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Abstract
In this paper, we prove strong convergence theorem for finding a common element
of the set of fixed point of a finite family of nonexpansive mappings and a finite family
of κi-strictly pseudocontractive mappings and the set of a finite family of the set of
solution of equilibrium problems by using the new mapping generated by a finite
family of nonexpansive mappings and a finite family of κi-strictly pseudocontractive
mappings and a sequences of positive real numbers. Furthermore, by using our main
result, we obtain two interesting theorems involving variational inequality problems
and variational inclusion problems. In the last section, we give numerical examples to
support our main results.
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1 Introduction
Let H be a real Hilbert space and C be a nonempty closed convex subset of H . A self
mapping f : C → C is a contraction on C if there exists a constant k ∈ [, ) such that
‖f (x) – f (y)‖ ≤ k‖x – y‖, ∀x, y ∈ C. Let T : C → C be a mapping, a point x ∈ C is called a
fixed point of T if and only if Tx = x. In this paper, we use F(T) to denote the set of fixed
point of T . Recall the following definitions.

Definition . A mapping T : C → C is called nonexpansive if and only if for all x, y ∈ C,

‖Tx – Ty‖ ≤ ‖x – y‖.

Definition . Amapping T : C → C is called κ-strictly pseudocontractive [] if and only
if there exists a constant κ ∈ [, ) such that for all x, y ∈ C,

‖Tx – Ty‖ ≤ ‖x – y‖ + κ
∥∥(I – T)x – (I – T)y

∥∥. (.)

For such case, T is also said to be a κ-strictly pseudo contraction.
Note that the class of κ-strict pseudo-contractions strictly includes the class of non-

expansive mappings, that is T is nonexpansive if and only if T is -strict pseudo-
contractive.
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Let F : C × C → R be a bifunction. The equilibrium problem for F is to determine its
equilibrium points, i.e., the set

EP(F) =
{
x ∈ C : F(x, y) ≥ ,∀y ∈ C

}
. (.)

Given T : C → H , let F(x, y) = 〈Tx, y – x〉 for all x, y ∈ C. Then z ∈ EP(F) if and only if
〈Tz, y – z〉 ≥  for all y ∈ C, that is, z is a solution of the variational inequality.
Equilibriumproblems,whichwere introduced in [] in , have had a great impact and

influence in the development of several branches of pure and applied sciences. Numerous
problems in physics, minimization problems, Nash equilibria in noncooperative games,
optimization and economics reduce to find a solution of EP(F) (see, for example, [–]).
Some methods have been proposed to solve the equilibrium problem (see, for example,
[–]).
In , Takahashi and Takahashi [] proved the following theorem.

Theorem . Let C be a nonempty closed convex subset of H . Let F be a bifunction from
C ×C to R satisfying
(A) F(x,x) = , ∀x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤ , ∀x, y ∈ C;
(A) ∀x, y, z ∈ C,

lim
t→+

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) ∀x ∈ C, y 
→ F(x, y) is convex and lower semicontinuous;
and let S be a nonexpansive mapping of C into H such that F(S) ∩ EP(G) �= ∅. Let f be a
contraction of H into itself, and let {xn} and {un} be sequences generated by x ∈H and

F(un, y) +

rn

〈y – un,un – xn〉 ≥ , ∀y ∈ C,

xn+ = αnf (xn) + ( – αn)Sun

for all n ∈N , where {αn} ⊂ [, ] and {rn} ⊂ (, ) satisfy (C)-(C) as follows:
(C) αn → ;
(C)

∑∞
n= αn =∞;

(C) either
∑∞

n= |αn+ – αn| < ∞ or limn→∞ αn+
αn

= ,
and lim infn→∞ rn >  and

∑∞
n= |rn+ – rn| < ∞.

Then {xn} and {un} converge strongly to z ∈ F(S)∩ EP(F), where z = PF(S)∩EP(F)f (z).

In , Kangtunyakarn and Suantai [] proved the strong convergence theorem by us-
ing the S-mapping generated by a finite family of strictly pseudocontractive mappings and
a finite family of real number as follows.

Theorem . Let H be a Hilbert space, let f be an α-contraction on H , and let A be a
strongly positive linear bounded self-adjoint operator with coefficient γ > . Assume that
 < γ < γ

α
. Let {Ti}Ni= be a finite family of κi-strictly pseudo contraction of H into itself

for some κi ∈ [, ) and κ = max{κi : i = , , . . . ,N} with
⋂N

i= F(Ti) �= ∅. Let Sn be the S-
mappings generated by T,T, . . . ,TN and α

(n)
 ,α(n)

 , . . . ,α(n)
N , where α

(n)
j = (αn,j

 ,αn,j
 ,αn,j

 ) ∈
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I × I × I , I = [, ], αn,j
 + α

n,j
 + α

n,j
 =  and κ < a ≤ α

n,j
 ,αn,j

 ≤ b <  for all j = , , . . . ,N – ,
κ < c ≤ α

n,N
 ≤ , κ ≤ α

n,N
 ≤ d < , κ ≤ α

n,j
 ≤ e <  for all j = , , . . . ,N . For a point u ∈ H

and x ∈H , let {xn} and {yn} be the sequences defined iteratively by

⎧⎨
⎩yn = βnxn + ( – βn)Snxn,

xn+ = αnγ (anu + ( – an)f (xn)) + (I – αnA)yn, n≥ ,
(.)

where {βn}, {αn} and {an} are sequences in [, ].Assume that the following conditions hold:
(i) limn→∞ αn = ,

∑∞
n= αn =∞ and limn→∞ an = ;

(ii)
∑∞

n= |αn+,j
 – α

n,j
 | <∞,

∑∞
n= |αn+,j

 – α
n,j
 | < ∞ for all j ∈ {, , , . . . ,N} and∑∞

n= |αn+ – αn| < ∞,
∑∞

n= |βn+ – βn| <∞ and
∑∞

n= |an+ – an| < ∞;
(iii) ≤ κ ≤ βn < θ <  for all n≥  for some θ ∈ (, ).

Then both {xn} and {yn} strongly converge to q ∈ ⋂N
i= F(Ti),which solves the following vari-

ational inequality

〈
γ f (q) –Aq,p – q

〉 ≤ , ∀p ∈
N⋂
i=

F(Ti).

Question Can we prove a strong convergence theorem for finding a common solution
of the set of fixed point of a finite family of nonexpansive mappings and a finite family of
strictly pseudocontractivemappings and a finite family of the set of solution of equilibrium
problems?

Let C be a nonempty closed convex subset of Hilbert space H . Let {Ti}Ni= be a finite
family of κi-strict pseudo-contractions of C into itself, and let {Si}Ni= be a finite family
of nonexpansive mappings of C into itself. For each n ∈ N and j = , , . . . ,N , let α

(n)
j =

(αn,j
 ,αn,j

 ,αn,j
 ) ∈ I × I × I , where I = [, ], α

n,j
 + α

n,j
 + α

n,j
 = . We define the mapping

SAn : C → C as follows:

Un, = I,

Un, = S
(
α
n,
 TUn, + α

n,
 Un, + α

n,
 I

)
,

Un, = S
(
α
n,
 TUn, + α

n,
 Un, + α

n,
 I

)
,

Un, = S
(
α
n,
 TUn, + α

n,
 Un, + α

n,
 I

)
,

...

Un,N– = SN–
(
α
n,N–
 TN–Un,N– + α

n,N–
 Un,N– + α

n,N–
 I

)
,

SAn =Un,N = SN
(
α
n,N
 TNUn,N– + α

n,N
 Un,N– + α

n,N
 I

)
. (.)

In Lemma ., under suitable conditions of the real sequences {αn,j
 }, {αn,j

 } and {αn,j
 } for

every j = , , . . . ,N , we show that F(SAn ) =
⋂N

i= F(Si)∩
⋂N

i= F(Ti) and SAn is a nonexpansive
mapping.
In this paper, motivated by the ongoing research and Theorems . and ., we prove

strong convergence theorem for finding a common solution of the set of fixed point of a
finite family of nonexpansive mappings and a finite family of strictly pseudocontractive
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mappings and a finite family of the set of solution of equilibrium problems by using the
mapping defined by (.). Furthermore, in the last section, we prove two interesting theo-
rems involving a finite family of the set of solutions of variational inequality problem and
variational inclusion problem. In the last section, we give numerical examples to support
our main results.

2 Preliminaries
In this section, we need the following lemmas to prove our main result. Let C be a closed
convex subset of a real Hilbert space H , let PC be the metric projection of H onto C, i.e.,
for x ∈H , PCx satisfies the property

‖x – PCx‖ =min
y∈C ‖x – y‖.

The following characterizes the projection PC .

Lemma . (See []) Given x ∈ H and y ∈ C. Then PCx = y if and only if the following
inequality holds

〈x – y, y – z〉 ≥ , ∀z ∈ C.

