RESEARCH

Open Access

brought to you by

CORE

Viscosity approximation process for a sequence of quasinonexpansive mappings

Koji Aoyama¹ and Fumiaki Kohsaka^{2*}

*Correspondence: f-kohsaka@oita-u.ac.jp ²Department of Computer Science and Intelligent Systems, Oita University, Dannoharu, Oita-shi, Oita, 870-1192, Japan Full list of author information is available at the end of the article

Abstract

We study the viscosity approximation method due to Moudafi for a fixed point problem of quasinonexpansive mappings in a Hilbert space. First, we establish a strong convergence theorem for a sequence of quasinonexpansive mappings. Then we employ our result to approximate a solution of the variational inequality problem over the common fixed point set of the sequence of quasinonexpansive mappings. **MSC:** 47H09; 47H10; 41A65

Keywords: viscosity approximation method; quasinonexpansive mapping; fixed point; hybrid steepest descent method

1 Introduction

Let *C* be a nonempty closed convex subset of a Hilbert space. This paper is devoted to the study of strong convergence of a sequence $\{x_n\}$ in *C* defined by an arbitrary point $x_1 \in C$ and

$$x_{n+1} = \alpha_n f_n(x_n) + (1 - \alpha_n) T_n x_n$$
(1.1)

for $n \in \mathbb{N}$, where α_n is a real number in [0,1], f_n is a contraction-like mapping on C, and T_n is a quasinonexpansive mapping on C. This iterative method (1.1) is called the viscosity approximation method [1]. In Section 3, we establish that, under some appropriate assumptions, the sequence $\{x_n\}$ converges strongly to a certain common fixed point of $\{T_n\}$ by using the technique developed in [2]. Then, in Section 4, we apply our result to approximate a solution of a variational inequality problem over the common fixed point set of $\{T_n\}$.

The viscosity approximation method (1.1) is based on the study of Moudafi [1], who considered a fixed point problem of a single nonexpansive mapping and proved strong convergence of sequences generated by the method. After that, Xu [3] extended Moudafi's results [1] in the framework of Hilbert spaces and Banach spaces; Suzuki [4] gave simple proofs of Xu's results [3]; Aoyama and Kimura [5] investigated a relationship between viscosity approximation methods and Halpern [6] type iterative methods for a sequence of nonexpansive mappings.

On the other hand, Maingé [7] adopted the viscosity approximation method for a fixed point problem of a single quasinonexpansive mapping; Wongchan and Saejung [8] extended Maingé's result [7]. Our main result (Theorem 3.1) is a generalization of Wongchan and Saejung's result [8] and is closely related to the study in [5]. Moreover, it is also appli-

©2014 Aoyama and Kohsaka; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cable to an approximation method, which is called the hybrid steepest descent method [9, 10], for a variational inequality problem over the common fixed point set of a sequence of quasinonexpansive mappings.

2 Preliminaries

Throughout the present paper, *H* denotes a real Hilbert space, $\langle \cdot, \cdot \rangle$ the inner product of *H*, $\|\cdot\|$ the norm of *H*, *C* a nonempty closed convex subset of *H*, *I* the identity mapping on *H*, \mathbb{R} the set of real numbers, and \mathbb{N} the set of positive integers. Strong convergence of a sequence $\{x_n\}$ in *H* to $x \in H$ is denoted by $x_n \to x$ and weak convergence by $x_n \to x$.

Let $T : C \to H$ be a mapping. The set of fixed points of T is denoted by Fix(T). A mapping T is said to be *quasinonexpansive* if Fix(T) $\neq \emptyset$ and $||Tx-p|| \leq ||x-p||$ for all $x \in C$ and $p \in Fix(T)$; T is said to be *nonexpansive* if $||Tx - Ty|| \leq ||x - y||$ for all $x, y \in C$; T is said to be *strongly quasinonexpansive* if T is quasinonexpansive and $Tx_n - x_n \to 0$ whenever $\{x_n\}$ is a bounded sequence in C and $||x_n - p|| - ||Tx_n - p|| \to 0$ for some point $p \in Fix(T)$; T is *demiclosed at* 0 if Tp = 0 whenever $\{x_n\}$ is a sequence in C such that $x_n \to p$ and $Tx_n \to 0$. We know that if $T : C \to H$ is quasinonexpansive, then Fix(T) is closed and convex; see [11, Theorem 1].

It is known that, for each $x \in H$, there exists a unique point $x_0 \in C$ such that

 $||x - x_0|| = \min\{||x - y|| : y \in C\}.$

Such a point x_0 is denoted by $P_C(x)$ and P_C is called the metric projection of H onto C. It is known that the metric projection P_C is nonexpansive; see [12].

Let $f : C \to C$ be a mapping, F a nonempty subset of C, and θ a real number in [0,1). A mapping f is said to be a θ -contraction with respect to F if $||f(x) - f(z)|| \le \theta ||x - z||$ for all $x \in C$ and $z \in F$; f is said to be a θ -contraction if f is a θ -contraction with respect to C. By definition, it is easy to check the following results.

