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Abstract

Consider the infinite interval nonlinear boundary value problem

(p(t)x′)′ + q(t)x = f (t, x), t ≥ t0 ≥ 0,

x(t0) = x0,

x(t) = a v(t) + b u(t) + o(ri(t)), t → ∞,

where u and v are principal and nonprincipal solutions of (p(t)x’)’ + q(t)x = 0, r1(t) = o
(u(t)(v(t))μ) and r2(t) = o(v(t)(u(t))μ) for some μ Î (0, 1), and a and b are arbitrary but
fixed real numbers.
Sufficient conditions are given for the existence of a unique solution of the above
problem for i = 1, 2. An example is given to illustrate one of the main results.
Mathematics Subject Classication 2011: 34D05.
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1. Introduction
Boundary value problems on half-line occur in various applications such as in the

study of the unsteady flow of a gas through semi-infinite porous medium, in analyzing

the heat transfer in radial flow between circular disks, in the study of plasma physics,

in an analysis of the mass transfer on a rotating disk in a non-Newtonian fluid, etc.

More examples and a collection of works on the existence of solutions of boundary

value problems on half-line for differential, difference and integral equations may be

found in the monographs [1,2] For some works and various techniques dealing with

such boundary value problems (we may refer to [3-6] and the references cited therein).

In this article by employing principal and nonprincipal solutions we introduce a new

approach to study nonlinear boundary problems on half-line of the form

(p(t)x′)′ + q(t)x = f (t, x), t ≥ t0, (1:1)

x(t0) = x0, (1:2)

x(t) = a v(t) + b u(t) + o(r(t)), t → ∞, (1:3)

where a and b are any given real numbers, u and v are principal and nonprincipal

solutions of

(p(t)x′)′ + q(t)x = 0, t ≥ 0 (1:4)
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and p Î C([0, ∞), (0, ∞)), q Î C([0, ∞), ℝ) and f Î C([0, ∞) × ℝ, ℝ).

We will show that the problem (1.1)-(1.3) has a unique solution in the case when

r(t) = o(u(t)(v(t))μ) (1:5)

and

r(t) = o(v(t)(u(t))μ), (1:6)

where μ Î (0, 1) is arbitrary but fixed real numbers.

The nonlinear boundary value problem (1.1)-(1.3) is also closely related to asympto-

tic integration of second order differential equations. Indeed, there are several impor-

tant works in the literature, see [7-16], dealing with mostly the asymptotic integration

of solutions of second order nonlinear equations of the form

x′′ = f (t, x).

The authors are usually interested in finding conditions on the function f(t, x) which

guarantee the existence of a solution asymptotic to linear function

x(t) = a t + b, t → ∞. (1:7)

We should point out that u(t) = 1 and v(t) = t are principal and nonprincipal solu-

tions of the corresponding unperturbed equation

x′′ = 0,

and the function x(t) in (1.7) can be written as

x = a v(t) + b u(t).

Note that v(t) ® ∞ as t ® ∞ but u(t) is bounded in this special case. It turns out

such information is crucial in investigating the general case. Our results will be applic-

able whether or not u(t) ® ∞ (v(t) ® ∞) as t ® ∞.

2. Main results
It is well-known that [17,18] if the second order linear Equation (1.4) has a positive

solution or nonoscillatory at ∞, then there exist two linearly independent solutions u(t)

and v(t), called principal and nonprincipal solutions of the equation. The principal

solution u is unique up to a constant multiple. Moreover, the following useful proper-

ties are satisfied:

lim
t→∞

u(t)
v(t)

= 0,

∞∫
t∗

1
p(t)u2(t)

dt = ∞,

∞∫
t∗

1
p(t)v2(t)

dt < ∞,

where t* ≥ 0 is a sufficiently large real number.