Lemma . (See []) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+ = ( – αn)sn + αnβn, ∀n≥ ,

where {αn}, {βn} satisfy the conditions

() {αn} ⊂ [, ],
∞∑
n=

αn =∞;

() lim sup
n→∞

βn ≤  or
∞∑
n=

|αnβn| < ∞.

Then limn→∞ sn = .

Lemma . (See []) Let {sn} be a sequence of nonnegative real numbers satisfying

sn+ = ( – αn)sn + δn, ∀n≥ ,

where {αn} is a sequence in (, ) and {δn} is a sequence such that

()
∞∑
n=

αn =∞;

() lim sup
n→∞

δn

αn
≤  or

∞∑
n=

|δn| < ∞.

Then limn→∞ sn = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/295
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Lemma . (See []) Let C be a nonempty closed convex subset of a real Hilbert space H ,
and let S : C → C be a self-mapping of C. If S is a κ-strict pseudo-contraction mapping,
then S satisfies the Lipschitz condition

‖Sx – Sy‖ ≤  + κ

 – κ
‖x – y‖, ∀x, y ∈ C.

For solving the equilibrium problem for a bifunction F : C ×C → R, let us assume that
F satisfies the following conditions:
(A) F(x,x) = , ∀x ∈ C;
(A) F is monotone, i.e., F(x, y) + F(y,x) ≤ , ∀x, y ∈ C;
(A) ∀x, y, z ∈ C,

lim
t→+

F
(
tz + ( – t)x, y

) ≤ F(x, y);

(A) ∀x ∈ C, y 
→ F(x, y) is convex and lower semicontinuous.
The following lemma appears implicitly in [].

Lemma . (See []) Let C be a nonempty closed convex subset of H , and let F be a bi-
function of C ×C into R satisfying (A)-(A). Let r >  and x ∈ H . Then there exists z ∈ C
such that

F(z, y) +

r
〈y – z, z – x〉 (.)

for all y ∈ C.

Lemma . (See []) Assume that F : C×C →R satisfies (A)-(A). For r >  and x ∈H ,
define a mapping Tr :H → C as follows:

Tr(x) =
{
z ∈ C : F(z, y) +


r
〈y – z, z – x〉 ≥ ,∀y ∈ C

}

for all z ∈ H . Then the following hold:
() Tr is single-valued;
() Tr is firmly nonexpansive, i.e.,

∥∥Tr(x) – Tr(y)
∥∥ ≤ 〈

Tr(x) – Tr(y),x – y
〉
, ∀x, y ∈H ;

() F(Tr) = EP(F);
() EP(F) is closed and convex.

Lemma . (See []) Let E be a uniformly convex Banach space, C be a nonempty closed
convex subset of E, and S : C → C be a nonexpansive mapping. Then I – S is demi-closed
at zero.

Definition . Let C be a nonempty convex subset of real Hilbert space. Let {Ti}Ni= be a
finite family of κi-strict pseudo-contractions ofC into itself, and let {Si}Ni= be a finite family
of nonexpansive mappings of C into itself. For each j = , , . . . ,N , let αj = (αj

,α
j
,α

j
) ∈

http://www.fixedpointtheoryandapplications.com/content/2013/1/295
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I × I × I , where I ∈ [, ] and α
j
 + α

j
 + α

j
 = . We define the mapping SA : C → C as

follows:

U = I,

U = S
(
α
TU + α

U + α
I

)
,

U = S
(
α
TU + α

U + α
I

)
,

U = S
(
α
TU + α

U + α
I

)
,

...

UN– = SN–
(
αN–
 TN–UN– + αN–

 UN– + αN–
 I

)
,

SA =UN = SN
(
αN
 TNUN– + αN

 UN– + αN
 I

)
.

This mapping is called the SA-mapping generated by S,S, . . . ,SN , T,T, . . . ,TN and
α,α, . . . ,αN .

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space. Let {Ti}Ni=
be a finite family of κi-strict pseudo-contractions of C into itself, and let {Si}Ni= be a finite
family of nonexpansive mappings of C into itself with

⋂N
i= F(Si) ∩ ⋂N

i= F(Ti) �= ∅ and κ =
max{κi : i = , , . . . ,N}, and let αj = (αj

,α
j
,α

j
) ∈ I × I × I , j = , , , . . . ,N , where I = [, ],

α
j
 +α

j
 +α

j
 = , αj

,α
j
 ∈ (κ , ) for all j = , , . . . ,N – and αN

 ∈ (κ , ], αN
 ∈ [κ , ), αj

 ∈ (κ , )
for all j = , , . . . ,N . Let SA be the SA-mapping generated by S,S, . . . ,SN ,T,T, . . . ,TN and
α,α, . . . ,αN . Then F(SA) =

⋂N
i= F(Si)∩

⋂N
i= F(Ti), and SA is a nonexpansive mapping.

Proof It is easy to see that
⋂N

i= F(Si) ∩ ⋂N
i= F(Ti) ⊆ F(SA). Let x ∈ F(SA) and x∗ ∈⋂N

i= F(Si)∩
⋂N

i= F(Ti). Then we have

∥∥SAx – x∗∥∥ =
∥∥SN(

αN
 TNUN–x + αN

 UN–x + αN
 x

)
– x∗∥∥

≤ ∥∥αN
 TNUN–x + αN

 UN–x + αN
 x – x∗∥∥

=
∥∥αN


(
TNUN–x – x∗) + αN


(
UN–x – x∗) + αN


(
x – x∗)∥∥

= αN

∥∥TNUN–x – x∗∥∥ + αN


∥∥UN–x – x∗∥∥ + αN


∥∥x – x∗∥∥

– αN
 αN

 ‖TNUN–x –UN–x‖ – αN
 αN

 ‖TNUN–x – x‖

– αN
 αN

 ‖UN–x – x‖

≤ αN

(∥∥UN–x – x∗∥∥ + κ

∥∥(I – TN )UN–x – (I – TN )x∗∥∥)
+ αN


∥∥UN–x – x∗∥∥ + αN


∥∥x – x∗∥∥ – αN

 αN
 ‖TNUN–x –UN–x‖

– αN
 αN

 ‖TNUN–x – x‖ – αN
 αN

 ‖UN–x – x‖

=
(
 – αN


)∥∥UN–x – x∗∥∥ + αN


(
κ – αN


)∥∥(I – TN )UN–x

∥∥

+
(
 –

(
 – αN


))∥∥x – x∗∥∥ – αN

 αN
 ‖TNUN–x – x‖

– αN
 αN

 ‖UN–x – x‖

≤ (
 – αN


)∥∥UN–x – x∗∥∥ + αN


(
κ – αN


)∥∥(I – TN )UN–x

∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/295
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+
(
 –

(
 – αN


))∥∥x – x∗∥∥ – αN

 αN
 ‖UN–x – x‖

≤
N∏

j=N–

(
 – α

j

)∥∥UN–x – x∗∥∥

+
(
 – αN


)
αN–


(
κ – αN–


)∥∥(I – TN–)UN–x

∥∥

–
(
 – αN


)
αN–
 αN–

 ‖UN–x – x‖

+

(
 –

N∏
j=N–

(
 – α

j

))∥∥x – x∗∥∥

≤
N∏

j=N–

(
 – α

j

)∥∥UN–x – x∗∥∥ +

(
 –

N∏
j=N–

(
 – α

j

))∥∥x – x∗∥∥

≤
N∏

j=N–

(
 – α

j

)∥∥UN–x – x∗∥∥

+
N∏

j=N–

(
 – α

j

)
αN–


(
κ – αN–


)∥∥(I – TN–)UN–x

∥∥

–
N∏

j=N–

(
 – α

j

)
αN–
 αN–

 ‖UN–x – x‖

+

(
 –

N∏
j=N–

(
 – α

j

))∥∥x – x∗∥∥

≤
N∏

j=N–

(
 – α

j

)∥∥UN–x – x∗∥∥ +

(
 –

N∏
j=N–

(
 – α

j

))∥∥x – x∗∥∥

...

≤
N∏
j=

(
 – α

j

)∥∥Ux – x∗∥∥

+
N∏
j=

(
 – α

j

)
α

(
κ – α


)∥∥(I – T)Ux

∥∥

–
N∏
j=

(
 – α

j

)
α
α


‖Ux – x‖

+

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥ (.)

≤
N∏
j=

(
 – α

j

)∥∥Ux – x∗∥∥ +

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥

≤
N∏
j=

(
 – α

j

)∥∥Ux – x∗∥∥ +

N∏
j=

(
 – α

j

)
α

(
κ – α


)∥∥(I – T)Ux

∥∥

–
N∏
j=

(
 – α

j

)
α
α


‖Ux – x‖

http://www.fixedpointtheoryandapplications.com/content/2013/1/295
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+

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥ (.)

≤
N∏
j=

(
 – α

j

)∥∥Ux – x∗∥∥ +

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥

≤
N∏
j=

(
 – α

j

)∥∥Ux – x∗∥∥

+
N∏
j=

(
 – α

j

)
α

(
κ – α


)∥∥(I – T)Ux

∥∥

–
N∏
j=

(
 – α

j

)
α
α


‖Ux – x‖ +

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥

≤ ∥∥x – x∗∥∥ +
N∏
j=

(
 – α

j

)
α

(
κ – α


)∥∥(I – T)x

∥∥. (.)