Lemma 2.1 Let *F* be a nonempty subset of *C* and $f : C \to C$ a θ -contraction with respect to *F*, where $0 \le \theta < 1$. If *F* is closed and convex, then $P_F \circ f$ is a θ -contraction on *F*, where P_F is the metric projection of *H* onto *F*.

Lemma 2.2 Let $f : C \to C$ be a θ -contraction, where $0 \le \theta < 1$ and $T : C \to C$ a quasinonexpansive mapping. Then $f \circ T$ is a θ -contraction with respect to Fix(T).

Let *D* be a nonempty subset of *C*. A sequence $\{f_n\}$ of mappings of *C* into *H* is said to be *stable on D* [5] if $\{f_n(z) : n \in \mathbb{N}\}$ is a singleton for every $z \in D$. It is clear that if $\{f_n\}$ is stable on *D*, then $f_n(z) = f_1(z)$ for all $n \in \mathbb{N}$ and $z \in D$.

A function $\tau : \mathbb{N} \to \mathbb{N}$ is said to be *eventually increasing* [2] if $\lim_{n\to\infty} \tau(n) = \infty$ and $\tau(n) \le \tau(n+1)$ for all $n \in \mathbb{N}$. By definition, we easily obtain the following.

Lemma 2.3 Let $\tau : \mathbb{N} \to \mathbb{N}$ be an eventually increasing function and $\{\xi_n\}$ a sequence of real numbers such that $\xi_n \to \xi$. Then $\xi_{\tau(n)} \to \xi$.

The following is a direct consequence of [13, Lemma 3.1].

Lemma 2.4 ([2, Lemma 3.4]) Let $\{\xi_n\}$ be a sequence of nonnegative real numbers which is not convergent. Then there exist $N \in \mathbb{N}$ and an eventually increasing function $\tau : \mathbb{N} \to \mathbb{N}$ such that $\xi_{\tau(n)} \leq \xi_{\tau(n)+1}$ for all $n \in \mathbb{N}$ and $\xi_n \leq \xi_{\tau(n)+1}$ for all $n \geq N$. Under the assumptions of Lemma 2.4, we cannot choose a strictly increasing function τ ; see [2, Example 3.3].

Let $\{T_n\}$ be a sequence of mappings of *C* into *H* such that $F = \bigcap_{n=1}^{\infty} Fix(T_n)$ is nonempty. Then

• { T_n } is said to be *strongly quasinonexpansive type* if each T_n is quasinonexpansive and $T_n x_n - x_n \rightarrow 0$ whenever { x_n } is a bounded sequence in *C* and

 $||x_n - p|| - ||T_n x_n - p|| \to 0$

for some point $p \in F$;

• { T_n } is said to satisfy the *condition* (Z) [2, 14–16] if every weak cluster point of { x_n } belongs to *F* whenever { x_n } is a bounded sequence in *C* such that $T_nx_n - x_n \rightarrow 0$.

Remark 2.5 Since $\beta_n - \alpha_n \to 0$ if and only if $\beta_n^2 - \alpha_n^2 \to 0$ for all bounded sequences $\{\alpha_n\}$ and $\{\beta_n\}$ in $[0, \infty)$, $\{T_n\}$ is strongly quasinonexpansive type if and only if it is a strongly relatively nonexpansive sequence in the sense of [2, 17]. See also [18, 19].

We know several examples of strongly quasinonexpansive type sequences satisfying the condition (Z); see [17] and Example 4.5 in Section 4.

The following lemma follows from [2, Lemma 3.5] and Remark 2.5.

Lemma 2.6 Let $\{T_n\}$ be a sequence of mappings of C into H such that $F = \bigcap_{n=1}^{\infty} \operatorname{Fix}(T_n)$ is nonempty, $\tau : \mathbb{N} \to \mathbb{N}$ an eventually increasing function, and $\{z_n\}$ a bounded sequence in Csuch that $||z_n - p|| - ||T_{\tau(n)}z_n - p|| \to 0$ for some $p \in F$. If $\{T_n\}$ is strongly quasinonexpansive type, then $T_{\tau(n)}z_n - z_n \to 0$.

In order to prove our main result in Section 3, we need the following lemmas.

Lemma 2.7 ([2, Lemma 3.6]) Let $\{T_n\}$ be a sequence of mappings of C into H such that $F = \bigcap_{n=1}^{\infty} \operatorname{Fix}(T_n)$ is nonempty, $\tau : \mathbb{N} \to \mathbb{N}$ an eventually increasing function, and $\{z_n\}$ a bounded sequence in C such that $T_{\tau(n)}z_n - z_n \to 0$. Suppose that $\{T_n\}$ satisfies the condition (Z). Then every weak cluster point of $\{z_n\}$ belongs to F.

