continuous in α ≤ t ≤ β , the obvious one-sided continuity only
being required at t = α or t = β ;

(q) f (t) and f ′′(t) are such that the integrals
∫ β

α
f (t)dt and

∫ β

α
f ′′(t)dt converge, and f ′ is

an integral of f ′′.
If either α or β is infinite, say α = –∞, further condition is required that f (t) →  and

f ′(t) →  as t → α.
Applying Poisson’s summation formula (.) to a function

f (t) =
eπxit

(t + a)s
, α = , and β = ∞,

we find that




as

+
eπxi

( + a)s
+

eπxi·

( + a)s
+ · · ·

=
∞∑

n=–∞

∫ ∞



eπ i(n+x)t

(t + a)s
dt := I(x,a, s) +	(x,a, s), (.)

where, for convenience, n being an integer,

In(x,a, s) :=
∫ ∞



eπ i(n+x)t

(t + a)s
dt, 	(x,a, s) :=

∞∑
n=–∞
n�=

In(x,a, s). (.)

Integrating by parts yields

I(x,a, s) = –


πxias
+

s
πxi

∫ ∞



eπ ixt

(t + a)s+
dt. (.)

It is observed that the integral in (.) now converges for �(s) > , and so I(x,a, s) is ana-
lytic for �(s) > . Integrating by parts again in (.), we get

I(x,a, s) = –


πxias
–

s
(πxi)as+

+
s(s + )
(πxi)

∫ ∞



eπ ixt

(t + a)s+
dt. (.)

It is also observed that the integral in (.) now converges �(s) > –, and so I(x,a, s) is
analytic for �(s) > –. Continuing in this way, it is found that I(x,a, s) can be continued
to an entire function of s.
Integrating by parts yields

	(x,a, s) = –


π ias

∞∑
n=–∞
n�=


n + x

+
s

π i

∞∑
n=–∞
n�=


n + x

∫ ∞



eπ i(n+x)t

(t + a)s+
dt. (.)

Here we have

∞∑
n=–∞
n�=


n + x

= lim
N→∞

N∑
n=–N
n�=


n + x

= lim
N→∞

N∑
n=

(


x + n
+


x – n

)
= x

∞∑
n=


x – n

, (.)
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which converges for every fixed x with  < x < . Likewise, it is seen that

∣∣∣∣∣
∞∑

n=–∞
n�=


n + x

∫ ∞



eπ i(n+x)t

(t + a)s+
dt

∣∣∣∣∣

≤ lim
N→∞

N∑
n=

(


n + x
+


n – x

)∫ ∞




(t + a)�(s+) dt

=

( ∞∑
n=


n – x

)∫ ∞




(t + a)�(s+) dt. (.)

It is noted that the last integral in (.) converges for �(s) > , and the second summation
in (.) converges for �(s) > . Therefore 	(x,a, s) in (.) is analytic for �(s) > .
Integrating by parts in (.) and considering (.), we get

	(x,a, s) =

(
x
π i

∞∑
n=


n – x

)

as

+
s

(π i)

∞∑
n=–∞
n�=


(n + x)

{
–


as+

+ (s + )
∫ ∞



eπ i(n+x)t

(t + a)s+
dt

}
. (.)

The integral in (.) converges for �(s) > –. The expression of 	(x,a, s) in (.), proved
for �(s) > , shows that 	(x,a, s) is analytic for �(s) > – since then the general term is
O(/n) uniformly in s for s bounded and – < – + δ ≤ �(s) for every δ > . Employing
integration by parts repeatedly, we observe that 	(x,a, s) can be continued analytically to
the whole s plane.
It is found from (.), (.), (.), (.), and (.) that




as

+
eπxi

( + a)s
+

eπxi·

( + a)s
+ · · ·

= –


πxias
+

s
πxi

∫ ∞



eπ ixt

(t + a)s+
dt

–
x

π ias

∞∑
n=


x – n

+
s

π i

∞∑
n=–∞
n�=


n + x

∫ ∞



eπ i(n+x)t

(t + a)s+
dt. (.)