By (.), we have

N∏
j=

(
 – α

j

)
α

(
α
 – κ

)∥∥(I – T)x
∥∥ ≤ ∥∥x – x∗∥∥ –

∥∥x – x∗∥∥ = ,

which implies that Tx = x, that is, x ∈ F(T). It implies that

Ux = S
(
α
TUx + α

Ux + α
x

)
= Sx. (.)

By (.) and (.), we have

∥∥SAx – x∗∥∥ ≤
N∏
j=

(
 – α

j

)∥∥Sx – x∗∥∥

+
N∏
j=

(
 – α

j

)
α

(
κ – α


)∥∥(I – T)Ux

∥∥

–
N∏
j=

(
 – α

j

)
α
α


‖Ux – x‖

+

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥

≤ ∥∥x – x∗∥∥ –
N∏
j=

(
 – α

j

)
α
α


‖Ux – x‖. (.)

By (.), we have

N∏
j=

(
 – α

j

)
α
α


‖Ux – x‖ ≤ .

http://www.fixedpointtheoryandapplications.com/content/2013/1/295
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It implies that

x =Ux. (.)

By (.) and (.), we have x ∈ F(S). Hence, we have

x ∈ F(S)∩ F(T). (.)

Since x =Ux and (.), we have

∥∥SAx – x∗∥∥ ≤
N∏
j=

(
 – α

j

)∥∥Ux – x∗∥∥

+
N∏
j=

(
 – α

j

)
α

(
κ – α


)∥∥(I – T)Ux

∥∥

–
N∏
j=

(
 – α

j

)
α
α


‖Ux – x‖

+

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥

=
N∏
j=

(
 – α

j

)∥∥x – x∗∥∥

+
N∏
j=

(
 – α

j

)
α

(
κ – α


)∥∥(I – T)x

∥∥

+

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥.

It follows that

N∏
j=

(
 – α

j

)
α

(
α
 – κ

)∥∥(I – T)x
∥∥ ≤ ,

which implies that x = Tx, that is, x ∈ F(T). Since x =Ux = Tx, we have

Ux = S
(
α
TUx + α

Ux + α
x

)
= Sx. (.)

By (.), we have

∥∥SAx – x∗∥∥ ≤
N∏
j=

(
 – α

j

)∥∥Ux – x∗∥∥

+
N∏
j=

(
 – α

j

)
α

(
κ – α


)∥∥(I – T)Ux

∥∥
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–
N∏
j=

(
 – α

j

)
α
α


‖Ux – x‖

+

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥

≤
N∏
j=

(
 – α

j

)∥∥Sx – x∗∥∥

–
N∏
j=

(
 – α

j

)
α
α


‖Ux – x‖

+

(
 –

N∏
j=

(
 – α

j

))∥∥x – x∗∥∥

≤ ∥∥x – x∗∥∥ –
N∏
j=

(
 – α

j

)
α
α


‖Ux – x‖.

It follows that

N∏
j=

(
 – α

j

)
α
α


‖Ux – x‖ ≤ .

It implies that

x =Ux. (.)

By (.) and (.), we have x ∈ F(S). Hence, we have

x ∈ F(S)∩ F(T). (.)

By continuing in this way, we can show that x ∈ F(Si) ∩ F(Ti) and x = Uix for all i =
, , . . . ,N – . Finally, we shall show that x ∈ F(SN )∩ F(TN ). Since

∥∥SAx – x∗∥∥ ≤ (
 – αN


)∥∥UN–x – x∗∥∥

+ αN

(
κ – αN


)∥∥(I – TN )UN–x

∥∥

+
(
 –

(
 – αN


))∥∥x – x∗∥∥

=
(
 – αN


)∥∥SN–x – x∗∥∥ + αN


(
κ – αN


)∥∥(I – TN )x

∥∥

+
(
 –

(
 – αN


))∥∥x – x∗∥∥

≤ ∥∥x – x∗∥∥ + αN

(
κ – αN


)∥∥(I – TN )x

∥∥.

It implies that

αN

(
αN
 – κ

)∥∥(I – TN )x
∥∥ ≤ ,
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which implies that x = TNx, that is, x ∈ F(TN ). It implies that

x = SAx = SN
(
αN
 TNUN–x + αN

 UN–x + αN
 x

)
= SNx. (.)

Then we have x ∈ F(SN )∩ F(TN ). Hence F(SA) ⊆ ⋂N
i= F(Si)∩

⋂N
i= F(Ti).

Applying (.), we have that the mapping SA is a nonexpansive. �

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space. Let {Ti}Ni=
be a finite family of κi-strict pseudo-contractions of C into itself, and let {Si}Ni= be a finite
family of nonexpansive mappings of C into itself with κ = max{κi : i = , , . . . ,N}, and let
α
(n)
j = (αn,j

 ,αn,j
 ,αn,j

 ),αj = (αj
,α

j
,α

j
) ∈ I× I× I ,where I = [, ], αn,j

 +α
n,j
 +α

n,j
 =  and α

j
 +

α
j
 + α

j
 =  such that α

n,j
i → α

j
i ∈ [, ] as n → ∞ for i = ,  and j = , , , . . . ,N .Moreover,

for every n ∈ N, let SA and SAn be the SA-mapping generated by S,S, . . . ,SN , T,T, . . . ,TN

and α,α, . . . ,αN and S,S, . . . ,SN , T,T, . . . ,TN and α
(n)
 ,α(n)

 , . . . ,α(n)
N , respectively. Then

limn→∞ ‖SAn xn – SAxn‖ =  for every bounded sequence {xn} in C.

Proof Let {xn} be a bounded sequence in C, Uk and Un,k be generated by S,S, . . . ,SN ,
T,T, . . . ,TN and α,α, . . . ,αN and S,S, . . . ,SN , T,T, . . . ,TN and α

(n)
 ,α(n)

 , . . . ,α(n)
N , re-

spectively. For each n ∈N, we have

‖Un,xn –Uxn‖ =
∥∥S(αn,

 Txn +
(
 – α

n,


)
xn

)
– S

(
α
Txn +

(
 – α


)
xn

)∥∥
≤ ∥∥α

n,
 Txn +

(
 – α

n,


)
xn – α

Txn –
(
 – α


)
xn

∥∥
=

∣∣αn,
 – α


∣∣‖Txn – xn‖, (.)

and for k ∈ {, , . . . ,N}, by using Lemma ., we obtain

‖Un,kxn –Ukxn‖ =
∥∥Sk(αn,k

 TkUn,k–xn + α
n,k
 Un,k–xn + α

n,k
 xn

)
– Sk

(
αk
TkUk–xn + αk

Uk–xn + αk
xn

)∥∥
≤ ∥∥α

n,k
 TkUn,k–xn + α

n,k
 Un,k–xn + α

n,k
 xn

– αk
TkUk–xn – αk

Uk–xn – αk
xn

∥∥
=

∥∥α
n,k
 (TkUn,k–xn – TkUk–xn) +

(
α
n,k
 – αk


)
TkUk–xn

+
(
α
n,k
 – αk


)
xn + α

n,k
 (Un,k–xn –Uk–xn)

+
(
α
n,k
 – αk


)
Uk–xn

∥∥
≤ α

n,k
 ‖TkUn,k–xn – TkUk–xn‖ +

∣∣αn,k
 – αk


∣∣‖TkUk–xn‖

+
∣∣αn,k

 – αk

∣∣‖xn‖ + α

n,k
 ‖Un,k–xn –Uk–xn‖

+
∣∣αn,k

 – αk

∣∣‖Uk–xn‖

= α
n,k
 ‖TkUn,k–xn – TkUk–xn‖ +

∣∣αn,k
 – αk


∣∣‖TkUk–xn‖

+ α
n,k
 ‖Un,k–xn –Uk–xn‖ +

∣∣ – α
n,k
 – α

n,k
 – 

+ αk
 + αk


∣∣‖Uk–xn‖ +

∣∣αn,k
 – αk


∣∣‖xn‖

≤ α
n,k


 + κ

 – κ
‖Un,k–xn –Uk–xn‖
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+
∣∣αn,k

 – αk

∣∣‖TkUk–xn‖ + α

n,k
 ‖Un,k–xn –Uk–xn‖

+
(∣∣αk

 – α
n,k


∣∣ + ∣∣αn,k
 – αk


∣∣)‖Uk–xn‖ +

∣∣αn,k
 – αk


∣∣‖xn‖

≤  + κ

 – κ
‖Un,k–xn –Uk–xn‖ +

∣∣αn,k
 – αk


∣∣‖TkUk–xn‖

+
 – κ

 – κ
‖Un,k–xn –Uk–xn‖ +

(∣∣αk
 – α

n,k


∣∣
+

∣∣αn,k
 – αk


∣∣)‖Uk–xn‖ +

∣∣αn,k
 – αk


∣∣‖xn‖

≤ 
 – κ

‖Un,k–xn –Uk–xn‖ +
∣∣αn,k

 – αk

∣∣(‖TkUk–xn‖ + ‖Uk–xn‖

)
+

∣∣αn,k
 – αk


∣∣(‖Uk–xn‖ + ‖xn‖

)
. (.)