Lemma 2.8 ([2, Lemma 3.7]) Let $\{T_n\}$ be a sequence of mappings of C into H, F a nonempty closed convex subset of H, $\{z_n\}$ a bounded sequence in C such that $T_n z_n - z_n \rightarrow 0$, and $u \in H$. Suppose that every weak cluster point of $\{z_n\}$ belongs to F. Then

 $\limsup_{n\to\infty}\langle T_n z_n - w, u - w\rangle \leq 0,$

where $w = P_F(u)$.

The following lemma is well known; see [20, 21].

Lemma 2.9 Let $\{\xi_n\}$ be a sequence of nonnegative real numbers, $\{\delta_n\}$ a sequence of real numbers, and $\{\beta_n\}$ a sequence in [0,1]. Suppose that $\xi_{n+1} \leq (1-\beta_n)\xi_n + \beta_n\delta_n$ for every $n \in \mathbb{N}$, $\limsup_{n\to\infty} \delta_n \leq 0$, and $\sum_{n=1}^{\infty} \beta_n = \infty$. Then $\xi_n \to 0$.

In this section, we prove the following strong convergence theorem.

Theorem 3.1 Let H be a real Hilbert space, C a nonempty closed convex subset of H, $\{S_n\}$ a sequence of mappings of C into C such that $F = \bigcap_{n=1}^{\infty} \operatorname{Fix}(S_n)$ is nonempty, $\{\alpha_n\}$ a sequence in (0,1] such that $\alpha_n \to 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$, and $\{f_n\}$ a sequence of mappings of C into C such that each f_n is a θ -contraction with respect to F and $\{f_n\}$ is stable on F, where $0 \le \theta < 1$. Let $\{x_n\}$ be a sequence defined by $x_1 \in C$ and

$$x_{n+1} = \alpha_n f_n(x_n) + (1 - \alpha_n) S_n x_n$$
(3.1)

for $n \in \mathbb{N}$. Suppose that $\{S_n\}$ is strongly quasinonexpansive type and satisfies the condition (Z). Then $\{x_n\}$ converges strongly to $w \in F$, where w is the unique fixed point of a contraction $P_F \circ f_1$.

Note that Lemma 2.1 implies that $P_F \circ f_1$ is a θ -contraction on F and hence it has a unique fixed point on F.

First, we show some lemmas; then we prove Theorem 3.1. In the rest of this section, we set

$$\beta_n = \alpha_n \big(1 + (1 - 2\theta)(1 - \alpha_n) \big)$$

and

$$\gamma_n = \alpha_n^2 \left\| f_n(x_n) - w \right\|^2 + 2\alpha_n (1 - \alpha_n) \langle S_n x_n - w, f_1(w) - w \rangle$$

for $n \in \mathbb{N}$.

Lemma 3.2 $\{x_n\}, \{S_nx_n\}, and \{f_n(x_n)\}\ are bounded, and moreover,$

$$\|x_{n+1} - w\| \le \alpha_n \|f_n(x_n) - w\| + \|S_n x_n - w\|$$
(3.2)

and

$$\|x_{n+1} - w\|^2 \le (1 - \beta_n) \|x_n - w\|^2 + \gamma_n \tag{3.3}$$

hold for every $n \in \mathbb{N}$ *.*

Proof Since f_n is a θ -contraction with respect to F, S_n is quasinonexpansive, $w \in F \subset$ Fix(S_n), and { f_n } is stable on F, it follows that

$$\|x_{n+1} - w\|$$

$$\leq \alpha_n \|f_n(x_n) - w\| + (1 - \alpha_n) \|S_n x_n - w\|$$

$$\leq \alpha_n (\|f_n(x_n) - f_n(w)\| + \|f_n(w) - w\|) + (1 - \alpha_n) \|S_n x_n - w\|$$

$$\leq (1 - \alpha_n (1 - \theta)) \|x_n - w\| + \alpha_n (1 - \theta) \frac{\|f_1(w) - w\|}{1 - \theta}$$
(3.4)

for every $n \in \mathbb{N}$. Thus, by induction on *n*, we have

$$||S_n x_n - w|| \le ||x_n - w|| \le \max\{||x_1 - w||, ||f_1(w) - w||/(1-\theta)\}.$$

Therefore, it turns out that $\{x_n\}$ and $\{S_nx_n\}$ are bounded, and moreover, $\{f_n(x_n)\}$ is also bounded.

Equation (3.2) follows from (3.4).

