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Abstract
We study the viscosity approximation method due to Moudafi for a fixed point
problem of quasinonexpansive mappings in a Hilbert space. First, we establish a
strong convergence theorem for a sequence of quasinonexpansive mappings. Then
we employ our result to approximate a solution of the variational inequality problem
over the common fixed point set of the sequence of quasinonexpansive mappings.
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1 Introduction
Let C be a nonempty closed convex subset of a Hilbert space. This paper is devoted to the
study of strong convergence of a sequence {xn} in C defined by an arbitrary point x ∈ C
and

xn+ = αnfn(xn) + ( – αn)Tnxn (.)

for n ∈ N, where αn is a real number in [, ], fn is a contraction-like mapping on C, and
Tn is a quasinonexpansive mapping on C. This iterative method (.) is called the viscosity
approximation method []. In Section , we establish that, under some appropriate as-
sumptions, the sequence {xn} converges strongly to a certain common fixed point of {Tn}
by using the technique developed in []. Then, in Section , we apply our result to ap-
proximate a solution of a variational inequality problem over the common fixed point set
of {Tn}.
The viscosity approximation method (.) is based on the study of Moudafi [], who

considered a fixed point problem of a single nonexpansive mapping and proved strong
convergence of sequences generated by themethod. After that, Xu [] extendedMoudafi’s
results [] in the framework of Hilbert spaces and Banach spaces; Suzuki [] gave simple
proofs of Xu’s results []; Aoyama and Kimura [] investigated a relationship between
viscosity approximation methods and Halpern [] type iterative methods for a sequence
of nonexpansive mappings.
On the other hand, Maingé [] adopted the viscosity approximation method for a fixed

point problem of a single quasinonexpansive mapping; Wongchan and Saejung [] ex-
tendedMaingé’s result []. Ourmain result (Theorem .) is a generalization ofWongchan
and Saejung’s result [] and is closely related to the study in []. Moreover, it is also appli-
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cable to an approximationmethod, which is called the hybrid steepest descent method [,
], for a variational inequality problem over the common fixed point set of a sequence of
quasinonexpansive mappings.

2 Preliminaries
Throughout the present paper, H denotes a real Hilbert space, 〈·, ·〉 the inner product of
H , ‖ · ‖ the norm of H , C a nonempty closed convex subset of H , I the identity mapping
on H , R the set of real numbers, and N the set of positive integers. Strong convergence of
a sequence {xn} in H to x ∈H is denoted by xn → x and weak convergence by xn ⇀ x.
Let T : C →H be a mapping. The set of fixed points of T is denoted by Fix(T). A map-

pingT is said to be quasinonexpansive if Fix(T) �= ∅ and ‖Tx–p‖ ≤ ‖x–p‖ for all x ∈ C and
p ∈ Fix(T); T is said to be nonexpansive if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C; T is said to
be strongly quasinonexpansive if T is quasinonexpansive and Txn – xn →  whenever {xn}
is a bounded sequence in C and ‖xn – p‖ – ‖Txn – p‖ →  for some point p ∈ Fix(T); T is
demiclosed at  if Tp =  whenever {xn} is a sequence in C such that xn ⇀ p and Txn → .
We know that if T : C → H is quasinonexpansive, then Fix(T) is closed and convex; see
[, Theorem ].
It is known that, for each x ∈H , there exists a unique point x ∈ C such that

‖x – x‖ =min
{‖x – y‖ : y ∈ C

}
.

Such a point x is denoted by PC(x) and PC is called the metric projection of H onto C. It
is known that the metric projection PC is nonexpansive; see [].
Let f : C → C be a mapping, F a nonempty subset of C, and θ a real number in [, ).

A mapping f is said to be a θ -contraction with respect to F if ‖f (x) – f (z)‖ ≤ θ‖x – z‖ for
all x ∈ C and z ∈ F ; f is said to be a θ -contraction if f is a θ -contraction with respect to C.
By definition, it is easy to check the following results.

Lemma . Let F be a nonempty subset of C and f : C → C a θ -contraction with respect
to F , where  ≤ θ < . If F is closed and convex, then PF ◦ f is a θ -contraction on F , where
PF is the metric projection of H onto F .