By (.) and (.), we have

∥∥SAn xn – SAxn
∥∥ = ‖Un,Nxn –UNxn‖

≤ 
 – κ

‖Un,N–xn –UN–xn‖ +
∣∣αn,N

 – αN

∣∣(‖TNUN–xn‖

+ ‖UN–xn‖
)
+

∣∣αn,N
 – αN


∣∣(‖UN–xn‖ + ‖xn‖

)
≤ 

 – κ

(


 – κ
‖Un,N–xn –UN–xn‖

+
∣∣αn,N–

 – αN–


∣∣(‖TN–UN–xn‖ + ‖UN–xn‖
)

+
∣∣αn,N–

 – αN–


∣∣(‖UN–xn‖ + ‖xn‖
))

+
∣∣αn,N

 – αN

∣∣(‖TNUN–xn‖ + ‖UN–xn‖

)
+

∣∣αn,N
 – αN


∣∣(‖UN–xn‖ + ‖xn‖

)
=

(


 – κ

)

‖Un,N–xn –UN–xn‖

+
N∑

j=N–

(


 – κ

)N–j∣∣αn,j
 – α

j

∣∣(‖TjUj–xn‖ + ‖Uj–xn‖

)

+
N∑

j=N–

(


 – κ

)N–j∣∣αn,j
 – α

j

∣∣(‖Uj–xn‖ + ‖xn‖

)
≤ · · ·

≤
(


 – κ

)N–

‖Un,xn –Uxn‖

+
N∑
j=

(


 – κ

)N–j∣∣αn,j
 – α

j

∣∣(‖TjUj–xn‖ + ‖Uj–xn‖

)

+
N∑
j=

(


 – κ

)N–j∣∣αn,j
 – α

j

∣∣(‖Uj–xn‖ + ‖xn‖

)

=
(


 – κ

)N–∣∣αn,
 – α


∣∣‖Txn – xn‖
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+
N∑
j=

(


 – κ

)N–j∣∣αn,j
 – α

j

∣∣(‖TjUj–xn‖ + ‖Uj–xn‖

)

+
N∑
j=

(


 – κ

)N–j∣∣αn,j
 – α

j

∣∣(‖Uj–xn‖ + ‖xn‖

)
. (.)

This together with the assumption α
n,j
i → α

j
i as n → ∞ (i = , , j = , , . . . ,N ), we can

conclude that

lim
n→∞

∥∥SAn xn – SAxn
∥∥ = . �

Lemma . Let C be a nonempty closed convex subset of a real Hilbert space. Let {Ti}Ni=
be a finite family of κi-strict pseudo-contractions of C into itself, and let {Si}Ni= be a finite
family of nonexpansive mappings of C into itself with κ = max{κi : i = , , . . . ,N}, and let
α
(n)
j = (αn,j

 ,αn,j
 ,αn,j

 ),αj = (αj
,α

j
,α

j
) ∈ I× I× I ,where I = [, ], αn,j

 +α
n,j
 +α

n,j
 =  and α

j
 +

α
j
 +α

j
 =  such that

∑∞
n= |αn+,j

 –α
n,j
 | <∞,

∑∞
n= |αn+,j

 –α
n,j
 | < ∞ for all j ∈ {, , , . . . ,N}.

For every n ∈ N, let SAn be the SA-mapping generated by S,S, . . . ,SN , T,T, . . . ,TN and
α
(n)
 ,α(n)

 , . . . ,α(n)
N . Then

∑∞
n= ‖SAn+zn – SAn zn‖ < ∞ for every bounded sequence {zn} in C.

Proof Let {zn} be a bounded sequence in C. For each n ∈ N and the definition of SA, we
have

‖Un+,zn –Un,zn‖ =
∥∥S(αn+,

 Tzn +
(
 – α

n+,


)
zn

)
– S

(
α
n,
 Tzn +

(
 – α

n,


)
zn

)∥∥
≤ ∥∥α

n+,
 Tzn +

(
 – α

n+,


)
zn – α

n,
 Tzn –

(
 – α

n,


)
zn

∥∥
=

∣∣αn+,
 – α

n,


∣∣‖Tzn – zn‖. (.)

For k ∈ {, , . . . ,N}, and using the same method as (.) in Lemma ., we have

‖Un+,kzn –Un,kzn‖ ≤ 
 – κ

‖Un+,k–zn –Un,k–zn‖ +
∣∣αn+,k

 – α
n,k


∣∣(‖TkUn,k–zn‖

+ ‖Un,k–zn‖
)
+

∣∣αn+,k
 – α

n,k


∣∣(‖Un,k–zn‖ + ‖zn‖
)
. (.)

From (.), (.), and using the same method as (.) in Lemma ., we have

∥∥SAn+zn – SAn zn
∥∥ ≤

(


 – κ

)N–∣∣αn+,
 – α

n,


∣∣‖Tzn – zn‖

+
N∑
j=

(


 – κ

)N–j∣∣αn+,j
 – α

n,j


∣∣(‖TjUn,j–zn‖ + ‖Un,j–zn‖
)

+
N∑
j=

(


 – κ

)N–j∣∣αn+,j
 – α

n,j


∣∣(‖Un,j–zn‖ + ‖zn‖
)
.

It implies that

∞∑
n=

∥∥SAn+zn – SAn zn
∥∥ <∞. �
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3 Main result
Theorem . Let C be a nonempty closed convex subset of Hilbert spaces H , and let f be
an α-contraction on H . Let Fi be a bifunction from C × C into R, for every i = , , . . . ,N
satisfying (A)-(A). Let {Ti}Ni= be a finite family of κi-strict pseudo-contractions of C into
itself, and let {Si}Ni= be a finite family of nonexpansive mappings of C into itself with F ≡⋂N

i= F(Si) ∩ ⋂N
i= F(Ti) ∩ ⋂N

i= EP(Fi) �= ∅ and κ = max{κi : i = , , . . . ,N}, and let α
(n)
j =

(αn,j
 ,αn,j

 ,αn,j
 ) ∈ I× I× I , j = , , , . . . ,N ,where I = [, ], αn,j

 +α
n,j
 +α

n,j
 = , αn,j

 ,αn,j
 ,αn,j

 ∈
[a,b] ⊂ (κ , ) for all j = , , . . . ,N . Let SAn be the SA-mapping generated by S,S, . . . ,SN ,
T,T, . . . ,TN and α

(n)
 ,α(n)

 , . . . ,α(n)
N . Let {xn} and {zn} be the sequences generated by x ∈ C

and
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fi(uin, y) +


rin

〈y – uin,uin – xn〉 ≥ , ∀y ∈ C and i = , , . . . ,N ,

zn =
∑N

i= δ
i
nuin,

xn+ = αnf (zn) + ( – αn)SAn zn, ∀n≥ ,

(.)

where {αn} is a sequence in [, ]. Assume that the following conditions hold:
(i) limn→∞ αn = ,

∑∞
n= αn =∞;

(ii)
∑∞

n= |αn+,j
 – α

n,j
 | <∞,

∑∞
n= |αn+,j

 – α
n,j
 | < ∞, for all j ∈ {, , , . . . ,N} and∑∞

n= |αn+ – αn| < ∞;
(iii)

∑N
i= δ

i
n = ,

∑∞
n= |δin+ – δin| <∞ and limn→∞ δin = δi ∈ (κ , ), for every i = , , . . . ,N ;

(iv) κ < θ ≤ rin ≤ η, for every i = , , . . . ,N and
∑∞

n= |rin+ – rin| < ∞.
Then the sequence {xn} converges strongly to x∗ = PFf (x∗).

Proof Let p ∈ F, we have p ∈ ⋂N
i= EP(Fi) fromLemma., we obtain p ∈ ⋂N

i= F(Trin ). Since

Fi
(
uin, y

)
+


rin

〈
y – uin,u

i
n – xn

〉 ≥ , ∀y ∈ C and i = , , . . . ,N . (.)

Again from Lemma ., we have uin = Trinxn for every i = , , . . . ,N . By definition of xn, we
have

‖xn+ – p‖ ≤ αn
∥∥f (zn) – p

∥∥ + ( – αn)
∥∥SAn zn – p

∥∥
≤ αn

∥∥f (zn) – f (p)
∥∥ + αn

∥∥f (p) – p
∥∥ + ( – αn)

∥∥SAn zn – p
∥∥

≤ αnα‖zn – p‖ + αn
∥∥f (p) – p

∥∥ + ( – αn)‖zn – p‖
= αn

∥∥f (p) – p
∥∥ +

(
 – αn( – α)

)‖zn – p‖

= αn
∥∥f (p) – p

∥∥ +
(
 – αn( – α)

)∥∥∥∥∥
N∑
i=

δin
(
uin – p

)∥∥∥∥∥
≤ αn

∥∥f (p) – p
∥∥ +

(
 – αn( – α)

) N∑
i=

δin
∥∥uin – p

∥∥
≤ αn

∥∥f (p) – p
∥∥ +

(
 – αn( – α)

)‖xn – p‖. (.)