Next, we show (3.3). By assumption, it follows that

$$\begin{aligned} \left\langle S_n x_n - w, f_n(x_n) - w \right\rangle &\leq \left\| S_n x_n - w \right\| \left\| f_n(x_n) - f_n(w) \right\| + \left\langle S_n x_n - w, f_n(w) - w \right\rangle \\ &\leq \theta \left\| x_n - w \right\|^2 + \left\langle S_n x_n - w, f_1(w) - w \right\rangle, \end{aligned}$$

and thus

$$\|x_{n+1} - w\|^{2} = \alpha_{n}^{2} \|f_{n}(x_{n}) - w\|^{2} + (1 - \alpha_{n})^{2} \|S_{n}x_{n} - w\|^{2} + 2\alpha_{n}(1 - \alpha_{n})\langle S_{n}x_{n} - w, f_{n}(x_{n}) - w\rangle \leq \alpha_{n}^{2} \|f_{n}(x_{n}) - w\|^{2} + ((1 - \alpha_{n})^{2} + 2\alpha_{n}(1 - \alpha_{n})\theta)\|x_{n} - w\|^{2} + 2\alpha_{n}(1 - \alpha_{n})\langle S_{n}x_{n} - w, f_{1}(w) - w\rangle = (1 - \beta_{n})\|x_{n} - w\|^{2} + \gamma_{n}$$
(3.5)

for every $n \in \mathbb{N}$. Therefore, (3.3) holds.

Lemma 3.3 The following hold:

- $0 < \beta_n \leq 1$ for every $n \in \mathbb{N}$;
- $2\alpha_n(1-\alpha_n)/\beta_n \rightarrow 1/(1-\theta);$
- $\alpha_n^2 \|f_n(x_n) w\|^2 / \beta_n \to 0;$
- $\sum_{n=1}^{\infty} \beta_n = \infty.$

Proof Since $0 < \alpha_n \le 1$ and $-1 < 1 - 2\theta \le 1$, we know that

$$0 < \alpha_n^2 = \alpha_n \left(1 + (-1)(1 - \alpha_n) \right) \le \beta_n \le \alpha_n \left(1 + (1 - \alpha_n) \right) = \alpha_n (2 - \alpha_n) \le 1$$

It follows from $\alpha_n \to 0$ that $2\alpha_n(1-\alpha_n)/\beta_n \to 1/(1-\theta)$.

Since $\{f_n(x_n)\}$ is bounded by Lemma 3.2 and

$$\frac{\alpha_n^2}{\beta_n} = \frac{\alpha_n}{1 + (1 - 2\theta)(1 - \alpha_n)} \to 0,$$

it follows that $\alpha_n^2 || f_n(x_n) - w ||^2 / \beta_n \to 0$.

Finally, we prove $\sum_{n=1}^{\infty} \beta_n = \infty$. Suppose that $1 - 2\theta \ge 0$. Then it is clear that $\beta_n \ge \alpha_n$ for every $n \in \mathbb{N}$. Thus, $\sum_{n=1}^{\infty} \beta_n \ge \sum_{n=1}^{\infty} \alpha_n = \infty$. Next, we suppose that $1 - 2\theta < 0$. Then it is clear that $\beta_n > 2(1 - \theta)\alpha_n$ for every $n \in \mathbb{N}$. Thus, $\sum_{n=1}^{\infty} \beta_n \ge 2(1 - \theta)\sum_{n=1}^{\infty} \alpha_n = \infty$. This completes the proof.

Lemma 3.4 $\{||x_n - w||\}$ is convergent.

Proof We assume, in order to obtain a contraction, that $\{||x_n - w||\}$ is not convergent. Then Lemma 2.4 implies that there exist $N \in \mathbb{N}$ and an eventually increasing function $\tau : \mathbb{N} \to \mathbb{N}$ such that

$$\|x_{\tau(n)} - w\| \le \|x_{\tau(n)+1} - w\| \tag{3.6}$$

for every $n \in \mathbb{N}$ and

$$\|x_n - w\| \le \|x_{\tau(n)+1} - w\| \tag{3.7}$$

for every $n \ge N$.

We show that $S_{\tau(n)}x_{\tau(n)} - x_{\tau(n)} \rightarrow 0$. Since $S_{\tau(n)}$ is quasinonexpansive and $w \in F \subset$ Fix($S_{\tau(n)}$), it follows from (3.6), (3.2), and Lemmas 2.3 and 3.2 that

$$0 \le \|x_{\tau(n)} - w\| - \|S_{\tau(n)}x_{\tau(n)} - w\|$$

$$\le \|x_{\tau(n)+1} - w\| - \|S_{\tau(n)}x_{\tau(n)} - w\|$$

$$\le \alpha_{\tau(n)} \|f_{\tau(n)}(x_{\tau(n)}) - w\| \to 0$$

as $n \to \infty$. Since $\{x_{\tau(n)}\}$ is bounded and $\{S_n\}$ is strongly quasinonexpansive type, Lemma 2.6 implies that $S_{\tau(n)}x_{\tau(n)} - x_{\tau(n)} \to 0$.

