Ertem and Zafer *Boundary Value Problems* 2012, **2012**:43 http://www.boundaryvalueproblems.com/content/2012/1/43

RESEARCH

 Boundary Value Problems a SpringerOpen Journal

Open Access

Existence of solutions for a class of nonlinear boundary value problems on half-line

Türker Ertem^{*} and Ağacık Zafer

* Correspondence: turkerertem@gmail.com Department of Mathematics, Middle East Technical University, 06800 Ankara, Turkey

Abstract

Consider the infinite interval nonlinear boundary value problem $(p(t)x')' + q(t)x = f(t, x), t \ge t_0 \ge 0,$ $x(t_0) = x_0,$ $x(t) = av(t) + bu(t) + o(r_i(t)), t \to \infty,$

where u and v are principal and nonprincipal solutions of (p(t)x')' + q(t)x = 0, $r_1(t) = o(u(t)(v(t))^{\mu})$ and $r_2(t) = o(v(t)(u(t))^{\mu})$ for some $\mu \in (0, 1)$, and a and b are arbitrary but fixed real numbers.

Sufficient conditions are given for the existence of a unique solution of the above problem for i = 1, 2. An example is given to illustrate one of the main results. **Mathematics Subject Classication 2011**: 34D05.

Keywords: Boundary value problem, singular, half-line, principal, nonprincipal

1. Introduction

Boundary value problems on half-line occur in various applications such as in the study of the unsteady flow of a gas through semi-infinite porous medium, in analyzing the heat transfer in radial flow between circular disks, in the study of plasma physics, in an analysis of the mass transfer on a rotating disk in a non-Newtonian fluid, etc. More examples and a collection of works on the existence of solutions of boundary value problems on half-line for differential, difference and integral equations may be found in the monographs [1,2] For some works and various techniques dealing with such boundary value problems (we may refer to [3-6] and the references cited therein).

In this article by employing principal and nonprincipal solutions we introduce a new approach to study nonlinear boundary problems on half-line of the form

$$(p(t)x')' + q(t)x = f(t,x), \quad t \ge t_0, \tag{1.1}$$

$$x(t_0) = x_0, (1.2)$$

$$x(t) = a v(t) + b u(t) + o(r(t)), \quad t \to \infty,$$
 (1.3)

where a and b are any given real numbers, u and v are principal and nonprincipal solutions of

$$(p(t)x')' + q(t)x = 0, \quad t \ge 0$$
(1.4)

and $p \in C([0, \infty), (0, \infty)), q \in C([0, \infty), \mathbb{R})$ and $f \in C([0, \infty) \times \mathbb{R}, \mathbb{R})$. We will show that the problem (1.1)-(1.3) has a unique solution in the case when

$$r(t) = o(u(t)(v(t))^{\mu})$$
(1.5)

and

$$r(t) = o(v(t)(u(t))^{\mu}), \tag{1.6}$$

where $\mu \in (0, 1)$ is arbitrary but fixed real numbers.

The nonlinear boundary value problem (1.1)-(1.3) is also closely related to asymptotic integration of second order differential equations. Indeed, there are several important works in the literature, see [7-16], dealing with mostly the asymptotic integration of solutions of second order nonlinear equations of the form

 $x^{\prime\prime}=f(t,x).$

The authors are usually interested in finding conditions on the function f(t, x) which guarantee the existence of a solution asymptotic to linear function

$$x(t) = at + b, \quad t \to \infty.$$
(1.7)

We should point out that u(t) = 1 and v(t) = t are principal and nonprincipal solutions of the corresponding unperturbed equation

$$x^{\prime\prime}=0,$$

and the function x(t) in (1.7) can be written as

$$x = av(t) + bu(t).$$

Note that $v(t) \to \infty$ as $t \to \infty$ but u(t) is bounded in this special case. It turns out such information is crucial in investigating the general case. Our results will be applicable whether or not $u(t) \to \infty$ ($v(t) \to \infty$) as $t \to \infty$.