Put K = max{‖x – p‖, ‖f (p)–p‖
–α

}. By (.), we can show by induction that ‖xn – p‖ ≤ K ,
∀n ∈N. This implies that {xn} is bounded, and so are {uin}, for every i = , , . . . ,N and {zn}.
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Next, we will show that

lim
n→∞‖xn+ – xn‖ = . (.)

By nonexpansiveness of xn, we have

‖xn+ – xn‖ =
∥∥αnf (zn) + ( – αn)SAn zn – αn–f (zn–) – ( – αn–)SAn–zn–

∥∥
=

∥∥αn
(
f (zn) – f (zn–)

)
+ (αn – αn–)f (zn–) + ( – αn)

(
SAn zn – SAn–zn–

)
+ (αn– – αn)SAn–zn–

∥∥
≤ αn

∥∥f (zn) – f (zn–)
∥∥ + |αn – αn–|

∥∥f (zn–)∥∥ + ( – αn)
∥∥SAn zn – SAn–zn–

∥∥
+ |αn– – αn|

∥∥SAn–zn–∥∥
≤ αnα‖zn – zn–‖ + |αn – αn–|

∥∥f (zn–)∥∥
+ ( – αn)

(∥∥SAn zn – SAn zn–
∥∥ +

∥∥SAn zn– – SAn–zn–
∥∥)

+ |αn– – αn|
∥∥SAn–zn–∥∥

≤ (
 – αn( – α)

)‖zn – zn–‖ + |αn – αn–|
∥∥f (zn–)∥∥

+ ( – αn)
∥∥SAn zn– – SAn–zn–

∥∥ + |αn– – αn|
∥∥SAn–zn–∥∥

=
(
 – αn( – α)

)(∥∥∥∥∥
N∑
i=

δinu
i
n –

N∑
i=

δin–u
i
n–

∥∥∥∥∥
)
+ |αn – αn–|

∥∥f (zn–)∥∥
+ ( – αn)

∥∥SAn zn– – SAn–zn–
∥∥ + |αn– – αn|

∥∥SAn–zn–∥∥
=

(
 – αn( – α)

)(∥∥∥∥∥
N∑
i=

δin
(
uin – uin–

)
+

N∑
i=

(
δin – δin–

)
uin–

∥∥∥∥∥
)

+ |αn – αn–|
∥∥f (zn–)∥∥ + ( – αn)

∥∥SAn zn– – SAn–zn–
∥∥

+ |αn– – αn|
∥∥SAn–zn–∥∥

≤ (
 – αn( – α)

)( N∑
i=

δin
∥∥uin – uin–

∥∥ +
N∑
i=

∣∣δin – δin–
∣∣∥∥uin–∥∥

)

+ |αn – αn–|
∥∥f (zn–)∥∥ + ( – αn)

∥∥SAn zn– – SAn–zn–
∥∥

+ |αn– – αn|
∥∥SAn–zn–∥∥. (.)

From Lemma ., we have

∞∑
n=

∥∥SAn+zn – SAn zn
∥∥ <∞. (.)

Since uin = Trinxn for every i = , , . . . ,N . By definition of Trin , we have

F(Trinxn, y) +

rin

〈y – Trinxn,Trinxn – xn〉 ≥ , ∀y ∈ C, (.)

similarly,

F(Trin+
xn+, y) +


rin+

〈y – Trin+
xn+,Trin+

xn+ – xn+〉 ≥ , ∀y ∈ C. (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/295
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From (.) and (.), we obtain

F(Trinxn,Trin+
xn+) +


rin

〈Trin+
xn+ – Trinxn,Trinxn – xn〉 ≥  (.)

and

F(Trin+
xn+,Trinxn) +


rin+

〈Trinxn – Trin+
xn+,Trin+

xn+ – xn+〉 ≥ . (.)

By (.) and (.), we have


rin

〈Trin+
xn+ – Trinxn,Trinxn – xn〉 + 

rin+
〈Trinxn – Trin+

xn+,Trin+
xn+ – xn+〉 ≥ .

It follows that

〈
Trinxn – Trin+

xn+,
Trin+

xn+ – xn+
rin+

–
Trinxn – xn

rin

〉
≥ .

This implies that

 ≤
〈
Trin+

xn+ – Trinxn,Trinxn – Trin+
xn+ + Trin+

xn+ – xn –
rin
rin+

(Trin+
xn+ – xn+)

〉
.

It follows that

‖Trin+
xn+ – Trinxn‖

≤
〈
Trin+

xn+ – Trinxn,Trin+
xn+ – xn –

rin
rin+

(Trin+
xn+ – xn+)

〉

=
〈
Trin+

xn+ – Trinxn,xn+ – xn +
(
 –

rin
rin+

)
(Trin+

xn+ – xn+)
〉

≤ ‖Trin+
xn+ – Trinxn‖

∥∥∥∥xn+ – xn +
(
 –

rin
rin+

)
(Trin+

xn+ – xn+)
∥∥∥∥

≤ ‖Trin+
xn+ – Trinxn‖

(
‖xn+ – xn‖ +

∣∣∣∣ – rin
rin+

∣∣∣∣‖Trin+
xn+ – xn+‖

)

= ‖Trin+
xn+ – Trinxn‖

(
‖xn+ – xn‖ + 

rin+

∣∣rin+ – rin
∣∣‖Trin+

xn+ – xn+‖
)

≤ ‖Trin+
xn+ – Trinxn‖

(
‖xn+ – xn‖ + 

a
∣∣rin+ – rin

∣∣‖Trin+
xn+ – xn+‖

)
.

It follows that

∥∥uin+ – uin
∥∥ ≤ ‖xn+ – xn‖ + 

a
∣∣rin+ – rin

∣∣∥∥uin+ – xn+
∥∥ (.)

for every i = , , . . . ,N .
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Substitute (.) into (.), we have

‖xn+ – xn‖ ≤ (
 – αn( – α)

)( N∑
i=

δin
∥∥uin – uin–

∥∥ +
N∑
i=

∣∣δin – δin–
∣∣∥∥uin–∥∥

)

+ |αn – αn–|
∥∥f (zn–)∥∥ + ( – αn)

∥∥SAn zn– – SAn–zn–
∥∥

+ |αn– – αn|
∥∥SAn–zn–∥∥

≤ (
 – αn( – α)

)( N∑
i=

δin

(
‖xn+ – xn‖ + 

a
∣∣rin+ – rin

∣∣∥∥uin+ – xn+
∥∥)

+
N∑
i=

∣∣δin – δin–
∣∣∥∥uin–∥∥

)

+ |αn – αn–|
∥∥f (zn–)∥∥ + ( – αn)

∥∥SAn zn– – SAn–zn–
∥∥

+ |αn– – αn|
∥∥SAn–zn–∥∥

=
(
 – αn( – α)

)(‖xn+ – xn‖ +
N∑
i=

δin

a
∣∣rin+ – rin

∣∣∥∥uin+ – xn+
∥∥

+
N∑
i=

∣∣δin – δin–
∣∣∥∥uin–∥∥

)

+ |αn – αn–|
∥∥f (zn–)∥∥ + ( – αn)

∥∥SAn zn– – SAn–zn–
∥∥

+ |αn– – αn|
∥∥SAn–zn–∥∥

≤ (
 – αn( – α)

)‖xn+ – xn‖ +
N∑
i=

δin

a
∣∣rin+ – rin

∣∣∥∥uin+ – xn+
∥∥

+
N∑
i=

∣∣δin – δin–
∣∣∥∥uin–∥∥ + |αn – αn–|

∥∥f (zn–)∥∥
+

∥∥SAn zn– – SAn–zn–
∥∥ + |αn– – αn|

∥∥SAn–zn–∥∥. (.)

By (.), (.), conditions (iii), (iv) and Lemma ., we have

lim
n→∞‖xn+ – xn‖ = . (.)

From (.), (.) and condition (iv), we have

lim
n→∞

∥∥uin+ – uin
∥∥ = , ∀i = , , . . . ,N . (.)

Let p ∈ F. From uin = Trinxn for every i = , , . . . ,N , we have

∥∥uin – p
∥∥ = ‖Trinxn – Trinp‖

≤ 〈Trinxn – Trinp,xn – p〉

=


(∥∥uin – p

∥∥ + ‖xn – p‖ – ∥∥uin – xn
∥∥).
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It implies that

∥∥uin – p
∥∥ ≤ ‖xn – p‖ – ∥∥uin – xn

∥∥. (.)

