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Abstract

In this paper, we prove strong convergence theorem for finding a common element
of the set of fixed point of a finite family of nonexpansive mappings and a finite family
of kj-strictly pseudocontractive mappings and the set of a finite family of the set of
solution of equilibrium problems by using the new mapping generated by a finite
family of nonexpansive mappings and a finite family of «;-strictly pseudocontractive
mappings and a sequences of positive real numbers. Furthermore, by using our main
result, we obtain two interesting theorems involving variational inequality problems
and variational inclusion problems. In the last section, we give numerical examples to
support our main results.

Keywords: nonexpansive mapping; strictly pseudocontractive mapping;
equilibrium problem; variational inequality problem; variational inclusion problem

1 Introduction

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. A self
mapping f : C — C is a contraction on C if there exists a constant k € [0,1) such that
If @®) —fl < kllx—yll, Vx,y € C. Let T: C — C be a mapping, a point x € C is called a
fixed point of T if and only if Tx = x. In this paper, we use F(T') to denote the set of fixed
point of T'. Recall the following definitions.

Definition 1.1 A mapping 7 : C — C is called nonexpansive if and only if for all x,y € C,
ITx =Tyl < llx =yl

Definition1.2 A mapping 7': C — C is called « -strictly pseudocontractive [1] if and only
if there exists a constant « € [0,1) such that for allx,y € C,

1T = Tyl < llx =yl + || (I - T)x— (I - T)y|". (L1)

For such case, T is also said to be a k-strictly pseudo contraction.

Note that the class of «-strict pseudo-contractions strictly includes the class of non-
expansive mappings, that is T is nonexpansive if and only if T is O-strict pseudo-
contractive.
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Let F: C x C — R be a bifunction. The equilibrium problem for F is to determine its
equilibrium points, i.e., the set

EP(F)={x€ C:F(x,y) > 0,¥y € C}. (1.2)

Given T : C — H, let F(x,y) = (Tx,y — x) for all x,y € C. Then z € EP(F) if and only if
(Tz,y —z) > 0 for all y € C, that is, z is a solution of the variational inequality.

Equilibrium problems, which were introduced in [2] in 1994, have had a great impact and
influence in the development of several branches of pure and applied sciences. Numerous
problems in physics, minimization problems, Nash equilibria in noncooperative games,
optimization and economics reduce to find a solution of EP(F) (see, for example, [2—4]).
Some methods have been proposed to solve the equilibrium problem (see, for example,
(5-71).

In 2007, Takahashi and Takahashi [8] proved the following theorem.

Theorem 1.1 Let C be a nonempty closed convex subset of H. Let F be a bifunction from
C x C to R satisfying

(A1) F(x,x)=0,Vx e C;

(A2) F is monotone, i.e., F(x,y) + F(y,x) <0,Vx,y € C;

(A3) Vx,y,z€ C,

lilgl F(tz +(1- t)x,y) < F(x,y);
t—0%
(A4) Vx € C,y > F(x,y) is convex and lower semicontinuous;
and let S be a nonexpansive mapping of C into H such that F(S) N EP(G) # 0. Let f be a
contraction of H into itself, and let {x,} and {u,} be sequences generated by x; € H and

1
F(”m}’)+—<3’—umun—xn)20, VyGC,
1,

n

Xn+l = ar(f(xn) + (1 - an)Sun

forall n e N, where {a,} C [0,1] and {r,} C (0,1) satisfy (C1)-(C3) as follows:
(C1) o, — 0;
(C2) Y02, oy = 00;
(C3) either Y .7 |1 — o] < 00 or lim,,_ o 0‘&’—;1 =1,

and iminf, oo 7, >0 and Y o) |Fps1 = 1l < 00.
Then {x,} and {u,} converge strongly to z € F(S) N EP(F), where z = Pgs\nepr)f (2).

In 2010, Kangtunyakarn and Suantai [9] proved the strong convergence theorem by us-
ing the S-mapping generated by a finite family of strictly pseudocontractive mappings and
a finite family of real number as follows.