2. Main results

It is well-known that [17,18] if the second order linear Equation (1.4) has a positive solution or nonoscillatory at ∞ , then there exist two linearly independent solutions u(t) and v(t), called principal and nonprincipal solutions of the equation. The principal solution u is unique up to a constant multiple. Moreover, the following useful properties are satisfied:

$$\lim_{t\to\infty}\frac{u(t)}{v(t)}=0,\quad \int\limits_{t_*}^\infty\frac{1}{p(t)u^2(t)}dt=\infty,\quad \int\limits_{t_*}^\infty\frac{1}{p(t)v^2(t)}dt<\infty,$$

where $t_* \ge 0$ is a sufficiently large real number.

Let ν be a principal solution of (1.4). Without loss of generality we may assume that ν (t) > 0 if $t \ge t_1$ for some $t_1 \ge 0$. It is easy to see that

$$v(t) = u(t) \int_{t_1}^t \frac{1}{p(s)u^2(s)} ds$$
(2.1)

is a nonprincipal solution of (1.4), which is strictly positive for $t > t_1$.

Theorem 2.1. Let $t_0 > t_1$. Assume that the function f satisfies

$$|f(t,x)| \le h_1(t)g(|x|) + h_2(t), \quad t \ge t_0$$
(2.2)

and

$$\left|f(t,x_1) - f(t,x_2)\right| \le \frac{k(t)}{\nu(t)} |x_1 - x_2|, \quad t \ge t_0,$$
(2.3)

where $g \in C([0, \infty), [0, \infty))$ is bounded; $h_1, h_2, k \in C([t_0, \infty), [0, \infty))$. Suppose further that

$$\int_{t_0}^{\infty} u(s)k(s)ds \le \mu$$
(2.4)

and

$$\frac{1}{p(t)u^{2}(t)}\int_{t}^{\infty}u(s)h_{i}(s)ds \leq \beta(t), \quad t \geq t_{0}, \quad i = 1, 2$$
(2.5)

for some $\beta \in C([t_0, \infty), [0, \infty))$ such that

$$\int_{t_0}^t \beta(s) ds = o((v(t))^{\mu}), \quad t \to \infty.$$
(2.6)

If either

$$v(t) \to \infty, \quad t \to \infty$$
 (2.7)

or else

$$b = \frac{x_0}{u(t_0)} - a \int_{t_1}^{t_0} \frac{1}{p(s)u^2(s)} ds,$$
(2.8)

then there is a unique solution x(t) of (1.1)-(1.3), where r is given by (1.5).

Proof. Denote by *M* the supremum of the function *g* over $[0, \infty)$. Let *X* be a space of functions defined by

$$X = \left\{ x \in C([t_0, \infty), \mathbb{R}) | \quad \left| x(t) \right| \le l_1 v(t) + l_2 u(t), \quad \forall t \ge t_0 \right\},$$

where

$$l_1 = (M+1)p(t_0)u^2(t_0)\beta(t_0) + |a|$$

and

$$l_2 = \frac{|x_0|}{u(t_0)} + |a| \int_{t_1}^{t_0} \frac{1}{p(s)u^2(s)} ds.$$

Note that X is a complete metric space with the metric d defined by

$$d(x_1, x_2) = \sup_{t \ge t_0} \frac{1}{v(t)} |x_1(t) - x_2(t)|, \quad x_1, x_2 \in X.$$

Define an operator F on X by

$$(Fx)(t) = -u(t) \int_{t_0}^t \frac{1}{p(s)u^2(s)} \int_s^\infty u(\tau)f(\tau, x(\tau))d\tau ds + av(t) + \left[\frac{x_0}{u(t_0)} - a \int_{t_1}^{t_0} \frac{1}{p(s)u^2(s)}ds\right] u(t).$$