By definition of {xn} and (.), we have

‖xn+ – p‖ ≤ αn
∥∥f (zn) – p

∥∥ + ( – αn)
∥∥SAn zn – p

∥∥

≤ αn
∥∥f (zn) – p

∥∥ + ( – αn)‖zn – p‖

= αn
∥∥f (zn) – p

∥∥ + ( – αn)

∥∥∥∥∥
N∑
i=

δin
(
uin – p

)∥∥∥∥∥


≤ αn
∥∥f (zn) – p

∥∥ + ( – αn)
N∑
i=

δin
∥∥uin – p

∥∥

≤ αn
∥∥f (zn) – p

∥∥ + ( – αn)
N∑
i=

δin
(‖xn – p‖ – ∥∥uin – xn

∥∥)

≤ αn
∥∥f (zn) – p

∥∥ + ‖xn – p‖ – ( – αn)
N∑
i=

δin
∥∥uin – xn

∥∥.

It implies that

( – αn)
N∑
i=

δin
∥∥uin – xn

∥∥ ≤ αn
∥∥f (zn) – p

∥∥ + ‖xn – p‖ – ‖xn+ – p‖

≤ αn
∥∥f (zn) – p

∥∥ +
(‖xn – p‖

+ ‖xn+ – p‖)‖xn+ – xn‖. (.)

From conditions (i), (iii) and (.), we have

lim
n→∞

∥∥uin – xn
∥∥ = , ∀i = , , . . . ,N . (.)

Since

xn+ – SAn zn = αn
(
f (zn) – SAn zn

)
,

from condition (i), we have

lim
n→∞

∥∥xn+ – SAn zn
∥∥ = . (.)

From the definition of zn, we have

‖zn – xn‖ =

∥∥∥∥∥
N∑
i=

δin
(
uin – xn

)∥∥∥∥∥
≤

N∑
i=

δin
∥∥uin – xn

∥∥.
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From condition (iii) and (.), we have

lim
n→∞‖zn – xn‖ = . (.)

Since

∥∥zn – SAn zn
∥∥ ≤ ‖zn – xn‖ + ‖xn – xn+‖ +

∥∥xn+ – SAn zn
∥∥,

by (.), (.) and (.), we have

lim
n→∞

∥∥zn – SAn zn
∥∥ = . (.)

Next, we show that

lim sup
n→∞

〈
f (z) – z,xn – z

〉 ≤ , (.)

where z = PFf (z). To show this inequality, take a subsequence {xnk } of {xn} such that

lim sup
n→∞

〈
f (z) – z,xn – z

〉
= lim

k→∞
〈
f (z) – z,xnk – z

〉
. (.)

Without loss of generality, we may assume that a subsequence {xnk } of {xn} converges
weakly to some q ∈H . From (.), we have that {znk } converges weakly to q.
Since κ < a ≤ α

n,j
 ,αn,j

 ,αn,j
 ≤ b <  for all j = , , . . . ,N .Without loss of generality, wemay

assume that

α
nk ,j
 → α

j
 ∈ (κ , ), α

nk ,j
 → α

j
 ∈ (κ , ) and α

nk ,j
 → α

j
 ∈ (κ , ) as k → ∞,

∀j = , , . . . ,N .

Let SA be the SA-mapping generated by S,S, . . . ,SN , T,T, . . . ,TN and β,β, . . . ,βN ,
where βj = (αj

,α
j
,α

j
), ∀j = , , . . . ,N . By Lemma ., SA is a nonexpansive mapping, and

F(SA) =
⋂N

i= F(Si)∩
⋂N

i= F(Ti).
By Lemma ., we have

lim
k→∞

∥∥SAnk znk – SAznk
∥∥ = . (.)

Since

∥∥znk – SAznk
∥∥ ≤ ∥∥znk – SAnk znk

∥∥ +
∥∥SAnk znk – SAznk

∥∥,
by (.), (.), we have

lim
k→∞

∥∥znk – SAznk
∥∥ = . (.)

Since {znk } converges weakly to q as k → ∞ (.) and Lemma ., we have

q ∈ F
(
SA

)
=

N⋂
i=

F(Si)∩
N⋂
i=

F(Ti). (.)
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Next, we show that q ∈ ⋂N
i= EP(Fi). To show this, we may assume that

lim
k→∞

rink = ri ∈ [θ ,η], ∀i = , , . . . ,N .

By Lemmas . and ., for every i = , , . . . ,N , we define Tri :H → C by

Tri (x) =
{
z ∈ C : Fi(z, y) +


ri

〈y – z, z – x〉 ≥ ,∀y ∈ C
}
, ∀x ∈H and i = , , . . . ,N .

Then we have

Fi(Trixn, y) +

ri

〈y – Trixn,Trixn – xn〉 ≥ , ∀y ∈ C and i = , , . . . ,N .

From (.) and uin = Trinxn, we have

Fi(Trinxn, y) +

rin

〈y – Trinxn,Trinxn – xn〉 ≥ , ∀y ∈ C and i = , , . . . ,N .

It implies that

Fi(Trixnk ,Trink
xnk ) +


ri

〈Trink
xnk – Trixnk ,Trixnk – xnk 〉 ≥ , ∀i = , , . . . ,N

and

Fi(Trink
xnk ,Trixnk ) +


rink

〈Trixnk – Trink
xnk ,Trink

xnk – xnk 〉 ≥ , ∀i = , , . . . ,N .

By (A), we have


ri

〈Trink
xnk – Trixnk ,Trixnk – xnk 〉 +


rink

〈Trixnk – Trink
xnk ,Trink

xnk – xnk 〉 ≥ .

It implies that

〈
Trink

xnk – Trixnk ,
Trixnk – xnk

ri
–
Trink

xnk – xnk
rink

〉
≥ .

It follows that

〈
Trink

xnk – Trixnk ,Trixnk – xnk –
ri

rink
(Trink

xnk – xnk )
〉
≥ .

Then

 ≤
〈
Trink

xnk – Trixnk ,Trixnk – Trink
xnk + Trink

xnk – xnk –
ri

rink
(Trink

xnk – xnk )
〉

=
〈
Trink

xnk – Trixnk ,Trixnk – Trink
xnk +

(
 –

ri

rink

)
(Trink

xnk – xnk )
〉
.
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It follows that

‖Trink
xnk – Trixnk‖ ≤

〈
Trink

xnk – Trixnk ,
(
 –

ri

rink

)
(Trink

xnk – xnk )
〉

≤ ‖Trink
xnk – Trixnk‖

∣∣∣∣ – ri

rink

∣∣∣∣‖Trink
xnk – xnk‖.

It implies that

‖Trink
xnk – Trixnk‖ ≤ 

a
∣∣rink – ri

∣∣‖Trink
xnk – xnk‖.

From limk→∞ rink = ri and (.), we have

lim
k→∞

‖Trink
xnk – Trixnk‖ = , ∀i = , , . . . ,N . (.)

For every i = , , . . . ,N , we have

‖xnk – Trixnk‖ ≤ ‖xnk – Trink
xnk‖ + ‖Trink

xnk – Trixnk‖
=

∥∥xnk – uink
∥∥ + ‖Trink

xnk – Trixnk‖,

by (.) and (.), we have

lim
k→∞

‖xnk – Trixnk‖ = , ∀i = , , . . . ,N . (.)

Since a subsequence {xnk } of {xn} converges weakly to q as k → ∞, from (.) and Lem-
ma ., we have

q ∈ F(Tri ), ∀i = , , . . . ,N .

Then

q ∈
N⋂
i=

F(Tri ). (.)

From Lemma ., we have EP(Fi) = F(Tri ), ∀i = , , . . . ,N . From (.), we have

q ∈
N⋂
i=

F(Tri ) =
N⋂
i=

EP(Fi). (.)

By (.) and (.), we have

q ∈ F. (.)

Since xnk ⇀ q as k → ∞ and q ∈ F and (.), we have

lim sup
n→∞

〈
f (z) – z,xn – z

〉
= lim

k→∞
〈
f (z) – z,xnk – z

〉
=

〈
f (z) – z,q – z

〉 ≤ .
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Finally, we show that {xn} converges strongly to z = PFf (z). Putting z = PFf (z), by nonex-
pansiveness of SA, we have

‖xn+ – z‖ =
∥∥αn

(
f (zn) – z

)
+ ( – αn)

(
SAn zn – z

)∥∥

≤ ( – αn)
∥∥SAn zn – z

∥∥ + αn
〈
f (zn) – z,xn+ – z

〉
= ( – αn)

∥∥SAn zn – z
∥∥ + αn

〈
f (zn) – f (z),xn+ – z

〉
+ αn

〈
f (z) – z,xn+ – z

〉
≤ (

 – αn + α
n
)‖zn – z‖ + αnα‖zn – z‖‖xn+ – z‖

+ αn
〈
f (z) – z,xn+ – z

〉
≤ (

 – αn + α
n
)‖zn – z‖ + αnα‖zn – z‖ + αnα‖xn+ – z‖

+ αn
〈
f (z) – z,xn+ – z

〉
≤ ( – αn + αnα)‖xn – z‖ + α

n‖xn – z‖ + αnα‖xn+ – z‖

+ αn
〈
f (z) – z,xn+ – z

〉
=

(
 – αnα – αn( – α)

)‖xn – z‖ + α
n‖xn – z‖ + αnα‖xn+ – z‖

+ αn
〈
f (z) – z,xn+ – z

〉
.