Since {*S_n*} satisfies the condition (*Z*), it follows from Lemma 2.7 that every weak cluster point of { $x_{\tau(n)}$ } belongs to *F*. Thus Lemma 2.8 shows that

$$\limsup_{n\to\infty} \langle S_{\tau(n)} x_{\tau(n)} - w, f_1(w) - w \rangle \le 0.$$

Moreover, Lemmas 2.3 and 3.3 imply that $\alpha_{\tau(n)}^2 ||f_{\tau(n)}(x_{\tau(n)}) - w||^2 / \beta_{\tau(n)} \to 0$ and $2\alpha_{\tau(n)}(1 - \alpha_{\tau(n)}) / \beta_{\tau(n)} \to 1/(1 - \theta)$. Therefore, we obtain

$$\limsup_{n \to \infty} \frac{\gamma_{\tau(n)}}{\beta_{\tau(n)}} \le 0.$$
(3.8)

On the other hand, from (3.3) and (3.6), we know that

$$\|x_{\tau(n)+1} - w\|^{2} \le (1 - \beta_{\tau(n)}) \|x_{\tau(n)} - w\|^{2} + \gamma_{\tau(n)}$$
$$\le (1 - \beta_{\tau(n)}) \|x_{\tau(n)+1} - w\|^{2} + \gamma_{\tau(n)}$$

for every $n \in \mathbb{N}$. Thus, by $\beta_{\tau(n)} > 0$, this shows that

$$\|x_{\tau(n)+1} - w\|^2 \le \frac{\gamma_{\tau(n)}}{\beta_{\tau(n)}}$$
(3.9)

for every $n \in \mathbb{N}$.

Finally, we obtain a contradiction that $||x_n - w|| \rightarrow 0$. Using (3.7), (3.9), and (3.8), we conclude that

$$\limsup_{n\to\infty} \|x_n - w\|^2 \leq \limsup_{n\to\infty} \|x_{\tau(n)+1} - w\|^2 \leq \limsup_{n\to\infty} \frac{\gamma_{\tau(n)}}{\beta_{\tau(n)}} \leq 0,$$

and hence $||x_n - w|| \rightarrow 0$, which is a contradiction.

Proof of Theorem 3.1 We first show that $S_n x_n - x_n \rightarrow 0$. Since S_n is quasinonexpansive, it follows from (3.2) that

$$0 \le ||x_n - w|| - ||S_n x_n - w|| \le ||x_n - w|| - ||x_{n+1} - w|| + \alpha_n ||f_n(x_n) - w||$$

for every $n \in \mathbb{N}$, so that $||x_n - w|| - ||S_n x_n - w|| \to 0$ by Lemma 3.4, $\alpha_n \to 0$, and Lemma 3.2. Since $\{S_n\}$ is strongly quasinonexpansive type and $\{x_n\}$ is bounded, we conclude that $S_n x_n - x_n \to 0$.

Since $\{S_n\}$ satisfies the condition (Z), Lemma 2.8 implies that

$$\limsup_{n\to\infty} \langle S_n x_n - w, f_1(w) - w \rangle \le 0.$$

This shows that $\limsup_{n\to\infty} \gamma_n/\beta_n \le 0$ by using Lemmas 3.2 and 3.3. On the other hand, it follows from (3.3) that

$$||x_{n+1} - w||^2 \le (1 - \beta_n) ||x_n - w||^2 + \beta_n \frac{\gamma_n}{\beta_n}$$

for every $n \in \mathbb{N}$. Therefore, noting that $\sum_{n=1}^{\infty} \beta_n = \infty$ and using Lemma 2.9, we conclude that $x_n - w \to 0$.

A direct consequence of Theorem 3.1 is the following corollary, which is a slight generalization of [8, Theorem 2.3].

Corollary 3.5 Let *H* be a real Hilbert space, *C* a nonempty closed convex subset of *H*, $S: C \to C$ a strongly quasinonexpansive mapping, $\{\alpha_n\}$ a sequence in (0,1] such that $\alpha_n \to 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$, and $f: C \to C$ a θ -contraction with respect to F = Fix(S), where $0 \le \theta < 1$. Let $\{x_n\}$ be a sequence defined by $x_1 \in C$ and

$$x_{n+1} = \alpha_n f(x_n) + (1 - \alpha_n) S x_n$$
(3.10)

for $n \in \mathbb{N}$. Suppose that I - S is demiclosed at 0. Then $\{x_n\}$ converges strongly to $w \in F$, where w is the unique fixed point of a contraction $P_F \circ f$.

Proof Set $S_n = S$ and $f_n = f$ for $n \in \mathbb{N}$. Then it is clear that $\bigcap_{n=1}^{\infty} \operatorname{Fix}(S_n) = \operatorname{Fix}(S)$, $\{S_n\}$ is strongly quasinonexpansive type, $\{S_n\}$ satisfies the condition (Z), and $\{f_n\}$ is stable on *C*. Thus Theorem 3.1 implies the conclusion.

4 Application to a variational inequality problem

In this section, applying Theorem 3.1, we study an approximation method for the following variational inequality problem.