In view of conditions (2.2) and (2.5) we see that *F* is well defined. Next we show that $F X \subset X$. Indeed, let $x \in X$, then

$$\begin{split} \left| (Fx)(t) \right| &\leq u(t) \int_{t_0}^t \frac{1}{p(s)u^2(s)} \int_s^\infty u(\tau) \left| f(\tau, x(\tau)) \right| d\tau ds + |a| v(t) + l_2 u(t) \\ &\leq u(t) \int_{t_0}^t \frac{1}{p(s)u^2(s)} \int_{t_0}^\infty u(\tau) \left| f(\tau, x(\tau)) \right| d\tau ds + |a| v(t) + l_2 u(t) \\ &\leq u(t) \int_{t_0}^t \frac{1}{p(s)u^2(s)} \int_{t_0}^\infty u(\tau) (h_1(\tau)g(|x(\tau)|) + h_2(\tau)) d\tau ds + |a| v(t) + l_2 u(t) \\ &\leq u(t) \int_{t_0}^t \frac{1}{p(s)u^2(s)} \int_{t_0}^\infty u(\tau) (Mh_1(\tau) + h_2(\tau)) d\tau ds + |a| v(t) + l_2 u(t) \\ &\leq (M+1)p(t_0)u^2(t_0)\beta(t_0)u(t) \int_{t_0}^t \frac{1}{p(s)u^2(s)} ds + |a| v(t) + l_2 u(t) \\ &\leq l_1 v(t) + l_2 u(t), \end{split}$$

which means that $F x \in X$.

Using (2.1), (2.3) and (2.4) we also see that

$$\begin{split} |(Fx_{1})(t) - (Fx_{2})(t)| &\leq u(t) \int_{t_{0}}^{t} \frac{1}{p(s)u^{2}(s)} \int_{s}^{\infty} u(\tau) \left| f(\tau, x_{1}(\tau)) - f(\tau, x_{2}(\tau)) \right| d\tau ds \\ &\leq u(t) \int_{t_{0}}^{t} \frac{1}{p(s)u^{2}(s)} \int_{s}^{\infty} u(\tau) \frac{k(\tau)}{v(\tau)} \left| x_{1}(\tau) - x_{2}(\tau) \right| d\tau ds \\ &\leq d(x_{1}, x_{2})u(t) \int_{t_{0}}^{t} \frac{1}{p(s)u^{2}(s)} \int_{s}^{\infty} u(\tau)k(\tau)d\tau ds \\ &\leq d(x_{1}, x_{2})u(t) \int_{t_{0}}^{t} \frac{1}{p(s)u^{2}(s)} \int_{t_{0}}^{\infty} u(\tau)k(\tau)d\tau ds \\ &\leq d(x_{1}, x_{2})v(t) \int_{t_{0}}^{\infty} u(\tau)k(\tau)d\tau \\ &\leq ud(x_{1}, x_{2})v(t), \end{split}$$

where $x_1, x_2 \in X$ arbitrary. This implies that *F* is a contracting mapping.

Thus according to Banach contraction principle F has a unique fixed point x. It is not difficult to see that the fixed point solves (1.1) and (1.2). It remains to show that x (t) satisfies (1.3) as well. It is not difficult to show that

$$\begin{aligned} |x(t) - av(t) - bu(t)| &\leq u(t) \int_{t_0}^t \frac{1}{p(s)u^2(s)} \int_s^\infty u(\tau) |f(\tau, x(\tau))| \, d\tau \, ds + |c| \, u(t) \\ &\leq u(t) \int_{t_0}^t \frac{1}{p(s)u^2(s)} \int_s^\infty u(\tau) (Mh_1(\tau) + h_2(\tau)) d\tau \, ds + |c| \, u(t) \\ &\leq (M+1)u(t) \int_{t_0}^t \beta(s) \, ds + |c| \, u(t), \end{aligned}$$

where

$$c = \frac{x_0}{u(t_0)} - a \int_{t_1}^{t_0} \frac{1}{p(s)u^2(s)} ds - b.$$

If (2.7) is satisfied, then in view (2.6) and the above inequality we easily obtain (1.3). In case (2.8) holds, then c = 0 and hence we still have (1.3).