Lemma . Let f : C → C be a θ -contraction, where  ≤ θ <  and T : C → C a quasi-
nonexpansive mapping. Then f ◦ T is a θ -contraction with respect to Fix(T).

Let D be a nonempty subset of C. A sequence {fn} of mappings of C into H is said to be
stable on D [] if {fn(z) : n ∈N} is a singleton for every z ∈D. It is clear that if {fn} is stable
on D, then fn(z) = f(z) for all n ∈N and z ∈D.
A function τ : N → N is said to be eventually increasing [] if limn→∞ τ (n) = ∞ and

τ (n) ≤ τ (n + ) for all n ∈N. By definition, we easily obtain the following.

Lemma. Let τ : N →N be an eventually increasing function and {ξn} a sequence of real
numbers such that ξn → ξ . Then ξτ (n) → ξ .

The following is a direct consequence of [, Lemma .].

Lemma . ([, Lemma .]) Let {ξn} be a sequence of nonnegative real numbers which is
not convergent. Then there exist N ∈ N and an eventually increasing function τ : N → N

such that ξτ (n) ≤ ξτ (n)+ for all n ∈N and ξn ≤ ξτ (n)+ for all n ≥N .

http://www.fixedpointtheoryandapplications.com/content/2014/1/17
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Under the assumptions of Lemma ., we cannot choose a strictly increasing function τ ;
see [, Example .].
Let {Tn} be a sequence of mappings of C intoH such that F =

⋂∞
n= Fix(Tn) is nonempty.

Then
• {Tn} is said to be strongly quasinonexpansive type if each Tn is quasinonexpansive and
Tnxn – xn →  whenever {xn} is a bounded sequence in C and

‖xn – p‖ – ‖Tnxn – p‖ → 

for some point p ∈ F ;
• {Tn} is said to satisfy the condition (Z) [, –] if every weak cluster point of {xn}
belongs to F whenever {xn} is a bounded sequence in C such that Tnxn – xn → .

Remark . Since βn – αn →  if and only if β
n – α

n →  for all bounded sequences {αn}
and {βn} in [,∞), {Tn} is strongly quasinonexpansive type if and only if it is a strongly
relatively nonexpansive sequence in the sense of [, ]. See also [, ].

We know several examples of strongly quasinonexpansive type sequences satisfying the
condition (Z); see [] and Example . in Section .
The following lemma follows from [, Lemma .] and Remark ..

Lemma . Let {Tn} be a sequence of mappings of C into H such that F =
⋂∞

n= Fix(Tn) is
nonempty, τ : N →N an eventually increasing function, and {zn} a bounded sequence in C
such that ‖zn –p‖–‖Tτ (n)zn –p‖ →  for some p ∈ F . If {Tn} is strongly quasinonexpansive
type, then Tτ (n)zn – zn → .

In order to prove our main result in Section , we need the following lemmas.

Lemma . ([, Lemma .]) Let {Tn} be a sequence of mappings of C into H such that
F =

⋂∞
n= Fix(Tn) is nonempty, τ : N → N an eventually increasing function, and {zn} a

bounded sequence in C such that Tτ (n)zn – zn → . Suppose that {Tn} satisfies the condi-
tion (Z). Then every weak cluster point of {zn} belongs to F .

Lemma. ([, Lemma.]) Let {Tn} be a sequence ofmappings of C intoH , F a nonempty
closed convex subset of H , {zn} a bounded sequence in C such that Tnzn–zn → , and u ∈H .
Suppose that every weak cluster point of {zn} belongs to F . Then

lim sup
n→∞

〈Tnzn –w,u –w〉 ≤ ,

where w = PF (u).

The following lemma is well known; see [, ].

Lemma . Let {ξn} be a sequence of nonnegative real numbers, {δn} a sequence of real
numbers, and {βn} a sequence in [, ]. Suppose that ξn+ ≤ (–βn)ξn+βnδn for every n ∈N,
lim supn→∞ δn ≤ , and

∑∞
n= βn =∞. Then ξn → .

http://www.fixedpointtheoryandapplications.com/content/2014/1/17
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3 Strong convergence of a viscosity approximation process
In this section, we prove the following strong convergence theorem.