It implies that

‖xn+ – z‖ ≤
(
 –

αn( – α)
 – αnα

)
‖xn – z‖ + α

n
 – αnα

‖xn – z‖

+
αn

 – αnα

〈
f (z) – z,xn+ – z

〉
.

This implies that by condition (i), (.) and Lemma ., we have that the sequence {xn}
converges strongly to z = PFf (z). By (.), we have

‖zn – z‖ ≤ ‖zn – xn‖ + ‖xn – z‖ →  as n→ ∞.

This completes the proof. �

4 Applications
In this section, we apply our main result to prove strong convergence theorems involving
variational inclusion problems and variational inequality problems. To prove these results,
we need definition and lemmas as follows.
A set-valued mapping M : H → H is called monotone if for all x, y ∈ H , f ∈ Mx and

g ∈ My imply that 〈x – y, f – g〉 ≥ . A monotone mapping M : H → H is maximal if
the graph Graph(M) of M is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping M is maximal if and only if for (x, f ) ∈
H ×H , 〈x – y, f – g〉 ≥  for every (y, g) ∈Graph(M) implies that f ∈Mx.
Next, we consider the following so-called variational inclusion problem: Find a u ∈ H

such that

θ ∈ Bu +Mu, (.)
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where B :H →H ,M :H → H are two nonlinear mappings, and θ is zero vector inH (see,
for instance, [–]). The set of the solution of (.) is denoted by VI(H ,B,M).

Definition . (See []) LetM :H → H be amulti-valuedmaximalmonotonemapping,
then the single-valued mapping JM,λ :H →H defined by

JM,λ(u) = (I + λM)–(u), ∀u ∈H ,

is called the resolvent operator associated with M, where λ is any positive number, and I
is an identity mapping.

Lemma . (See []) u ∈ H is a solution of variational inclusion (.) if and only if u =
JM,λ(u – λBu), ∀λ > , i.e.,

VI(H ,B,M) = F
(
JM,λ(I – λB)

)
, ∀λ > .

Further, if λ ∈ (, α], then VI(H ,B,M) is a closed convex subset in H .

Lemma . (See []) The resolvent operator JM,λ associated with M is single-valued, non-
expansive for all λ >  and -inverse-strongly monotone.

A mapping A of C into H is called α-inverse stronglymonotone, see [], if there exists
a positive real number α such that

〈x – y,Ax –Ay〉 ≥ α‖Ax –Ay‖

for all x, y ∈ C. The variational inequality problem is to find u ∈ C such that

〈Au, v – u〉 ≥  (.)

for all v ∈ C. The set of solutions of the variational inequality is denoted by VI(C,A). We
need the following lemma to prove a strong convergence theorem in this section.

Lemma. (See []) Let C be a closed convex subset of Hilbert space H . Let Ai : C →H be
mappings, and let Gi : C → C be defined by Gi(y) = PC(I–λiAi)y with λi > , ∀i = , , . . . ,N .
Then x∗ ∈ ⋂N

i=VI(C,Ai) if and only if x∗ ∈ ⋂N
i= F(Gi).

Theorem . Let C be a nonempty closed convex subset of Hilbert spaces H , and let f be
an α-contraction on H . For every i = , , . . . ,N , let Fi be a bifunction from C × C into R

satisfying (A)-(A), let Ai : C →H be an αi-inverse strongly monotone, and let Gi : C → C
be a mapping defined by Gi(y) = PC(I – λiAi)y, ∀y ∈ C with λi ∈ (, ]⊂ (, αi). Let {Ti}Ni=
be a finite family of κi-strict pseudo-contractions of C into itself with F ≡ ⋂N

i=VI(C,Ai) ∩⋂N
i= F(Ti)∩ ⋂N

i= EP(Fi) �= ∅ and κ =max{κi : i = , , . . . ,N}, and let α
(n)
j = (αn,j

 ,αn,j
 ,αn,j

 ) ∈
I × I × I , j = , , , . . . ,N , where I = [, ], αn,j

 + α
n,j
 + α

n,j
 = , αn,j

 ,αn,j
 ,αn,j

 ∈ [a,b] ⊂ (κ , )
for all j = , , . . . ,N . Let SAn be the SA-mapping generated by G,G, . . . ,GN , T,T, . . . ,TN
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and α
(n)
 ,α(n)

 , . . . ,α(n)
N . Let {xn} and {zn} be the sequences generated by x ∈ C and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fi(uin, y) +


rin

〈y – uin,uin – xn〉 ≥ , ∀y ∈ C and i = , , . . . ,N ,

zn =
∑N

i= δ
i
nuin,

xn+ = αnf (zn) + ( – αn)SAn zn, ∀n≥ ,

(.)

where {αn} is a sequence in [, ]. Assume that the following conditions hold:
(i) limn→∞ αn = ,

∑∞
n= αn =∞;

(ii)
∑∞

n= |αn+,j
 – α

n,j
 | <∞,

∑∞
n= |αn+,j

 – α
n,j
 | < ∞ for all j ∈ {, , , . . . ,N} and∑∞

n= |αn+ – αn| < ∞;
(iii)

∑N
i= δ

i
n = ,

∑∞
n= |δin+ – δin| <∞ and limn→∞ δin = δi ∈ (κ , ) for every i = , , . . . ,N ;

(iv) κ < θ ≤ rin ≤ η for every i = , , . . . ,N and
∑∞

n= |rin+ – rin| <∞.
Then the sequence {xn} converges strongly to x∗ = PFf (x∗).

Proof First, we show that (I –λiAi) is a nonexpansive mapping for every i = , , . . . ,N . For
x, y ∈ C, we have

∥∥(I – λiAi)x – (I – λiAi)y
∥∥ =

∥∥x – y – λi(Aix –Aiy)
∥∥

= ‖x – y‖ – λi〈x – y,Aix –Aiy〉 + λ
i ‖Aix –Aiy‖

≤ ‖x – y‖ – αiλi‖Aix –Aiy‖ + λ
i ‖Aix –Aiy‖

= ‖x – y‖ + λi(λi – αi)‖Aix –Aiy‖

≤ ‖x – y‖. (.)

Thus, (I – λiAi) is a nonexpansive mapping, and so is Gi for all i = , , . . . ,N . Then we
obtain the desired result from Lemma . and Theorem .. �

Corollary . Let C be a nonempty closed convex subset of Hilbert spaces H , and let f
be an α-contraction on H . For every i = , , . . . ,N , let Fi be a bifunction from C × C into
R, satisfying (A)-(A), let Ai : C → H be an αi-inverse strongly monotone, and let Gi :
C → C be a mapping defined by Gi(y) = PC(I –λiAi)y, ∀y ∈ C with λi ∈ (, ]⊂ (, αi). Let
{Ti}Ni= be a finite family of nonexpansivemappings of C into itself with F ≡ ⋂N

i=VI(C,Ai)∩⋂N
i= F(Ti)∩⋂N

i= EP(Fi) �= ∅, and let α
(n)
j = (αn,j

 ,αn,j
 ,αn,j

 ) ∈ I × I × I , j = , , , . . . ,N , where
I = [, ], αn,j

 + α
n,j
 + α

n,j
 = , αn,j

 ,αn,j
 ,αn,j

 ∈ [a,b]⊂ (, ) for all j = , , . . . ,N . Let SAn be the
SA-mapping generated by G,G, . . . ,GN , T,T, . . . ,TN and α

(n)
 ,α(n)

 , . . . ,α(n)
N . Let {xn} and

{zn} be the sequences generated by x ∈ C and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fi(uin, y) +


rin

〈y – uin,uin – xn〉 ≥ , ∀y ∈ C and i = , , . . . ,N ,

zn =
∑N

i= δ
i
nuin,

xn+ = αnf (zn) + ( – αn)SAn zn, ∀n≥ ,

(.)

where {αn} is a sequence in [, ]. Assume that the following conditions hold:
(i) limn→∞ αn = ,

∑∞
n= αn =∞;

(ii)
∑∞

n= |αn+,j
 – α

n,j
 | <∞,

∑∞
n= |αn+,j

 – α
n,j
 | < ∞ for all j ∈ {, , , . . . ,N} and∑∞

n= |αn+ – αn| < ∞;
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(iii)
∑N

i= δ
i
n = ,

∑∞
n= |δin+ – δin| <∞ and limn→∞ δin = δi ∈ (, ) for every i = , , . . . ,N ;

(iv)  < θ ≤ rin ≤ η for every i = , , . . . ,N and
∑∞

n= |rin+ – rin| < ∞.
Then the sequence {xn} converges strongly to x∗ = PFf (x∗).