From Theorem 2.1 we deduce the following Corollary.

Corollary 2.2. Assume that the function f satisfies (2.2) and

$$|f(t,x_1)-f(t,x_2)| \leq \frac{k(t)}{t} |x_1-x_2|, \quad t \geq t_0,$$

where $k \in C([t_0, \infty), [0, \infty))$. Suppose further that

$$\int_{t_0}^{\infty} k(s) ds \leq \mu; \quad \int_{t}^{\infty} h_i(s) ds \leq \beta(t), \quad t \geq t_0, \quad i = 1, 2$$

for some $\mu \in (0, 1)$ and $\beta \in C([t_0, \infty), [0, \infty))$, where

$$\int_{t_0}^t \beta(s) ds = o(t^{\mu}), \quad t \to \infty$$

Then for each $a, b \in \mathbb{R}$ the boundary value problem

$$\begin{aligned} x'' &= f(t, x), \quad t \geq t_0, \\ x(t_0) &= x_0, \\ x(t) &= at + b + o(t^{\mu}), \quad t \to \infty \end{aligned}$$

has a unique solution.

Let v be a nonprincipal solution of (1.4). Without loss of generality we may assume that v(t) > 0, if $t \ge t_2$ for some $t_2 \ge 0$. It is easy to see that [17,18]

$$u(t) = v(t) \int_{t}^{\infty} \frac{1}{p(s)v^{2}(s)} ds$$
(2.9)

is a principal solution of (1.4) which is strictly positive. Take t_2 large enough so that

$$\int_{t}^{\infty} \frac{1}{p(s)\nu^{2}(s)} ds \leq 1.$$

Then from (2.9), we have $v(t) \ge u(t)$ for $t \ge t_2$, which is needed in the proof of the next theorem.

Theorem 2.3. Let $t_0 \ge t_2$. Assume that the function f satisfies (2.2) and (2.3). Suppose further that

$$\int_{t_0}^{\infty} \nu(s)k(s)ds \le \mu \tag{2.10}$$

and

$$\frac{1}{p(t)\nu^{2}(t)}\int_{t}^{\infty}\nu(s)h_{i}(s)ds \leq \beta(t), \quad t \geq t_{0}, \quad i = 1, 2$$
(2.11)

for some $\beta \in C([t_0, \infty), [0, \infty))$ such that

$$\int_{t_0}^{t} \beta(s) ds = o((u(t))^{\mu}), \quad t \to \infty.$$
(2.12)

If either

$$u(t) \to \infty, \quad t \to \infty$$
 (2.13)

or else

$$a = \frac{x_0}{\nu(t_0)} - b \int_{t_0}^{\infty} \frac{1}{p(s)\nu^2(s)} ds,$$
(2.14)

then there is a unique solution x(t) of (1.1) - (1.3), where r is given by (1.6). **Proof.** Let X be a space of functions defined by

$$X = \left\{ x \in C([t_0, \infty), \mathbb{R}) | \quad \left| x(t) \right| \le l_1 \nu(t) + l_2 u(t), \quad \forall t \ge t_0 \right\}$$

where

$$l_1 = (M+1)p(t_0)u(t_0)v(t_0)\beta(t_0) + \frac{|x_0|}{v(t_0)} + |b| \int_{t_0}^{\infty} \frac{1}{p(s)v^2(s)} ds \text{ and } l_2 = |b|.$$

Again, X is a complete metric space with the metric d defined in the proof of the previous theorem.

We define an operator F on X by

$$(Fx)(t) = -v(t) \int_{t_0}^t \frac{1}{p(s)v^2(s)} \int_s^\infty v(\tau)f(\tau, x(\tau))d\tau ds + \left[\frac{x_0}{v(t_0)} - b \int_{t_0}^\infty \frac{1}{p(s)v^2(s)}ds\right]v(t) + bu(t).$$

The remainder of the proof proceeds similarly as in that of Theorem 2.1 by using (2.2), (2.3), (2.9)-(2.14).