Suppose now that �(s) < . Then Poisson’s summation formula (.) gives




as

=
∫ 

–a

eπxit

(t + a)s
dt +

∞∑
n=–∞
n�=

∫ 

–a

eπ i(n+x)t

(t + a)s
dt,

which, upon integrating by parts two involved integrals and using (.), yields




as

=


πxias
+

s
πxi

∫ 

–a

eπ ixt

(t + a)s+
dt

+
x

π ias

∞∑
n=


x – n

+
s

π i

∞∑
n=–∞
n�=


n + x

∫ 

–a

eπ i(n+x)t

(t + a)s+
dt. (.)
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Adding (.) to (.) with the restriction of – < �(s) < , we get

�(x,a, s) =
s

π i

∞∑
n=–∞

e–π ia(n+x)

n + x

∫ ∞



eπ i(n+x)t

ts+
dt

=
s

π i

( ∞∑
n=

+
–∑

n=–∞

)
e–π ia(n+x)

n + x

∫ ∞



eπ i(n+x)t

ts+
dt,

which yields

�(x,a, s) =
s

π i

[ ∞∑
n=

e–π ia(n+x)

n + x

∫ ∞



eπ i(n+x)t

ts+
dt

–
∞∑
n=

eπ ia(n+–x)

n +  – x

∫ ∞



e–π i(n+–x)t

ts+
dt

]
. (.)

Applying the following integral formulas to (.):

∫ ∞



eit

ts
dt = ie–

πs
 i�( – s)

(
 <�(s) < 

)
(.)

and

∫ ∞



e–it

ts
dt = –ie

πs
 i�( – s)

(
 <�(s) < 

)
, (.)

we obtain, for – <�(s) < ,

�(x,a, s) =
�( – s)
(π )–s

{
eπ i(–ax– s

 +

 )

∞∑
n=

e–π ian

(n + x)–s

+ eπ i{a(–x)+ s
 –


 }

∞∑
n=

eπ ian

(n +  – x)–s

}
. (.)

It is noted that (.) still holds for �(s) <  since the two involved series converge uni-
formly in s for �(s)≤ δ <  (every δ < ). Finally, we get, for �(s) < ,

�(x,a, s) =
�( – s)
(π )–s

[
eπ i(–ax– s

 +

 )�(–a,x,  – s)

+ eπ i{a(–x)+ s
 –


 }�(a,  – x,  – s)

]
, (.)

which, upon replacing s by  – s, yields (.).

3 Proof of (1.11) and (1.12)
We rewrite Apostol’s argument [] in a little shorter way. The theta-function

ϑ(y|τ ) =
∞∑

n=–∞
exp

(
π inτ + iny

)
(.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/70
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has the transformation formula [, p.]

ϑ(y|τ ) = (–iτ )–/ exp
(

y

π iτ

)
ϑ

(
y
τ

∣∣∣–
τ

)
. (.)

Using (.), we have the functional equation

θ (a, –x, /z) = exp(π iax)z/θ (x,a, z), (.)

where

θ (x,a, z) := exp
(
–πaz

)
ϑ(πx + π iaz|iz)

=
∞∑

n=–∞
exp

{
nπ ix – πz(a + n)

}
. (.)

Using the key formal identity to Riemann’s second method

π–s/�

(
s


) ∞∑
n=

anf –s/n =
∫ ∞


zs/–

∞∑
n=

an exp(–πzfn)dz, (.)

we get

π–s/�

(
s


)
�(x,a, s) =

(∫ ∞


+

∫ 



)
zs/–θ (x,a, z)dz, (.)

where�(x,a, s) is given in (.). In the second integral in (.), applying (.) and replacing
z by /z, we have

π–s/�

(
s


)
�(x,a, s)

=
∫ ∞



[
zs/–θ (x,a, z) + z–s/–/ exp(–π iax)θ (a, –x, z)

]
dz. (.)