Problem 4.1 Let κ and η be positive real numbers such that $\eta^2 < 2\kappa$. Let F be a nonempty closed convex subset of H and $A : H \to H$ a κ -strongly monotone and η -Lipschitz continuous mapping, that is, we assume that $\langle x-y, Ax-Ay \rangle \ge \kappa ||x-y||^2$ and $||Ax-Ay|| \le \eta ||x-y||$ for all $x, y \in H$. Then find $z \in F$ such that

$$\langle y-z, Az \rangle \ge 0$$
 for all $y \in F$.

The solution set of Problem 4.1 is denoted by VI(F, A). Under the assumptions of Problem 4.1, it is known that the following hold; see, for example, [22].

- $\kappa \leq \eta$, $0 \leq 1 2\kappa + \eta^2 < 1$ and I A is a θ -contraction, where $\theta = \sqrt{1 2\kappa + \eta^2}$;
- Problem 4.1 has a unique solution and $VI(F, A) = Fix(P_F(I A))$.

Remark 4.2 The assumption that $\eta^2 < 2\kappa$ in Problem 4.1 is not restrictive. Indeed, let *F* be a nonempty closed convex subset of *H* and \tilde{A} a $\tilde{\kappa}$ -strongly monotone and $\tilde{\eta}$ -Lipschitz continuous mapping, where $\tilde{\kappa} > 0$ and $\tilde{\eta} > 0$. Set $A = \mu \tilde{A}$, $\kappa = \mu \tilde{\kappa}$, and $\eta = \mu \tilde{\eta}$, where μ is a positive constant such that $\mu \tilde{\eta}^2 < 2\tilde{\kappa}$. Then it is easy to verify that *A* is κ -strongly monotone and η -Lipschitz continuous, $\eta^2 < 2\kappa$, and moreover, VI(*F*,*A*) = VI(*F*, \tilde{A}).

Using Theorem 3.1, we obtain the following convergence theorem for Problem 4.1.

Theorem 4.3 Let H, κ , η , and A be the same as in Problem 4.1. Let $\{S_n\}$ be a sequence of mappings of H into H such that $F = \bigcap_{n=1}^{\infty} Fix(S_n)$ is nonempty, and $\{\alpha_n\}$ the same as in Theorem 3.1. Let $\{x_n\}$ be a sequence defined by $x_1 \in H$ and

$$x_{n+1} = S_n x_n - \alpha_n A S_n x_n \tag{4.1}$$

for $n \in \mathbb{N}$. Suppose that $\{S_n\}$ is strongly quasinonexpansive type and $\{S_n\}$ satisfies the condition (Z). Then $\{x_n\}$ converges strongly to the unique solution of Problem 4.1.

Proof Set $f_n = (I - A)S_n$ for $n \in \mathbb{N}$ and $\theta = \sqrt{1 - 2\kappa + \eta^2}$. Since I - A is a θ -contraction and S_n is quasinonexpansive, Lemma 2.2 implies that each f_n is a θ -contraction with respect to F. It is obvious that $\{f_n\}$ is stable on F. Moreover, it follows from (4.1) that

$$x_{n+1} = \alpha_n f_n(x_n) + (1 - \alpha_n) S_n x_n$$

for $n \in \mathbb{N}$. Thus Theorem 3.1 implies that $\{x_n\}$ converges strongly to $w = (P_F \circ f_1)(w) = P_F(I - A)w$, which is the unique solution of Problem 4.1.

Remark 4.4 The iteration (4.1) is called the hybrid steepest descent method; see [9, 10] for more details.

We finally construct an example of $\{S_n\}$ in Theorem 4.3 by using the notion of a subgradient projection.

Let $g: H \to \mathbb{R}$ be a continuous and convex function such that

$$C = \left\{ x \in H : g(x) \le 0 \right\}$$

is nonempty and $h: H \to H$ a mapping such that $h(x) \in \partial g(x)$ for all $x \in H$, where ∂g denotes the subdifferential mapping of g defined by

$$\partial g(x) = \left\{ z \in H : g(x) + \langle y - x, z \rangle \le g(y) \; (\forall y \in H) \right\}$$

for all $x \in H$. Then the subgradient projection $P_{g,h} : H \to H$ with respect to g and h is defined by $P_{g,h}x = P_{L(x)}x$ for all $x \in H$, where $P_{L(x)}$ denotes the metric projection of H onto

the set L(x) defined by

$$L(x) = \left\{ y \in H : g(x) + \left\langle y - x, h(x) \right\rangle \le 0 \right\}$$

for all $x \in H$. Note that *C* is a subset of L(x) for all $x \in H$ and that L(x) is a closed half space for all $x \in H \setminus C$. According to [23, Section 7], [24, Proposition 2.3], and [25, Proposition 1.1.11], we know the following:

- (S1) $Fix(P_{g,h}) = C;$
- (S2) $\langle z P_{g,h}x, x P_{g,h}x \rangle \leq 0$ for all $z \in C$ and $x \in H$;
- (S3) if g(V) is bounded for each bounded subset V of H, then $I P_{g,h}$ is demiclosed at 0.