Theorem 1.2 Let H be a Hilbert space, let f be an a-contraction on H, and let A be a
strongly positive linear bounded self-adjoint operator with coefficient y > 0. Assume that
O<y< g Let {T}}N, be a finite family of k;-strictly pseudo contraction of H into itself
for some «; € [0,1) and k = max{k; : i =1,2,...,N} with ﬂfilF(Ti) #@. Let S,, be the S-

mappings generated by Ty, Ts,..., Ty and ai”),ay),...,a;\'[’), where aj(”) = (a{’",ag’j,a;"j) €
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IxIxI,I=[01],« +O(2 +Ot —landlc<a<oz1 oz']<b<1forall] 1,2,...,N-1,
/<<C§05{"N<1K<oz <d<1/<<012’1<e<1f0rall] 1,2,. N.ForapomtueH

and x1 € H, let {x,} and {y,} be the sequences defined iteratively by

Yn = Bun + (L= Bu)Snxns
Xn+l = any(anu +(1- an)f(xn)) +({ - OlnA)ym n>1,

(1.3)

where {B,}, {a,} and {a,} are sequences in [0,1]. Assume that the following conditions hold:
(i) limyooay =0, Y ooy oty = 00 and lim,_, o a, = 0;
(ii) >0, |an+1] ”1| <00, Y |ozn+1] - oc;’jl <oo forallje{1,2,3,...,N} and
Yomei 1o =yl <00, Y02 |Buit — Bul <00 and Y ;21 |ap — an| < 00;
(iii) 0 <k <B,<0<1foralln=>1forsome6 € (0,1).
Then both {x,} and {y,} strongly converge to q € ﬂl | E(T;), which solves the following vari-
ational inequality

(vfle)-Aq,p-4q) =<0, VpeﬂF

Question Can we prove a strong convergence theorem for finding a common solution
of the set of fixed point of a finite family of nonexpansive mappings and a finite family of
strictly pseudocontractive mappings and a finite family of the set of solution of equilibrium
problems?

Let C be a nonempty closed convex subset of Hilbert space H. Let {T;}¥, be a finite
family of «;-strict pseudo-contractions of C into itself, and let {S;}Y; be a finite family
of nonexpansive mappings of C into itself. For each n e Nandj=12,..,N, let ot(”) =
(", ,oz3") €l x I x I, where I =[0,1], otl” +ay +ay’ =1 We deﬁne the mapping
§4:C — C as follows:

u}'l,o = [7
U, =S (" T, wly, »17),
nl =o01\0; L1y + @y Uy + o3
n2 n2 n2
Uy = Sa(”* Tollyy + oy * Uy + a3 °I),

n3 n3 n3
Un,?, 253(061 Tgunyz + 0y U,,,z +Ol3 1)

nN-1 mN-1 mN-1
Uyn-1=Sn-1 (061 Tnalyn-z + g™ Upn-o + 3’ 1)

§% = Uyn = Sn (o™ TnUnns + oy Uy + o™, 1.4)

In Lemma 2.8, under suitable conditions of the real sequences {e;” } {ay’ » } and {as’l } for
everyj=1,2,...,N, we show that F(§4) = mi:1 F(S)N ﬂi:l F(T;) and §% is a nonexpansive
mapping.

In this paper, motivated by the ongoing research and Theorems 1.1 and 1.2, we prove
strong convergence theorem for finding a common solution of the set of fixed point of a
finite family of nonexpansive mappings and a finite family of strictly pseudocontractive

Page 3 of 29
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mappings and a finite family of the set of solution of equilibrium problems by using the
mapping defined by (1.4). Furthermore, in the last section, we prove two interesting theo-
rems involving a finite family of the set of solutions of variational inequality problem and
variational inclusion problem. In the last section, we give numerical examples to support
our main results.

2 Preliminaries

In this section, we need the following lemmas to prove our main result. Let C be a closed
convex subset of a real Hilbert space H, let Pc be the metric projection of H onto C, i.e.,
for x € H, Pcx satisfies the property

¥ — Pcx|| = min |lx — y|l.
yeC

The following characterizes the projection Pc.