Theorem . Let H be a real Hilbert space, C a nonempty closed convex subset of H , {Sn}
a sequence of mappings of C into C such that F =

⋂∞
n= Fix(Sn) is nonempty, {αn} a sequence

in (, ] such that αn →  and
∑∞

n= αn = ∞, and {fn} a sequence of mappings of C into C
such that each fn is a θ -contraction with respect to F and {fn} is stable on F ,where  ≤ θ < .
Let {xn} be a sequence defined by x ∈ C and

xn+ = αnfn(xn) + ( – αn)Snxn (.)

for n ∈ N. Suppose that {Sn} is strongly quasinonexpansive type and satisfies the condi-
tion (Z). Then {xn} converges strongly to w ∈ F , where w is the unique fixed point of a con-
traction PF ◦ f.

Note that Lemma . implies that PF ◦ f is a θ -contraction on F and hence it has a unique
fixed point on F .
First, we show some lemmas; then we prove Theorem .. In the rest of this section, we

set

βn = αn
(
 + ( – θ )( – αn)

)

and

γn = α
n
∥∥fn(xn) –w

∥∥ + αn( – αn)
〈
Snxn –w, f(w) –w

〉

for n ∈N.

Lemma . {xn}, {Snxn}, and {fn(xn)} are bounded, and moreover,

‖xn+ –w‖ ≤ αn
∥∥fn(xn) –w

∥∥ + ‖Snxn –w‖ (.)

and

‖xn+ –w‖ ≤ ( – βn)‖xn –w‖ + γn (.)

hold for every n ∈N.

Proof Since fn is a θ -contraction with respect to F , Sn is quasinonexpansive, w ∈ F ⊂
Fix(Sn), and {fn} is stable on F , it follows that

‖xn+ –w‖
≤ αn

∥∥fn(xn) –w
∥∥ + ( – αn)‖Snxn –w‖

≤ αn
(∥∥fn(xn) – fn(w)

∥∥ +
∥∥fn(w) –w

∥∥)
+ ( – αn)‖Snxn –w‖

≤ (
 – αn( – θ )

)‖xn –w‖ + αn( – θ )
‖f(w) –w‖

 – θ
(.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/17
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for every n ∈N. Thus, by induction on n, we have

‖Snxn –w‖ ≤ ‖xn –w‖ ≤max
{‖x –w‖,∥∥f(w) –w

∥∥/( – θ )
}
.

Therefore, it turns out that {xn} and {Snxn} are bounded, and moreover, {fn(xn)} is also
bounded.
Equation (.) follows from (.).
Next, we show (.). By assumption, it follows that

〈
Snxn –w, fn(xn) –w

〉 ≤ ‖Snxn –w‖∥∥fn(xn) – fn(w)
∥∥ +

〈
Snxn –w, fn(w) –w

〉
≤ θ‖xn –w‖ + 〈

Snxn –w, f(w) –w
〉
,

and thus

‖xn+ –w‖ = α
n
∥∥fn(xn) –w

∥∥ + ( – αn)‖Snxn –w‖

+ αn( – αn)
〈
Snxn –w, fn(xn) –w

〉
≤ α

n
∥∥fn(xn) –w

∥∥ +
(
( – αn) + αn( – αn)θ

)‖xn –w‖

+ αn( – αn)
〈
Snxn –w, f(w) –w

〉
= ( – βn)‖xn –w‖ + γn (.)

for every n ∈N. Therefore, (.) holds. �

Lemma . The following hold:
•  < βn ≤  for every n ∈N;
• αn( – αn)/βn → /( – θ );
• α

n‖fn(xn) –w‖/βn → ;
•

∑∞
n= βn =∞.

Proof Since  < αn ≤  and – <  – θ ≤ , we know that

 < α
n = αn

(
 + (–)( – αn)

) ≤ βn ≤ αn
(
 + ( – αn)

)
= αn( – αn) ≤ .

It follows from αn →  that αn( – αn)/βn → /( – θ ).
Since {fn(xn)} is bounded by Lemma . and

α
n

βn
=

αn

 + ( – θ )( – αn)
→ ,

it follows that α
n‖fn(xn) –w‖/βn → .