It is known that the metric projection P_D of H onto a nonempty closed convex subset D of H coincides with the subgradient projection $P_{g,h}$ with respect to g and h defined by $g(x) = \inf_{y \in D} ||x - y||$ for all $x \in H$ and

$$h(x) = \begin{cases} 0 & (x \in D); \\ (x - P_D x)/\|x - P_D x\| & (x \in H \setminus D). \end{cases}$$

The subgradient projection is not necessarily nonexpansive. In fact, if $g : \mathbb{R} \to \mathbb{R}$ and $h : \mathbb{R} \to \mathbb{R}$ are defined by $g(x) = \max\{x, 2x - 1\}$ for all $x \in \mathbb{R}$ and h(x) = 1 if x < 1; h(x) = 2 if $x \ge 1$, then $P_{g,h}$ is given by

$$P_{g,h}(x) = \begin{cases} x & (x \le 0); \\ 0 & (0 < x < 1); \\ 1/2 & (x \ge 1) \end{cases}$$

and is not nonexpansive.

Using (S1), (S2), and (S3), we show the following.

Example 4.5 Let $g : H \to \mathbb{R}$ be a continuous and convex function such that $C = \{x \in H : g(x) \le 0\}$ is nonempty and g(V) is bounded for each bounded subset V of H, $h : H \to H$ a mapping such that $h(x) \in \partial g(x)$ for all $x \in H$, and $\{S_n\}$ a sequence of mappings of H into H defined by

$$S_n = \beta_n I + (1 - \beta_n) P_{g,h}$$

for all $n \in \mathbb{N}$, where $\{\beta_n\}$ is a sequence of real numbers such that $-1 < \inf_n \beta_n$ and $\sup_n \beta_n < 1$. Then the following hold:

- (i) $\operatorname{Fix}(S_n) = C$ for all $n \in \mathbb{N}$;
- (ii) $\{S_n\}$ is strongly quasinonexpansive type;
- (iii) $\{S_n\}$ satisfies the condition (Z).

Proof Since $\beta_n \neq 1$ for all $n \in \mathbb{N}$, the part (i) obviously follows from (S1).

We first show (ii). By (i), we know that $\bigcap_{n=1}^{\infty} Fix(S_n) = C$ is nonempty. Let $n \in \mathbb{N}$, $p \in C$, and $x \in H$ be given. Then we have

$$\|S_n x - p\|^2 + \|x - S_n x\|^2 - \|x - p\|^2 = 2\langle S_n x - x, S_n x - p \rangle$$

= 2(1 - \beta_n)\lappa p - \Sigma_n x, x - \P_{g,h} x \rangle. (4.2)

It follows from (S2) that

$$\langle p - S_n x, x - P_{g,h} x \rangle \le \langle P_{g,h} x - S_n x, x - P_{g,h} x \rangle.$$
(4.3)

On the other hand, we also know that

$$\langle P_{g,h}x - S_nx, x - P_{g,h}x \rangle$$

$$= -\|P_{g,h}x - x\|^2 + \langle x - S_nx, x - P_{g,h}x \rangle$$

$$\leq -\left(\|P_{g,h}x - x\| - \frac{1}{2}\|x - S_nx\|\right)^2 + \frac{1}{4}\|x - S_nx\|^2 \leq \frac{1}{4}\|x - S_nx\|^2.$$

$$(4.4)$$

By (4.2), (4.3), and (4.4), each S_n satisfies

$$\|S_n x - p\|^2 + \frac{1}{2}(1 + \beta_n)\|x - S_n x\|^2 \le \|x - p\|^2$$
(4.5)

for all $p \in C$ and $x \in H$. Since $(1 + \beta_n)/2 > 0$, we know that each S_n is quasinonexpansive.

Let $\{x_n\}$ be a bounded sequence in H such that $||x_n - p|| - ||S_n x_n - p|| \to 0$ for some $p \in C$. Since $\{S_n x_n\}$ is bounded, it follows from (4.5) that

$$\frac{1}{2}(1+\beta_n)\|x_n-S_nx_n\|^2 \le \|x_n-p\|^2 - \|S_nx_n-p\|^2 \to 0$$

and hence $S_n x_n - x_n \to 0$ by $\inf_n (1 + \beta_n) > 0$. Thus $\{S_n\}$ is strongly quasinonexpansive type.