Let v be a principal solution of (1.4). Without loss of generality we may assume that

v (t) > 0 if t ≥ t1 for some t1 ≥ 0. It is easy to see that

v(t) = u(t)

t∫
t1

1
p(s)u2(s)

ds (2:1)

is a nonprincipal solution of (1.4), which is strictly positive for t >t1.
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Theorem 2.1. Let t0 >t1. Assume that the function f satisfies
∣∣f (t, x)∣∣ ≤ h1(t)g(|x|) + h2(t), t ≥ t0 (2:2)

and

∣∣f (t, x1) − f (t, x2)
∣∣ ≤ k(t)

v(t)
|x1 − x2| , t ≥ t0, (2:3)

where g Î C([0, ∞), [0, ∞)) is bounded; h1, h2, k Î C([t0, ∞), [0, ∞)). Suppose further

that

∞∫
t0

u(s)k(s)ds ≤ μ (2:4)

and

1
p(t)u2(t)

∞∫
t

u(s)hi(s)ds ≤ β(t), t ≥ t0, i = 1, 2 (2:5)

for some b Î C([t0, ∞), [0, ∞)) such that

t∫
t0

β(s)ds = o((v(t))μ), t → ∞. (2:6)

If either

v(t) → ∞, t → ∞ (2:7)

or else

b =
x0

u(t0)
− a

t0∫
t1

1
p(s)u2(s)

ds, (2:8)

then there is a unique solution x(t) of (1.1)-(1.3), where r is given by (1.5).

Proof. Denote by M the supremum of the function g over [0, ∞). Let X be a space of

functions defined by

X =
{
x ∈ C([t0,∞) ,R)| ∣∣x(t)∣∣ ≤ l1v(t) + l2u(t), ∀t ≥ t0

}
,

where

l1 = (M + 1)p(t0)u2(t0)β(t0) + |a|

and

l2 =
|x0|
u(t0)

+ |a|
t0∫

t1

1
p(s)u2(s)

ds.

Note that X is a complete metric space with the metric d defined by

d(x1, x2) = sup
t≥t0

1
v(t)

∣∣x1(t) − x2(t)
∣∣ , x1, x2 ∈ X.
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Define an operator F on X by

(Fx)(t) = −u(t)

t∫
t0

1
p(s)u2(s)

∞∫
s

u(τ )f (τ , x(τ ))dτds + av(t)

+

⎡
⎣ x0
u(t0)

− a

t0∫
t1

1
p(s)u2(s)

ds

⎤
⎦ u(t).

In view of conditions (2.2) and (2.5) we see that F is well defined. Next we show that

F X ⊂ X. Indeed, let x Î X, then

∣∣(Fx)(t)∣∣ ≤ u(t)

t∫
t0

1
p(s)u2(s)

∞∫
s

u(τ )
∣∣f (τ , x(τ ))∣∣ dτds + |a| v(t) + l2u(t)

≤ u(t)

t∫
t0

1
p(s)u2(s)

∞∫
t0

u(τ )
∣∣f (τ , x(τ ))∣∣ dτds + |a| υ(t) + l2u(t)

≤ u(t)

t∫
t0

1
p(s)u2(s)

∞∫
t0

u(τ )(h1(τ )g(
∣∣x(τ )∣∣) + h2(τ ))dτds + |a| v(t) + l2u(t)

≤ u(t)

t∫
t0

1
p(s)u2(s)

∞∫
t0

u(τ )(Mh1(τ ) + h2(τ ))dτds + |a| υ(t) + l2u(t)

≤ (M + 1)p(t0)u2(t0)β(t0)u(t)

t∫
t0

1
p(s)u2(s)

ds + |a| v(t) + l2u(t)

≤ l1v(t) + l2u(t),

which means that F x Î X.