Lemma 2.1 (See [10]) Given x € H and y € C. Then Pcx =y if and only if the following
inequality holds

(x-—yy—-2)>0, VzeC.
Lemma 2.2 (See [11]) Let {s,} be a sequence of nonnegative real numbers satisfying
Sn+l = (1 - an)sn + Oln,Bn, Vn=>0,

where {a,.}, { B} satisfy the conditions
M) {a}clol, D =00

(2) limsupB, <0 or Z lotnBul < 00.

n—00
n=1

Then lim,_, o S, = 0.
Lemma 2.3 (See [12]) Let {s,} be a sequence of nonnegative real numbers satisfying
Sn+l = (1 - Oln)sn +68, VYn>0,

where {a,} is a sequence in (0,1) and {8,} is a sequence such that

1) ian = 00;
n=1

o0

Sn
(2) limsup— <0 or Zl5n|<oo.

n—oo Oy ol

Then lim,_,» s, = 0.
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Lemma 2.4 (See [13]) Let C be a nonempty closed convex subset of a real Hilbert space H,
and let S : C — C be a self-mapping of C. If S is a «k-strict pseudo-contraction mapping,
then S satisfies the Lipschitz condition

1+x
IS = Syll < T—llx =yll,  VayeC.

For solving the equilibrium problem for a bifunction F: C x C — R, let us assume that
F satisfies the following conditions:

(Al) F(x,x)=0,VxeC;

(A2) F is monotone, i.e., F(x,y) + F(y,x) <0,Vx,y € C;

(A3) Vx,9,z€ C,

lim F(tz +(1-1)x,y) < F(x,9);
t—0*

(A4) Vx € C, y+— F(x,y) is convex and lower semicontinuous.
The following lemma appears implicitly in [2].

Lemma 2.5 (See [2]) Let C be a nonempty closed convex subset of H, and let F be a bi-
function of C x C into R satisfying (A1)-(A4). Let r > 0 and x € H. Then there exists z € C
such that

F(z,y) + %(y—z,z—x) (2.1)

forallyeC.

Lemma 2.6 (See [14]) Assumethat F : C x C — R satisfies (A1)-(A4). Forr > 0andx € H,
define a mapping T, : H — C as follows:

1
T, (x) = {ze C:F(z,y) + ;(y—z,z—x) >0,Vye C}

forall z € H. Then the following hold:
(1) T, is single-valued,;
(2) T, is firmly nonexpansive, i.e.,

|7, - T.)||* < (T(0) - T,0),x ), Vx,y € H;

(3) F(T;) = EP(F);
(4) EP(F) is closed and convex.

Lemma 2.7 (See [15]) Let E be a uniformly convex Banach space, C be a nonempty closed
convex subset of E, and S : C — C be a nonexpansive mapping. Then I — S is demi-closed
at zero.

Definition 2.1 Let C be a nonempty convex subset of real Hilbert space. Let {T;}¥, be a
finite family of «;-strict pseudo-contractions of C into itself, and let {S;}%¥, be a finite family
of nonexpansive mappings of C into itself. For each j = 1,2,...,N, let o = (ai,o/Z,aé) €
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I x I x I, where I € [0,1] and o} + & + o = 1. We define the mapping $* : C — C as

follows:

Uy =1,
Uy = Sy (o TyUo + oy Uy + a31),
Uy = Sy (o Toly + o3 Uy + a31),

Us = S3(; T3Us + a3 Us + o31),

N-1 N-1 N-1
Un-1 = Snoa (o) Tvealn—s + o Uny + ) '),

SA = UN = SN((X{\[TNUN_l + OléVUN_l + Olé\[])

This mapping is called the S*-mapping generated by S,S,,...,Sx, T1, Ts,..., Ty and

O1,0,...,0N.