We finally show (iii). Let $\{y_n\}$ be a bounded sequence in H such that $S_n y_n - y_n \rightarrow 0$. By the definition of S_n , we have

$$||P_{g,h}y_n - y_n|| = \frac{1}{1 - \beta_n} ||S_ny_n - y_n||$$

for all $n \in \mathbb{N}$. Since $\inf_n(1 - \beta_n) > 0$, we obtain $P_{g,h}y_n - y_n \to 0$. Consequently, by (S1) and (S3), we know that $\{S_n\}$ satisfies the condition (Z).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Author details

¹Department of Economics, Chiba University, Yayoi-cho, Inage-ku, Chiba-shi, Chiba, 263-8522, Japan. ²Department of Computer Science and Intelligent Systems, Oita University, Dannoharu, Oita-shi, Oita, 870-1192, Japan.

Acknowledgements

This paper is dedicated to Professor Wataru Takahashi on the occasion of his 70th birthday.

Received: 27 September 2013 Accepted: 18 December 2013 Published: 22 Jan 2014

References

- 1. Moudafi, A: Viscosity approximation methods for fixed-points problems. J. Math. Anal. Appl. 241, 46-55 (2000)
- 2. Aoyama, K, Kimura, Y, Kohsaka, F: Strong convergence theorems for strongly relatively nonexpansive sequences and applications. J. Nonlinear Anal. Optim. **3**, 67-77 (2012)
- 3. Xu, H-K: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279-291 (2004)
- 4. Suzuki, T: Moudafi's viscosity approximations with Meir-Keeler contractions. J. Math. Anal. Appl. 325, 342-352 (2007)

- 5. Aoyama, K, Kimura, Y: Viscosity approximation methods with a sequence of contractions. CUBO (to appear)
- 6. Halpern, B: Fixed points of nonexpanding maps. Bull. Am. Math. Soc. 73, 957-961 (1967)
- 7. Maingé, P-E: The viscosity approximation process for quasi-nonexpansive mappings in Hilbert spaces. Comput. Math. Appl. **59**, 74-79 (2010)
- Wongchan, K, Saejung, S: On the strong convergence of viscosity approximation process for quasinonexpansive mappings in Hilbert spaces. Abstr. Appl. Anal. 2011, Article ID 385843 (2011)
- 9. Yamada, I, Ogura, N: Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25, 619-655 (2004)
- 10. Cegielski, A, Zalas, R: Methods for variational inequality problem over the intersection of fixed point sets of guasi-nonexpansive operators. Numer. Funct. Anal. Optim. **34**, 255-283 (2013)
- 11. Dotson, WG Jr.: Fixed points of quasi-nonexpansive mappings. J. Aust. Math. Soc. 13, 167-170 (1972)
- 12. Takahashi, W: Introduction to Nonlinear and Convex Analysis. Yokohama Publishers, Yokohama (2009)
- Maingé, P-E: Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 16, 899-912 (2008)
- 14. Aoyama, K: Asymptotic fixed points of sequences of quasi-nonexpansive type mappings. In: Banach and Function Spaces III, pp. 343-350. Yokohama Publishers, Yokohama (2011)
- Aoyama, K, Kimura, Y: Strong convergence theorems for strongly nonexpansive sequences. Appl. Math. Comput. 217, 7537-7545 (2011)
- 16. Aoyama, K, Kohsaka, F, Takahashi, W: Strong convergence theorems by shrinking and hybrid projection methods for relatively nonexpansive mappings in Banach spaces. In: Nonlinear Analysis and Convex Analysis, pp. 7-26. Yokohama Publishers, Yokohama (2009)
- 17. Aoyama, K, Kohsaka, F, Takahashi, W: Strongly relatively nonexpansive sequences in Banach spaces and applications. J. Fixed Point Theory Appl. 5, 201-224 (2009)
- Aoyama, K, Kimura, Y, Takahashi, W, Toyoda, M: On a strongly nonexpansive sequence in Hilbert spaces. J. Nonlinear Convex Anal. 8, 471-489 (2007)
- 19. Aoyama, K, Kimura, Y, Takahashi, W, Toyoda, M: Strongly nonexpansive sequences and their applications in Banach spaces. In: Fixed Point Theory and Its Applications, pp. 1-18. Yokohama Publishers, Yokohama (2008)
- 20. Xu, H-K: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. (2) 66, 240-256 (2002)
- 21. Aoyama, K, Kimura, Y, Takahashi, W, Toyoda, M: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. **67**, 2350-2360 (2007)
- 22. Aoyama, K, Kimura, Y: A note on the hybrid steepest descent methods. arXiv:1101.0881 [math.FA]
- 23. Bauschke, HH, Borwein, JM: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367-426 (1996)
- 24. Bauschke, HH, Combettes, PL: A weak-to-strong convergence principle for Fejér-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248-264 (2001)
- Butnariu, D, Iusem, AN: Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization. Applied Optimization, vol. 40. Kluwer Academic, Dordrecht (2000)

10.1186/1687-1812-2014-17

Cite this article as: Aoyama and Kohsaka: Viscosity approximation process for a sequence of quasinonexpansive mappings. *Fixed Point Theory and Applications* 2014, 2014:17

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com