Finally, we prove
∑∞

n= βn = ∞. Suppose that  – θ ≥ . Then it is clear that βn ≥ αn

for every n ∈ N. Thus,
∑∞

n= βn ≥ ∑∞
n= αn = ∞. Next, we suppose that  – θ < . Then it

is clear that βn > ( – θ )αn for every n ∈ N. Thus,
∑∞

n= βn ≥ ( – θ )
∑∞

n= αn = ∞. This
completes the proof. �

Lemma . {‖xn –w‖} is convergent.

http://www.fixedpointtheoryandapplications.com/content/2014/1/17
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Proof Weassume, in order to obtain a contraction, that {‖xn–w‖} is not convergent. Then
Lemma . implies that there existN ∈ N and an eventually increasing function τ : N →N

such that

‖xτ (n) –w‖ ≤ ‖xτ (n)+ –w‖ (.)

for every n ∈N and

‖xn –w‖ ≤ ‖xτ (n)+ –w‖ (.)

for every n≥N .
We show that Sτ (n)xτ (n) – xτ (n) → . Since Sτ (n) is quasinonexpansive and w ∈ F ⊂

Fix(Sτ (n)), it follows from (.), (.), and Lemmas . and . that

 ≤ ‖xτ (n) –w‖ – ‖Sτ (n)xτ (n) –w‖
≤ ‖xτ (n)+ –w‖ – ‖Sτ (n)xτ (n) –w‖
≤ ατ (n)

∥∥fτ (n)(xτ (n)) –w
∥∥ → 

as n → ∞. Since {xτ (n)} is bounded and {Sn} is strongly quasinonexpansive type, Lem-
ma . implies that Sτ (n)xτ (n) – xτ (n) → .
Since {Sn} satisfies the condition (Z), it follows from Lemma . that every weak cluster

point of {xτ (n)} belongs to F . Thus Lemma . shows that

lim sup
n→∞

〈
Sτ (n)xτ (n) –w, f(w) –w

〉 ≤ .

Moreover, Lemmas . and . imply that α
τ (n)‖fτ (n)(xτ (n)) – w‖/βτ (n) →  and ατ (n)( –

ατ (n))/βτ (n) → /( – θ ). Therefore, we obtain

lim sup
n→∞

γτ (n)

βτ (n)
≤ . (.)

On the other hand, from (.) and (.), we know that

‖xτ (n)+ –w‖ ≤ ( – βτ (n))‖xτ (n) –w‖ + γτ (n)

≤ ( – βτ (n))‖xτ (n)+ –w‖ + γτ (n)

for every n ∈N. Thus, by βτ (n) > , this shows that

‖xτ (n)+ –w‖ ≤ γτ (n)

βτ (n)
(.)

for every n ∈N.
Finally, we obtain a contradiction that ‖xn – w‖ → . Using (.), (.), and (.), we

conclude that

lim sup
n→∞

‖xn –w‖ ≤ lim sup
n→∞

‖xτ (n)+ –w‖ ≤ lim sup
n→∞

γτ (n)

βτ (n)
≤ ,

and hence ‖xn –w‖ → , which is a contradiction. �

http://www.fixedpointtheoryandapplications.com/content/2014/1/17
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Proof of Theorem . We first show that Snxn – xn → . Since Sn is quasinonexpansive, it
follows from (.) that

 ≤ ‖xn –w‖ – ‖Snxn –w‖ ≤ ‖xn –w‖ – ‖xn+ –w‖ + αn
∥∥fn(xn) –w

∥∥

for every n ∈N, so that ‖xn–w‖–‖Snxn–w‖ →  by Lemma ., αn → , and Lemma ..
Since {Sn} is strongly quasinonexpansive type and {xn} is bounded, we conclude that Snxn–
xn → .
Since {Sn} satisfies the condition (Z), Lemma . implies that

lim sup
n→∞

〈
Snxn –w, f(w) –w

〉 ≤ .

This shows that lim supn→∞ γn/βn ≤  by using Lemmas . and .. On the other hand,
it follows from (.) that

‖xn+ –w‖ ≤ ( – βn)‖xn –w‖ + βn
γn

βn

for every n ∈ N. Therefore, noting that
∑∞

n= βn = ∞ and using Lemma ., we conclude
that xn –w → . �

A direct consequence of Theorem . is the following corollary, which is a slight gener-
alization of [, Theorem .].