Lemma 2.8 Let C be a nonempty closed convex subset of a real Hilbert space. Let {Ti}f\i 1
be a finite family of k;-strict pseudo-contractions of C into itself, and let {S;}¥, be a finite
family of nonexpansive mappings of C into itself with ﬂf\z[l F(S)N ﬂf\il F(T;) #¥ and k =
max{i;:i=1,2,...,N}, and let a; = (o}, oy, o) € I x I x I,j =1,2,3,...,N, where I = [0,1],

a{ +o/2 +océ =1, a{,o{é € (k,1) forallj = 1,2,...,N—landot{v € (K,l],()lév € [«,1), 0/2 € («,1)
forallj=1,2,...,N. Let S* be the SA-mappinggenemtedby S1L,So ..., SN, T1, T, ..., Ty and
a1, Ay, ... 0. Then F(S4) = ﬂf\il FS)N ﬂﬁl F(T;), and S* is a nonexpansive mapping.

Proof 1t is easy to see that (Y, F(S) N NN, F(T;) C F(S%). Let xo € F($*) and x* €
MY, F(S) NNY, F(T;). Then we have
5420 — 5% = S (e T Un-10 + 0¥ U100 + o) — a*
< ||l eN Tnlinxo + &) Un1x0 + o — 2%
= N (T Unaxo — %) + @ (Un1x0 — x%) + & (%0 — %) |
= o | T lato - 2| + 0 | Unoswo — |2 + o [0 —
— oY | Ty Un10 — Un-a%o > — o o) | Ty U160 — %o >
A [ AT [
< o (|| Unaxo — & |* + i | (T = Ta)Un1x0 — (I = Tn)x*||*)
+ o Uy axo — x| + oo — & |* = Nl || T U160 — Un1%0 1>
- oo | Ty Un %o = %o 1> = 'y [ Un 10 — %o
= (L= o) [Unarxo =" |* + @ (k = ad) | (4 = To)Un-so
+ (1= (1-ad))[xo -2 H2 — ool | T Un-1%0 — %o I
— oy o | Un_1x0 — %0

< (1 o) |tcamo - 5° [+ 0 (c - o) | U - Totdyaol?
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+(1-(1-03") [0 - H — ) [ Un-1%0 — %o )
N
< T1 0 o)l tsma
j=N-1
+(1 aév) (K a2 )H (I = Tn-1)Un_ 2x0||
— (1= )bl M| Un-ax0 — %01
N
(1 T 0 i)
j=N-1

N
el lam =T (1 [T (46 oo
j=N-1
(1 - o)alN 2 (ke — o) 2) (I = Tn-2)Un-s%o |
(1 - o) ord el 2| L3260 — %01
N
+<1 l_[ 1 (x3>||x0—x ||
Jj=N-2

N N
< [10-lono o (1= [T 0= )T

j=N-2 j=N-2

< [10-o) |ty -]

—

)
w

+ (l—oté)als(/c —Ol;) H (I - T3)Usxy ||2

—p

~
I
W

A:]Z

1]
'S

(1 ot3)ot2a3 [[Uzx0 — %0 ||
j

+(1 ) ) [

j=3

[10-so -+ 1- [T oo+

j=3

:lz Eg:]z

N
)

j=3

N
~T]0-dd)ezedlithxe - xol>
j=3

(1 “B)HUI’CO_’C ” +1_[ 1- o} Joi (k= 3) | (I = T2) U1on

(2.2)

Page 7 of 29
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N
+ (1 (1-d )”xo—x I? (2.3)
j=2

-t +( Ta- ag)w%—xu

j=2

:lz 1:12

(01— oo |

~.
I
—_

+ (1 0‘})“1(" 0‘2)”(1 Tl)quO”

':lZ E:IZ

N
(1 - )bl [ Uoxo — %o > +<1 []a- a3)>||x0—x I?

j=2 j=1
) j 2
< w0 —x*||" + ]_[(1 — o)y (k — o) || (T = To)co |~ (2.4)
j=2
By (2.4), we have