Corollary 2.4. Assume that the function f satisfies (2.2) and (2.3). Suppose further that

$$\int_{t_0}^{\infty} sk(s)ds \leq \mu; \quad \frac{1}{t^2} \int_{t}^{\infty} sh_i(s)ds \leq \beta(t), \quad t \geq t_0, \quad i = 1, 2$$

for some $\mu \in (0, 1)$ and $\beta \in C([t_0, \infty), [0, \infty))$, where

$$\int_{1}^{t} \beta(s) ds = o(1), \quad t \to \infty.$$

If for any given $a, b \in \mathbb{R}$ the condition (2.14) holds then the boundary value problem

$$\begin{aligned} x^{\prime\prime} &= f(t,x), \quad t \geq t_0, \\ x(t_0) &= x_0, \\ x(t) &= at + b + o(t), \quad t \to \infty \end{aligned}$$

has a unique solution.

3. An example

Consider the boundary value problem

$$(tx')' = \frac{1}{t^2} \arctan x + t^{\nu}, \quad t \ge t_0, \quad \nu < -2,$$
(3.1)

$$x(t_0) = x_0, (3.2)$$

$$x(t) = a \ln t + b + o((\ln t)^{\mu}), \quad t \to \infty.$$

$$(3.3)$$

where $t_0 > t_1 = 1$ and $\mu \in (0, 1)$ are chosen to satisfy

$$\frac{1+\ln t_0}{t_0} \le \mu.$$
(3.4)

Note that since

$$\lim_{t_0 \to \infty} \frac{1 + \ln t_0}{t_0} = 0$$

for any given $\mu \in (0, 1)$ there is a t_0 such that (3.4) holds.

Comparing with the boundary value problem (1.1)-(1.3) we see that p(t) = t, q(t) = 0, and $f(t, x) = (1/t^2) \arctan x + t^v$. The corresponding linear equation becomes

 $(tx')'=0, t\geq t_0.$

Clearly, we may take

$$u(t) = 1$$
 and $v(t) = \ln t$.

Let

$$h_1(t) = \frac{1}{t^2}, \quad h_2(t) = t^{\nu}, \quad g(x) = \arctan x, \quad k(t) = \frac{\ln t}{t^2}, \quad \beta(t) = \frac{1}{t^2},$$

then it is easy to see that

1

$$\begin{split} \left| f(t,x) \right| &\leq \frac{1}{t^2} \arctan |x| + t^{\nu} = h_1(t)g(|x|) + h_2(t), \\ \left| f(t,x_1) - f(t,x_2) \right| &\leq \frac{1}{t^2} |x_1 - x_2| = \frac{k(t)}{\nu(t)} |x_1 - x_2|, \\ \int_{t_0}^{\infty} k(s) ds &= \int_{t_0}^{\infty} \frac{\ln s}{s^2} ds = \frac{1 + \ln t_0}{t_0} \leq \mu \quad \text{by (3.4)} \\ \frac{1}{t} \int_{t}^{\infty} h_1(s) ds &\leq \frac{1}{t} \int_{t}^{\infty} \frac{1}{s^2} ds = \frac{1}{t^2} = \beta(t), \quad t \geq t_0, \\ \frac{1}{t} \int_{t}^{\infty} h_2(s) ds &= -\frac{t^{\nu}}{\nu+1} \leq \beta(t), \quad t \geq t_0, \\ \int_{t_0}^{t} \beta(s) ds &= \int_{t_0}^{t} \frac{1}{s^2} ds = \frac{1}{t_0} - \frac{1}{t} = o((\ln t)^{\mu}), \quad t \to \infty, \quad \mu \in (0, 1), \end{split}$$

and

 $v(t) = \ln t \to \infty, t \to \infty,$

i.e., all the conditions of Theorem 2.1 are satisfied. Therefore we may conclude that if (3.4) holds, then the boundary value problem (3.1)-(3.3) has a unique solution.