Here, if we replace s by  – s, x by a, a by –x in (.), and use θ (–a,x, z) = θ (a, –x, z) and
the relation

π /–s�

(
s


)/
�

(
 – s


)
= (π )–s cos

(
πs


)
�(s),

we are led to the relation (.). Instead, replacing s by  – s, x by –a, a by x in (.) as they
were in [, p.], we obtain the desired identity (.).
Now differentiating both sides of (.) with respect to a and using the following

differential-difference equations satisfied by �:

∂�(x,a, s)
∂a

= –s�(x,a, s + ) (.)

and

∂�(x,a, s)
∂x

+ π ia�(x,a, s) = π i�(x,a, s – ), (.)
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we obtain

�(x,a,  – s) – exp(–π ix)�(–x,  – a,  – s)

= i(π )–s sin
(

πs


)
�(s)

× [
exp

{
–π ia( + x)

}
�(–a,  + x, s) – exp(–π iax)�(a, –x, s)

]
. (.)

Adding (.) to (.), we are led to the desired relation (.).

4 (1.10) can be deduced from (1.12)
Apostol [] could deduce (.) from (.) by using an elaborate argument. Here, we also
show that (.) can be deduced from (.) by following the lines of Apostol’s argument.
For convenience, we recover the Apostol’s method. Consider the sum

k–∑
t=

�

(
–
t
k
,a, s

)

=
∞∑
n=

(a + n)–s
k–∑
t=

e–π int/k

=
∞∑

n=,n≡(mod k)

(a + n)–s
k–∑
t=

e–π int/k +
∞∑

n=,n�≡(mod k)

(a + n)–s
k–∑
t=

e–π int/k

= (k – )
∞∑

n=,n≡(mod k)

(a + n)–s –
∞∑

n=,n�≡(modk)

(a + n)–s

= (k – )
∞∑
n=

(a + nk)–s –
∞∑

n=,n�≡(modk)

(a + n)–s

= k–sζ
(
s,
a
k

)
–

{ ∞∑
n=,n≡(mod k)

(a + n)–s +
∞∑

n=,n�≡(mod k)

(a + n)–s
}

= k–sζ
(
s,
a
k

)
– ζ (s,a).

The above rearrangements are all valid if �(s) >  and the final result holds for all s by
analytic continuation. Replacing s by  – s, we get

k–∑
t=

�

(
–
t
k
,a,  – s

)
= ksζ

(
 – s,

a
k

)
– ζ ( – s,a) (k ∈N), (.)

where the empty sum is understood to be nil.
Now we write x = –t/k in (.), assume �(s) > , and sum on t to obtain

k–∑
t=

�

(
–
t
k
,a,  – s

)

=
�(s)
(π )s

[ k–∑
t=

∞∑
n=

eπ i(–s/+an+at/k)

(n + t/k)s
+

k–∑
t=

∞∑
n=

eπ i{s/–an–a(–t/k)}

( – t/k + n)s

]
.
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Replacing – t/k by t/k in the second double summation in the brackets does not alter the
sum over t, and we obtain

k–∑
t=

�

(
–
t
k
,a,  – s

)
=
�(s)
(π )s

k–∑
t=

∞∑
n=

cos{πs
 – πa(n + t/k)}
(n + t/k)s

.

If we write λ = nk + t, then λ takes on all positive integer values which are not multiples of
k as n, t run through their respective ranges, and our sum becomes

k–∑
t=

�

(
–
t
k
,a,  – s

)
=
�(s)ks

(π )s

∞∑
λ=

{
cos(πs

 – πaλ/k)
λs –

cos(πs
 – πaλ)
(kλ)s

}
. (.)

Combining (.) and (.) yields the equation

ks�
(
s,
a
k

)
= �(s,a), (.)

where

�(s,a) := ζ ( – s,a) –
�(s)
(π )s

∞∑
n=

cos(πs
 – πan)
ns

. (.)

Now, by repeating Apostol’s argument, it can be shown that �(s,a) vanishes identically
for �(s) > .
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