N 2 w12 )
[ 1 -ed)eri (o =) [ = Tawo]|” < [0 =2"[" = [0 =] = 0,
j=2

which implies that Tyxg = xo, that is, xg € F(7}). It implies that

L[pco = Sl (Oli T1 U()xo + Ol%qu() + O[;JQC()) = Slx(). (25)
By (2.3) and (2.5), we have
N
|SAx0—x | < 1_[ 1 013 |Slx0—x ||
ad ' 2
+ 1_[(1 - 0/3)0512 (K - ot%) H (I - T)Uyxo ||
j=3
N
H(l 0‘3)0‘20‘3 l[thxo — %oll>
j=3
N
+ (1-T-eb) oo
j=2
. = ;
< o =" [" - [ (1 - o) o33 1 Lo — o . (2.6)
j=3

By (2.6), we have

i\ 2,2 2
(1-od)edas || Uhxo —x0l1> < 0.

—-

~
I
w
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It implies that

x0 = Unxo. (2.7)
By (2.5) and (2.7), we have x¢ € F(S1). Hence, we have

x0 € F(S1) N E(Th). (2.8)

Since xg = Ujx¢ and (2.3), we have
N
”SAxo 1_[ 1 a3 ” Uixg —x ”
j=2
N .
+ 1_[(1 - 0/3)0512 (K - otg) H (I - Ty)Uixo ||2
(1 (13)()[20(3 IIleo — X0 ||

N
+(1 1 a3>||x0—x ||
j=2

N
H 1 a3 ”xo—x H
j=2

~,
I
w

N
+ 1_[(1 - aé)ozlz (K - otg) H (I = T)xo ||2
j=3

) [

Jj=2

It follows that
z 2
1_[ 1 0‘3 0‘1 —")”(I—Tz)xo” <0,
j=3

which implies that xo = Thxy, that is, xg € F(T5). Since xo = Ujxg = Toxo, we have
szo = Sz (0112 T2 leO + (X%le() + Ol%?c()) = Szx(). (29)

By (2.2), we have

N
’SAxo—x ‘ H 1 a3 ‘L[zxo—x H
j=3
N

+ [T -d)ad(c - ad) | - Ts) oo |

j=4

Page 9 of 29
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N
-T1@-eh)ededlithr, - xol?
Jj=4

N
+<1 1 a3>|xo—x ||
j=3

(1) oo [

:lz

~.
1]
w

N
1\ y3y3 2
- l_[(l — o) a0 || Uxxg — x|
j=4

N
+<1 l_[ 1 0‘3 )”xo—x ||
j=3

N
< o =" * =TT (1 - odh) e | st — o 1%
j=4

It follows that

i 3.,3 2
(1-o)edas (| Uaxo — xol* < O.

—-

1]
'S

]

It implies that
X0 = UzXo.
By (2.9) and (2.10), we have x( € F(S,). Hence, we have

X0 € F(Sz) N F(Tz)

By continuing in this way, we can show that xo € F(S;) N F(T;) and x = U;x, for all i =

1,2,...,N — 1. Finally, we shall show that xy € F(Sy) N F(Tx). Since

%0 —*]* < (1= ) [ tv-amo —°
+ o (ic = ) | (I = To) Unaxo|?
+ (1= (1)) o [
= (1= 08) [ Sxrmo [ * + e (i = o) [ (1 = T |
+ (1= (=) oo [

< [%o - #* || +ap (k= ad) | (I = Ti)xo ||2
It implies that

af[(aév - K) ||(I— Tn)xo H2 <0,

(2.10)

(2.11)

Page 10 of 29
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which implies that xy = Tyxo, that is, xg € F(Tx). It implies that
%0 = $%%0 = Sy (ozf[ TxUn_1x0 + aé\[UN_lxo + aévxo) = SnXo. (2.12)

Then we have x € F(Sy) N F(Ty). Hence F(S4) C ﬂfil F(S;) N ﬂfil F(T)).
Applying (2.4), we have that the mapping S* is a nonexpansive. O