Furthermore, we may also deduce that there exist solutions $x_1(t)$ and $x_2(t)$ such that

$$x_1(t) = 1 + o((\ln t)^{\mu}), \quad t \to \infty$$

and

$$x_2(t) = \ln t + o((\ln t)^{\mu}), t \to \infty.$$

by taking (a, b) = (0, 1) and (a, b) = (1, 0), respectively.

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under project number 108T688.

Authors' contributions

Both authors contributed to this work equally, read and approved the final version of the manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 28 January 2012 Accepted: 16 April 2012 Published: 16 April 2012

References

- 1. Agarwal, RP, O'Regan, D: Infinite Interval Problems for Differential, Difference and Integral Equations. Kluwer Academic Publisher, Netherlands (2001)
- 2. O'Regan, D: Theory of Singular Boundary Value Problems. World Scientific, River Edge, New Jersey, USA (1994)
- Agarwal, RP, O'Regan, D: Boundary value problems on the half line in the theory of colloids. Math Probl Eng. 8(2):143–150 (2002). doi:10.1080/10241230212905

- Chen, SZ, Zhang, Y: Singular boundary value problems on a half-line. J Math Anal Appl. 195, 449–468 (1995). doi:10.1006/jmaa.1995.1367
- Rachůnková, I, Tomeček, J: Superlinear singular problems on the half line. Boundary Value Probl 2010, 18 (2010). pages (Article ID 429813)
- Li, J, Nieto, JJ: Existence of positive solutions for multipoint boundary value problem on the half-line with impulses. Boundary Value Probl 2009, 12 (2009). pages (Article ID 834158
- 7. Caligo, D: Comportamento asintotico degli integrali dell'equazione y'' + a(t)y = 0, nell'ipotesi $\lim_{t\to\infty} a(t) = 0$. Boll Un Mat Ital. **3**, 286–295 (1941)
- Boas, ML, Boas, RP Jr, Levinson, N: The growth of solutions of a differential equation. Duke Math J. 9, 847–853 (1942). doi:10.1215/S0012-7094-42-00959-1
- Haupt, O: Über das asymptotische verhalten der lösungen gewisser linearer gewöhnlicher differentialgleichungen. Math Z. 48, 289–292 (1942). doi:10.1007/BF01180019
- 10. Bihari, I: Researches of the boundedness and stability of the solutions of non-linear differential equations. Acta Math Acad Sci Hung. 8, 261–278 (1957)
- 11. Hale, JK, Onuchic, N: On the asymptotic behavior of solutions of a class of differential equations. Contrib Diff Equ. 2, 61–75 (1963)
- 12. Lipovan, O: On the asymptotic behavior of the solutions to a class of second order nonlinear differential equations. Glasgow Math J. 45, 179–187 (2003). doi:10.1017/S0017089502001143
- Mustafa, OG, Rogovchenko, YV: Asymptotic integration of a class of nonlinear differential equations. Appl Math Lett. 19, 849–853 (2006). doi:10.1016/j.aml.2005.10.013
- Agarwal, RP, Djebali, S, Moussaoui, T, Mustafa, OG: On the asymptotic integration of nonlinear differential equations. J Comput Appl Math. 202, 352–376 (2007). doi:10.1016/j.cam.2005.11.038
- 15. Eastham, MSP: The Asymptotic Solution of Linear Differential Systems. Applications of the Levinson Theorem. Clarendon Press, Oxford (1989)
- 16. Kiguradze, IT, Chanturia, TA: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Kluwer Academic Publishers, Dordrecht (1993)
- 17. Hartman, P: Ordinary Differential Equations. Wiley, New York (1964)
- Kelley, W, Peterson, A: The Theory of Differential Equations: Classical and Qualitative. Pearson Education, Inc., Upper Saddle River, New Jersey (2004)

doi:10.1186/1687-2770-2012-43

Cite this article as: Ertem and Zafer: Existence of solutions for a class of nonlinear boundary value problems on half-line. Boundary Value Problems 2012 2012:43.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com