Corollary . Let H be a real Hilbert space, C a nonempty closed convex subset of H ,
S : C → C a strongly quasinonexpansive mapping, {αn} a sequence in (, ] such that αn →
 and

∑∞
n= αn = ∞, and f : C → C a θ -contraction with respect to F = Fix(S), where  ≤

θ < . Let {xn} be a sequence defined by x ∈ C and

xn+ = αnf (xn) + ( – αn)Sxn (.)

for n ∈N. Suppose that I–S is demiclosed at .Then {xn} converges strongly to w ∈ F ,where
w is the unique fixed point of a contraction PF ◦ f .

Proof Set Sn = S and fn = f for n ∈ N. Then it is clear that
⋂∞

n= Fix(Sn) = Fix(S), {Sn} is
strongly quasinonexpansive type, {Sn} satisfies the condition (Z), and {fn} is stable on C.
Thus Theorem . implies the conclusion. �

4 Application to a variational inequality problem
In this section, applyingTheorem., we study an approximationmethod for the following
variational inequality problem.

Problem . Let κ and η be positive real numbers such that η < κ . Let F be a nonempty
closed convex subset ofH andA : H →H a κ-strongly monotone and η-Lipschitz contin-
uousmapping, that is, we assume that 〈x–y,Ax–Ay〉 ≥ κ‖x–y‖ and ‖Ax–Ay‖ ≤ η‖x–y‖
for all x, y ∈ H . Then find z ∈ F such that

〈y – z,Az〉 ≥  for all y ∈ F .

http://www.fixedpointtheoryandapplications.com/content/2014/1/17
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The solution set of Problem . is denoted by VI(F ,A). Under the assumptions of Prob-
lem ., it is known that the following hold; see, for example, [].
• κ ≤ η,  ≤  – κ + η <  and I –A is a θ -contraction, where θ =

√
 – κ + η;

• Problem . has a unique solution and VI(F ,A) = Fix(PF (I –A)).

Remark . The assumption that η < κ in Problem . is not restrictive. Indeed, let F
be a nonempty closed convex subset of H and Ã a κ̃-strongly monotone and η̃-Lipschitz
continuous mapping, where κ̃ >  and η̃ > . Set A = μÃ, κ = μκ̃ , and η = μη̃, where μ

is a positive constant such that μη̃ < κ̃ . Then it is easy to verify that A is κ-strongly
monotone and η-Lipschitz continuous, η < κ , and moreover, VI(F ,A) =VI(F , Ã).

Using Theorem ., we obtain the following convergence theorem for Problem ..

Theorem . Let H , κ , η, and A be the same as in Problem .. Let {Sn} be a sequence
of mappings of H into H such that F =

⋂∞
n= Fix(Sn) is nonempty, and {αn} the same as in

Theorem .. Let {xn} be a sequence defined by x ∈H and

xn+ = Snxn – αnASnxn (.)

for n ∈ N. Suppose that {Sn} is strongly quasinonexpansive type and {Sn} satisfies the con-
dition (Z). Then {xn} converges strongly to the unique solution of Problem ..

Proof Set fn = (I –A)Sn for n ∈ N and θ =
√
 – κ + η. Since I –A is a θ -contraction and

Sn is quasinonexpansive, Lemma . implies that each fn is a θ -contraction with respect
to F . It is obvious that {fn} is stable on F . Moreover, it follows from (.) that

xn+ = αnfn(xn) + ( – αn)Snxn

for n ∈ N. Thus Theorem . implies that {xn} converges strongly to w = (PF ◦ f)(w) =
PF (I –A)w, which is the unique solution of Problem .. �

Remark . The iteration (.) is called the hybrid steepest descent method; see [, ]
for more details.

We finally construct an example of {Sn} in Theorem . by using the notion of a subgra-
dient projection.
Let g : H →R be a continuous and convex function such that

C =
{
x ∈H : g(x) ≤ 

}

is nonempty and h : H → H a mapping such that h(x) ∈ ∂g(x) for all x ∈ H , where ∂g
denotes the subdifferential mapping of g defined by

∂g(x) =
{
z ∈H : g(x) + 〈y – x, z〉 ≤ g(y) (∀y ∈H)

}

for all x ∈ H . Then the subgradient projection Pg,h : H → H with respect to g and h is
defined by Pg,hx = PL(x)x for all x ∈H , where PL(x) denotes the metric projection of H onto

http://www.fixedpointtheoryandapplications.com/content/2014/1/17
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the set L(x) defined by