Lemma 2.9 Let C be a nonempty closed convex subset of a real Hilbert space. Let {T;}Y,
be a finite family of k;-strict pseudo-contractions of C into itself, and let {S;}, be a finite

family of nonexpansive mappings of C into itself with k = max{x;:i=1,2,...,N}, and let

a/ = (", ,oz3']) aj = (o/l,oez,o/)elxlxl where I = [0,1], ozl']+042']+ot3 1ando/+

a’2+a3=13uchthata — o, €[0,1]asn— oofori=1,3andj=1,2,3,...,N. Moreover,

forevery n €N, let S* and S be the S*-mapping generated by $,S,, .. SN, T, Ta.... Tn
and o,y ..., 0N and 1,8y, ..., S, Ti, Ta, ..., Ty and ai”),otén), ,a](\’;), respectively. Then

lim,,_, o [|S4x,, — SA%, || = O for every bounded sequence {x,} in C.

Proof Let {x,} be a bounded sequence in C, Uy and U, be generated by Si,S,...,Sn,
Tl, Tg,..., TN and 01,0,...,0N and Sl,Sz,...,SN, Tl, Tz,..., TN and O[{n),(x(zn),...,()l](\;l), re-
spectively. For each # € N, we have

U 1%, — Uny, || ”51 (af’l Tix, + (1 - a{”l)xn) -8 (oz% Tix, + (1 - a%)xn) ”

||ozf"1 Tix, + (1 - af’l)xn — ot Tyx, — (1 - a%)xn ||

IA Il

o™ =} | | T1t = %, (2.13)
and for k € {2,3,...,N}, by using Lemma 2.4, we obtain

k k k
”url,kxn - kan” = “Sk(()l{l Tkun,k—lxn + Olg Un,k—lxn + 05:;’ xn)

- Sk (af T 1%, + alz‘l,[k_lx,, + o:é‘x,,) H

IA

nk nk nk
||ot1 Tl j—1%, + 0ty Uy 1%, + 037" %y,

k k k
-0 TkLIk_lxn — Oy Uk_lx,, — 03Xy H

”Ol{q’k(TkUn,k-lxn — Tilpax,) + (otf’k — o) TeUj1%n
+ (af” 4 a§)xn + M (Upp 1%, — Ug1%,)
+ (oz;k - o/z‘)l,[k_lx,, ||
< M) Tl — Tilliaall + ot — o (I Tl |
+ gk — o[l + oy U o1t — Uyl
+ oy — ok |l Uicaxal
= M Tl g 1% — Telli 12| + | — o || Telli a6,
+ g U gatn — Ul + 1= — o —1
+of + o ||| Uil + ey - kIl

1+«
k
<o 1« | U k=160 — Ui_1204 |
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+ o = o Tellirtn | + oy | U6 — U0

# (Jaf = o[+ o - oA ) 1 Ucal + [ - a1
1+x
1-

= T Nkt = Ui 1l + |o = o | Tl ax

L-xy u nk
ey (LTS i1l + (|orf — o]

+|O‘g —0‘3|)||Uk 1xn||+|06 —oz3|||x,,||

2
< T Wnkeasen = Uil + o — af | (I T liaull + | Unaxall)

+ o — ok | (1ol + 1%all). (2.14)
By (2.13) and (2.14), we have

”Sﬁxn - SAxn ” = Uy nxn — Unxy||

2
< 1—||UnN—1xn Un-1l + o™ = e | (I| T U126 |

+ 1 Un-12a 1) + o™ = & | (1 U1l + 10 ll)

2 2
= ” un N-2Xy — uN—an ”
1-k\1-
+ oM = N (I Tvoa Unal + ([ U241
L [ ([ A ||xn||))
+|apN — o [(1 T Unaall + 1Un-1241)
+ |os™ — o | (I U1l + 1% 1)
2 2
= <m) U N-2%n — Un_2%3]|
N 2 \NJ
¥ <§) Jon” = 4| (1 TjUa2eal + | Ujaxall)
j=N-1
N 2 N-j ’ ’
+Z<1_K) o3’ = e[ (1Ll + 1)
j=N-1
=<
2 N-1
E < ) ” un,lxn - len ”

N- )
) loy” = o) | (I Tj U1l + (| Ujaxal)

N-jo )
) ot — o | (11Ul + [1411)

2 N-1
,1 1
= < ) o™ = o | | Tyt — %4l

—
|
=
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(
(

This together with the assumption al.”’j — ozf asn— oo (i=13,j=12,...,N), we can

N-j ) )
) |y’ = &4 | (N TUjanll + U120

>

N
=2
N
=2

~.