Proof Since {Ti}Ni= is a finite family of nonexpansive mappings, we have that {Ti}Ni= is a
finite family of κi-strict pseudo-contractive mappings. From Theorem ., we can draw
the desired conclusion. �

Theorem . Let C be a nonempty closed convex subset of Hilbert spaces H , and let f
be an α-contraction on H . For every i = , , . . . ,N , let Fi be a bifunction from C × C into
R satisfying (A)-(A). Let Mi : H → H be maximal monotone mappings for every i =
, , . . . ,N , and let Bi : H → H be a δi-inverse strongly monotone mapping for every i =
, , . . . ,N . Let Gi : H → H be a mapping defined by JMi ,η(I – ηBi)x = Gix for every x ∈ H
with η ∈ (, δi) i = , , . . . ,N . Let {Ti}Ni= be a finite family of κi-strict pseudo-contractions
of H into itself with F ≡ ⋂N

i=V (H ,Bi,Mi) ∩ ⋂N
i= F(Ti) ∩ ⋂N

i= EP(Fi) �= ∅ and κ =max{κi :
i = , , . . . ,N}, and let α

(n)
j = (αn,j

 ,αn,j
 ,αn,j

 ) ∈ I × I × I , j = , , , . . . ,N , where I = [, ],
α
n,j
 + α

n,j
 + α

n,j
 = , α

n,j
 ,αn,j

 ,αn,j
 ∈ [a,b] ⊂ (κ , ) for all j = , , . . . ,N . Let SAn be the SA-

mapping generated by G,G, . . . ,GN , T,T, . . . ,TN and α
(n)
 ,α(n)

 , . . . ,α(n)
N . Let {xn} and {zn}

be the sequences generated by x ∈H and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Fi(uin, y) +


rin

〈y – uin,uin – xn〉 ≥ , ∀y ∈ C and i = , , . . . ,N ,

zn =
∑N

i= δ
i
nuin,

xn+ = αnf (zn) + ( – αn)SAn zn, ∀n≥ ,

(.)

where {αn} is a sequence in [, ]. Assume that the following conditions hold:
(i) limn→∞ αn = ,

∑∞
n= αn =∞;

(ii)
∑∞

n= |αn+,j
 – α

n,j
 | <∞,

∑∞
n= |αn+,j

 – α
n,j
 | < ∞ for all j ∈ {, , , . . . ,N} and∑∞

n= |αn+ – αn| < ∞;
(iii)

∑N
i= δ

i
n = ,

∑∞
n= |δin+ – δin| <∞ and limn→∞ δin = δi ∈ (κ , ), for every i = , , . . . ,N ;

(iv) κ < θ ≤ rin ≤ η, for every i = , , . . . ,N and
∑∞

n= |rin+ – rin| < ∞.
Then the sequence {xn} converges strongly to x∗ = PFf (x∗).

Proof By using the same method as (.), we have that I – ηBi is a nonexpansive map-
ping for every i = , , . . . ,N . By Lemma ., we have JMi ,η(I – ηBi) = Gi is a nonexpansive
mapping for every i = , , . . . ,N . Then we obtain the desired result from Theorem ..

�

5 Example and numerical results
In the last section, we give numerical examples to support our main results.

Example . Let R be the set of real numbers. For every i = , , . . . ,N , let the mappings
Fi :R×R →R, Ti :R →R, Si :R→ R, f :R →R defined by

Fi(x, y) = i
(
y + xy – x

)
,

Tix = (–)i+


x,
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Six =
i

i + 
x,

fx =


x

for every x, y ∈R.
Suppose that SAn is the SA-mapping generated by S,S, . . . ,SN , T,T, . . . ,TN and

α
(n)
 ,α(n)

 , . . . ,α(n)
N , where α

(n)
j = (α(n,j)

 ,α(n,j)
 ,α(n,j)

 ) and α
(n,j)
 = α

(n,j)
 = α

(n,j)
 = 

 for every n≥ 
and j = , , . . . ,N . Let the sequences {xn} and {zn} be generated by (.), where αn = 

n ,
δin = ( ni +

n
N×N ) and rin =

in
n+ for every n ≥  and i = , , . . . ,N . Then the sequences {xn}

and {zn} converge strongly to .
Solution. For every i = , , . . . ,N . It is easy to see that Si is nonexpansive and Ti is


 -strictly pseudo contractive mappings with {} = ⋂N

i= F(Si)∩
⋂N

i= F(Ti).
Since SAn is the SA-mapping generated by S,S, . . . ,SN , T,T, . . . ,TN and α

(n)
 ,α(n)

 ,
. . . ,α(n)

N , where α
(n)
j = (α(n,j)

 α
(n,j)
 ,α(n,j)

 ) and α
(n,j)
 = α

(n,j)
 = α

(n,j)
 = 

 for every n ≥  and
j = , , . . . ,N , then we have

Un,x = x,

Un,x =



(



× –

Un, +




×Un, +



)
x,

Un,x =



(



× –

Un, +




×Un, +



)
x,

Un,x =



(



× –

Un, +




×Un, +



)
x,

...

Un,N–x =
(N – )

(N – ) + 

(



× –

Un,N– +




×Un,N– +



)
x,

SAn x =Un,Nx =
N

N + 

(



× –

Un,N– +




×Un,N– +



)
x

for every x ∈R. From Lemma ., we have {} =⋂N
i= F(Si)∩

⋂N
i= F(Ti) = F(SAn ). For every

n ≥  and i = , , . . . ,N , we can see that
∑N

i= δ
i
n =

∑N
i=(

n
i +

n
N×N ) = . From definition of

Fi, we have
⋂N

i= EP(Fi) = {}. Then {} =⋂N
i= F(Si)∩

⋂N
i= F(Ti)∩ ⋂N

i= EP(Fi) = F.
For every n≥  and i = , , . . . ,N , the mappings Fi, Ti, Si and αn, rin, δin satisfy conditions

in Theorem .. Then from Theorem ., we have the sequences {xn} and {zn} converge
to .
Next, we give numerical results to support this example. Let r >  and z ∈ R. For every

y ∈ R and i = , , . . . ,N , and from Lemma ., there exist x ∈ R such that

Fi(x, y) +

r
〈y – x,x – z〉 ≥ 

⇔ i
(
y + xy – x

)
+

r
〈y – x,x – z〉 ≥ 

⇔ iry + irxy – irx + (y – x)(x – z) ≥ 

⇔ iry + irxy – irx + xy – x – zy + zx ≥ 

⇔ iry + (rix + x – z)y –
(
irx + x – zx

) ≥ .
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Put G(y) = iry + (rix+ x– z)y– (irx + x – zx). Then G is a quadratic function of y with
coefficient a = ir, b = rix+x– z, c = –(irx +x – zx). Next, we compute the discriminant
� of G as follows:

� = b – ac

= (rix + x – z) + (ir)
(
irx + x – zx

)
= (rix + x) – z(rix + x) + z + irx + irx – irzx

= irx + irx + x – irzx – zx + z

= z +
(
ir + ir + 

)
x – zx(ir + )

=
(
z – x(ir + )

).
Since G(y) ≥  for all y ∈ R. If it has most one solution in R, so � ≤ . It implies that
z = x(ir + ). Then we have

x = Trz =
z

i(r) + 
(.)

for all r >  and i = , , . . . ,N . From (.) and (.), we have

uin = Trinxn =
xn

i(rin) + 
(.)

for every n≥  and i = , , . . . ,N . Since αn = 
n , δ

i
n = ( ni +

n
N×N ), r

i
n =

in
n+ and (.), we can

rewrite (.) as follows:

⎧⎨
⎩
zn =

∑N
i=(

n
i +

n
N×N )

xn
i( in

n+ )+
,

xn+ = 
n f (zn) + ( – 

n )S
A
n zn, ∀n≥ 

(.)

for every n≥  and i = , , . . . ,N .
Put N =  and initial points x = , x = – in (.) we have the following results

respectively.
The numerical results for initial points x =  and x = – were shown in Tables 

(Figure (b)) and  (Figure (a)), respectively. We observe that the sequences {xn} and {zn}
converge to  ∈ ⋂N

i= F(Si)∩
⋂N

i= F(Ti)∩ ⋂N
i= EP(Fi).

Table 1 The values of {zn} and {xn} with initial points x1 = 700, n = 8 and N = 8

n zn xn
1 75.9495089241 700.0000000000
2 1.8273618170 21.5559869697
3 0.0387720272 0.5073319122
4 0.0007709831 0.0106843198
5 0.0000147261 0.0002116628
6 0.0000002736 0.0000040337
7 0.0000000050 0.0000000748
8 0.0000000001 0.0000000014
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Table 2 The values of {zn} and {xn} with initial points x1 = –500, n = 8 and N = 8

n zn xn
1 –54.2496492315 –500.0000000000
2 –1.3052584407 –15.3971335498
3 –0.0276943051 –0.3623799373
4 –0.0005507022 –0.0076316570
5 –0.0000105186 –0.0001511877
6 –0.0000001955 –0.0000028812
7 –0.0000000036 –0.0000000535
8 –0.0000000001 –0.0000000010

Figure 1 The convergence comparison with different initial values (a) x1 = –500 and (b) x1 = 700.
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