Using (2.1), (2.3) and (2.4) we also see that

∣∣(Fx1)(t) − (Fx2)(t)
∣∣ ≤ u(t)

t∫
t0

1
p(s)u2(s)

∞∫
s

u(τ )
∣∣f (τ , x1(τ )) − f (τ , x2(τ ))

∣∣dτds

≤ u(t)

t∫
t0

1
p(s)u2(s)

∞∫
s

u(τ )
k(τ )
v(τ )

∣∣x1(τ ) − x2(τ )
∣∣ dτds

≤ d(x1, x2)u(t)

t∫
t0

1
p(s)u2(s)

∞∫
s

u(τ )k(τ )dτds

≤ d(x1, x2)u(t)

t∫
t0

1
p(s)u2(s)

∞∫
t0

u(τ )k(τ )dτds

≤ d(x1, x2)v(t)

∞∫
t0

u(τ )k(τ )dτ

≤ μd(x1, x2)v(t),

where x1, x2 Î X arbitrary. This implies that F is a contracting mapping.
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Thus according to Banach contraction principle F has a unique fixed point x. It is

not difficult to see that the fixed point solves (1.1) and (1.2). It remains to show that x

(t) satisfies (1.3) as well. It is not difficult to show that

∣∣x(t) − av(t) − bu(t)
∣∣ ≤ u(t)

t∫
t0

1
p(s)u2(s)

∞∫
s

u(τ )
∣∣f (τ , x(τ ))∣∣ dτds + |c| u(t)

≤ u(t)

t∫
t0

1
p(s)u2(s)

∞∫
s

u(τ )(Mh1(τ ) + h2(τ ))dτds + |c| u(t)

≤ (M + 1)u(t)

t∫
t0

β(s)ds + |c| u(t),

where

c =
x0

u(t0)
− a

t0∫
t1

1
p(s)u2(s)

ds − b.

If (2.7) is satisfied, then in view (2.6) and the above inequality we easily obtain (1.3).

In case (2.8) holds, then c = 0 and hence we still have (1.3).

From Theorem 2.1 we deduce the following Corollary.

Corollary 2.2. Assume that the function f satisfies (2.2) and

∣∣f (t, x1) − f (t, x2)
∣∣ ≤ k(t)

t
|x1 − x2| , t ≥ t0,

where k Î C([t0, ∞), [0, ∞)). Suppose further that

∞∫
t0

k(s)ds ≤ μ;

∞∫
t

hi(s)ds ≤ β(t), t ≥ t0, i = 1, 2

for some μ Î (0, 1) and b Î C([t0, ∞), [0, ∞)), where

t∫
t0

β(s)ds = o(tμ), t → ∞.

Then for each a, b Î ℝ the boundary value problem

x′′ = f (t, x), t ≥ t0,

x(t0) = x0,

x(t) = at + b + o(tμ), t → ∞

has a unique solution.

Let υ be a nonprincipal solution of (1.4). Without loss of generality we may assume

that v(t) > 0, if t ≥ t2 for some t2 ≥ 0. It is easy to see that [17,18]

u(t) = v(t)

∞∫
t

1
p(s)v2(s)

ds (2:9)
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is a principal solution of (1.4) which is strictly positive. Take t2 large enough so that

∞∫
t

1
p(s)v2(s)

ds ≤ 1.

Then from (2.9), we have v (t) ≥ u(t) for t ≥ t2, which is needed in the proof of the

next theorem.

Theorem 2.3. Let t0 ≥ t2. Assume that the function f satisfies (2.2) and (2.3). Suppose

further that

∞∫
t0

v(s)k(s)ds ≤ μ (2:10)

and

1
p(t)v2(t)

∞∫
t

v(s)hi(s)ds ≤ β(t), t ≥ t0, i = 1, 2 (2:11)

for some b Î C([t0, ∞), [0, ∞)) such that

t∫
t0

β(s)ds = o((u(t))μ), t → ∞. (2:12)

If either

u(t) → ∞, t → ∞ (2:13)

or else

a =
x0

v(t0)
− b

∞∫
t0

1
p(s)v2(s)

ds, (2:14)

then there is a unique solution x(t) of (1.1) - (1.3), where r is given by (1.6).