+

2
. - K
2 \"7
_K> Jers” = e | (Ul + ). (2.15)
J
conclude that

lim | S5, — S%%,| = 0. 0
n— 00

Lemma 2.10 Let C be a nonempty closed convex subset of a real Hilbert space. Let {T;},
be a finite family of k;-strict pseudo-contractions of C into itself, and let {S;}¥, be a finite
family of nonexpansive mappings of C into itself with «k = max{x; :i=1,2,...,N}, and let

ot;") = (", a3”),05 = (o, oy, ) € I x I x I, where I = [0,1], &) + oy’ + oy’ = 1 and o +
A PR Yoo ‘
oy +ay = Lsuchthaty oo |y —ay”| <00, 3% g™ —ay’| < 00 forallj € {1,2,3,...,N}.

For every n € N, let S be the S*-mapping generated by S1,S,,...,Sn, T1, Ta,..., T and

ol Then 320, (1S4 12, — S22, < 00 for every bounded sequence {z,} in C.

Proof Let {z,} be a bounded sequence in C. For each # € N and the definition of 54, we
have

U120 — Unizall = [[Si(ef ™ Tazy + (1 - o) z,) = Si(0” Tz + (1 - ")z, |
< |leg™ Thzy + (1= ™)z — 0" Tizy — (1 - o))z, |

n+l,1

=l — o[ Tz = zall- (2.16)

For k € {2,3,...,N}, and using the same method as (2.14) in Lemma 2.9, we have

2 n+l,k n,k
||Un+l,kzn - un,kzn || =< m ||Un+1,k—lzn - Un,k—lzn” + |O[1 - Oll |(|| TkUn,k—lzn ”
1k k
[ Ungazull) + 5™ = a3 [ (1 Ung-azall + l1zal)- (217)

From (2.16), (2.17), and using the same method as (2.15) in Lemma 2.9, we have

N-1
S22, — iz, | < ( ) oM o[ Tyzy = 2

2 N n+lj nj
< - ) o™ = o | (1 iU a2l + 11U a2, )

1-«
j=2
al 2 N n+l,j nj
+Z<1_K) o5 = | (1 Unjrzall + 12l
j=2

It implies that

> lstaea =St <o .
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3 Main result

Theorem 3.1 Let C be a nonempty closed convex subset of Hilbert spaces H, and let f be
an «-contraction on H. Let F; be a bifunction from C x C into R, for every i =1,2,...,N
satisfying (A1)-(A4). Let {T:}Y, be a finite family of k;-strict pseudo-contractions of C into
itself, and let {S;}, be a finite family of nonexpansive mappings of C into itself with F =
ML F(S) N (L F(T) N mﬁVlEp(F) #0 and «k = max{tc, i=12,...,N}, and let o

(@, 0 0y eIxIx1,j=1,2,3,...,N,wherel = [0,1],a}” +a} + o’ =1, ,azj,ag"e
la,b) C («,1) for all j =1, 2,...,N. Let S be the SA—mappmggenemted by 81,83,...,Sn,
T, Ty, ..., Tn and af"), aé"), ... ,al(\','). Let {x,} and {z,} be the sequences generated by x; € C

and

Fi(ul,y) + i.(y—ui,,uil -x,) >0, VyeCandi=1,2,...,N,
Zn = Zl 18:'1 n’ (31)
Xn+l = anf(zn) + (1 - an)Sﬁznr Vn>1,

where {a,} is a sequence in [0,1]. Assume that the following conditions hold:
(i) limyooay =0, Y ooy oty = 00;
(ii) >0, f+1]—a"’|<oo o n+1’—a§’j|<oo,f0rallje{1,2,3,...,N} and
pp |Oén+1 — | < 005
(i) SN 80 =1, 3% 18,, - 8i] < 00 and lim,,_, o, 8, = 8; € (K,l),forevery i=1,2,...,N;
(iv) K<9§rn§n,foreveryi:1,2, Ncmdzn l|r

L —rl] < oo.