L(x) =
{
y ∈H : g(x) +

〈
y – x,h(x)

〉 ≤ 
}

for all x ∈ H . Note that C is a subset of L(x) for all x ∈ H and that L(x) is a closed half
space for all x ∈H \C. According to [, Section ], [, Proposition .], and [, Propo-
sition ..], we know the following:
(S) Fix(Pg,h) = C;
(S) 〈z – Pg,hx,x – Pg,hx〉 ≤  for all z ∈ C and x ∈H ;
(S) if g(V ) is bounded for each bounded subset V of H , then I –Pg,h is demiclosed at .
It is known that the metric projection PD of H onto a nonempty closed convex subset

D of H coincides with the subgradient projection Pg,h with respect to g and h defined by
g(x) = infy∈D ‖x – y‖ for all x ∈H and

h(x) =

⎧⎨
⎩
 (x ∈ D);

(x – PDx)/‖x – PDx‖ (x ∈ H \D).

The subgradient projection is not necessarily nonexpansive. In fact, if g : R → R and
h : R → R are defined by g(x) =max{x, x – } for all x ∈ R and h(x) =  if x < ; h(x) =  if
x ≥ , then Pg,h is given by

Pg,h(x) =

⎧⎪⎪⎨
⎪⎪⎩
x (x ≤ );

 ( < x < );

/ (x ≥ )

and is not nonexpansive.
Using (S), (S), and (S), we show the following.

Example . Let g : H → R be a continuous and convex function such that C = {x ∈ H :
g(x) ≤ } is nonempty and g(V ) is bounded for each bounded subset V of H , h : H → H
a mapping such that h(x) ∈ ∂g(x) for all x ∈H , and {Sn} a sequence of mappings of H into
H defined by

Sn = βnI + ( – βn)Pg,h

for all n ∈ N, where {βn} is a sequence of real numbers such that – < infn βn and
supn βn < . Then the following hold:

(i) Fix(Sn) = C for all n ∈N;
(ii) {Sn} is strongly quasinonexpansive type;
(iii) {Sn} satisfies the condition (Z).

Proof Since βn �=  for all n ∈N, the part (i) obviously follows from (S).
We first show (ii). By (i), we know that

⋂∞
n= Fix(Sn) = C is nonempty. Let n ∈ N, p ∈ C,

and x ∈H be given. Then we have

‖Snx – p‖ + ‖x – Snx‖ – ‖x – p‖ = 〈Snx – x,Snx – p〉
= ( – βn)〈p – Snx,x – Pg,hx〉. (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/17
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It follows from (S) that

〈p – Snx,x – Pg,hx〉 ≤ 〈Pg,hx – Snx,x – Pg,hx〉. (.)

On the other hand, we also know that

〈Pg,hx – Snx,x – Pg,hx〉
= –‖Pg,hx – x‖ + 〈x – Snx,x – Pg,hx〉

≤ –
(

‖Pg,hx – x‖ – 

‖x – Snx‖

)

+



‖x – Snx‖ ≤ 


‖x – Snx‖. (.)

By (.), (.), and (.), each Sn satisfies

‖Snx – p‖ + 

( + βn)‖x – Snx‖ ≤ ‖x – p‖ (.)

for all p ∈ C and x ∈H . Since ( + βn)/ > , we know that each Sn is quasinonexpansive.
Let {xn} be a bounded sequence inH such that ‖xn–p‖–‖Snxn–p‖ →  for some p ∈ C.

Since {Snxn} is bounded, it follows from (.) that



( + βn)‖xn – Snxn‖ ≤ ‖xn – p‖ – ‖Snxn – p‖ → 

and hence Snxn – xn →  by infn( +βn) > . Thus {Sn} is strongly quasinonexpansive type.
We finally show (iii). Let {yn} be a bounded sequence in H such that Snyn – yn → . By

the definition of Sn, we have

‖Pg,hyn – yn‖ = 
 – βn

‖Snyn – yn‖

for all n ∈ N. Since infn( – βn) > , we obtain Pg,hyn – yn → . Consequently, by (S) and
(S), we know that {Sn} satisfies the condition (Z). �
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