Proof. Let X be a space of functions defined by

X =
{
x ∈ C([t0,∞) ,R)| ∣∣x(t)∣∣ ≤ l1v(t) + l2u(t), ∀t ≥ t0

}
,

where

l1 = (M + 1)p(t0)u(t0)v(t0)β(t0) +
|x0|
v(t0)

+ |b|
∞∫

t0

1
p(s)v2(s)

ds and l2 = |b| .

Again, X is a complete metric space with the metric d defined in the proof of the

previous theorem.

We define an operator F on X by

(Fx)(t) = −v(t)

t∫
t0

1
p(s)v2(s)

∞∫
s

v(τ )f (τ , x(τ ))dτds

+

⎡
⎣ x0
v(t0)

− b

∞∫
t0

1
p(s)v2(s)

ds

⎤
⎦ v(t) + bu(t).
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The remainder of the proof proceeds similarly as in that of Theorem 2.1 by using

(2.2), (2.3), (2.9)-(2.14).

Corollary 2.4. Assume that the function f satisfies (2.2) and (2.3). Suppose further

that

∞∫
t0

sk(s)ds ≤ μ;
1
t2

∞∫
t

shi(s)ds ≤ β(t), t ≥ t0, i = 1, 2

for some μ Î (0, 1) and b Î C([t0, ∞), [0, ∞)), where

t∫

1

β(s)ds = o(1), t → ∞.

If for any given a, b Î ℝ the condition (2.14) holds then the boundary value problem

x′′ = f (t, x), t ≥ t0,

x(t0) = x0,

x(t) = at + b + o(t), t → ∞

has a unique solution.

3. An example
Consider the boundary value problem

(tx′)′ =
1
t2

arctan x + tν , t ≥ t0, ν < −2, (3:1)

x(t0) = x0, (3:2)

x(t) = a ln t + b + o((ln t)μ), t → ∞. (3:3)

where t0 >t1 = 1 and μ Î (0, 1) are chosen to satisfy

1 + ln t0
t0

≤ μ. (3:4)

Note that since

lim
t0→∞

1 + ln t0
t0

= 0

for any given μ Î (0, 1) there is a t0 such that (3.4) holds.

Comparing with the boundary value problem (1.1)-(1.3) we see that p(t) = t, q(t) = 0,

and f(t, x) = (1/t2) arctan x + tυ. The corresponding linear equation becomes

(tx′)′ = 0, t ≥ t0.

Clearly, we may take

u(t) = 1 and v(t) = ln t.
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Let

h1(t) =
1
t2
, h2(t) = tν , g(x) = arctan x, k(t) =

ln t
t2

, β(t) =
1
t2
,

then it is easy to see that

∣∣f (t, x)∣∣ ≤ 1
t2

arctan |x| + tν = h1(t)g (|x|) + h2(t),

∣∣f (t, x1) − f (t, x2)
∣∣ ≤ 1

t2
|x1 − x2| = k(t)

v(t)
|x1 − x2| ,

∞∫
t0

k(s)ds =

∞∫
t0

ln s
s2

ds =
1 + ln t0

t0
≤ μ by (3.4)

1
t

∞∫
t

h1(s)ds ≤ 1
t

∞∫
t

1
s2
ds =

1
t2

= β(t), t ≥ t0,

1
t

∞∫
t

h2(s)ds = − tν

ν + 1
≤ β(t), t ≥ t0,

t∫
t0

β(s)ds =

t∫
t0

1
s2
ds =

1
t0

− 1
t
= o((ln t)μ), t → ∞, μ ∈ (0, 1),

and

v(t) = ln t → ∞, t → ∞,

i.e., all the conditions of Theorem 2.1 are satisfied. Therefore we may conclude that

if (3.4) holds, then the boundary value problem (3.1)-(3.3) has a unique solution.

Furthermore, we may also deduce that there exist solutions x1(t) and x2(t) such that

x1(t) = 1 + o((ln t)μ), t → ∞

and

x2(t) = ln t + o((ln t)μ), t → ∞.

by taking (a, b) = (0, 1) and (a, b) = (1, 0), respectively.
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