Then the sequence {x,} converges strongly to x* = Pgf (x*).

Proof Letp € F,wehavep € (X, EP(F;) from Lemma 2.6, we obtain p € (Y, F(T,). Since

F,-(ufq,y) + :—l.(y— u;,u’n —x,,) >0, VyeCandi=12,...,N. (3.2)

n

Again from Lemma 2.6, we have u/, = T,ix, for every i=1,2,...,N. By definition of x,, we
have

%01 =PIl < o |[f(24) = p|| + A = )| Sz — p|
< a,u||f(zn) = f )] + o |[f0) - p|| + A =) | Shzu - |
< a,|lzy = pll + @, |[f () - p|| + A - )z, - pl
= au[f @) - p| + (1- 2,1 - @) |2, - pll

> 8i(uy-p)

i=1

= oy |f(p) - p| + (1 - 0u(1 - )

N
sl -pl + (- -a) 38, |u, - p|

i=1

<au|f) -p| + (1 -1 -a))lx; - pl. (3.3)

Put K = max{||x; — p||, ”f p”} By (3.3), we can show by induction that [lx, — p|| < K,
Vn € N. This implies that {xn} is bounded, and so are {1’ }, for every i =1,2,...,N and {z,}.
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Next, we will show that
lim {|%,.1 — x4 = 0. (34)
n— o0
By nonexpansiveness of x,,, we have

(%1 = 2ull = [ etnf (2n) + (1= @) zn = @nrf (2uc1) = (1= 1) S 1201 |

= [lotn(f(2n) = f (n-1)) + (@n = w1 )f (1) + (1 = ) (S 20 — Sip1Zn-1)
+ (-1 = ) Sty 120 |

<, |[f(zn) = f @) || + lotw — || f (2 | + (1= ) [ Sz = St 201 |
+ 1oty =l )12 |

< ut |2 — Zn-1 || + ot — || f (2ne) |
@ e (15220 - St + 15220 - Stazan )
+ 1oty = ol S 120 |

< (1= au(l = @) llzn = Zua || + ltn — @y |||f (2n) |

+(1—ay) ”Sﬁzn—l - SA _1%n-1 ” + a1 — oyl ||Sf171zn—1 ”

= (1—0{,,(1—0{))( ZS an 1’4” 1 ) + |Oln—Oln,1||lf(Z;171)||

+ (1 - an) “Sﬁzn—l - Sn_lzn—l || + |05n—1 - Olnl ||Sﬁ_1zn—l ||

N

N
= (1-a,1- a))( Z(S; (uy— 1ty ) + Z((S; -8 )ul
i=1 i=1

+ |an - Oln—l' ”f(zn—l)H + (1 - Ol,,) ”SI:ZM 1= SA _1Zn-1 ||

+ ot = ol || Sy 2n |

N N
< (1-a,(1-a) (za:; iy =i + e -azlnwuzlu)
i=1

i=1
+ |an - an—1| Hf(zn—l) || + (1 - Oln) “Sﬁzn—l - Sﬁ_1zn—1 ||

+ |an—1 - an| H S‘:,l_lzn—l H . (35)
From Lemma 2.10, we have
Z | Sazn = Sy < 0o. (36)
Since u!, = T,ix, for every i =1,2,...,N. By definition of T; , we have
1
F(Trfixn,y) + r_i<y_ T,an, Tr@xn -x,) >0, VyeC, (3.7)
n

similarly,

F(Tl xn+1,y) +

()’ Tl xn+1, Tl xn+1 Xns1) =0, Vy eC. (38)

n+1
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From (3.7) and (3.8), we obtain

1
F(Trilxn) Tr£1+lxn+1) + V_l <Trﬁ;+1x"+l - Trf;,x”’ Tr:;xn _xn) >0
n
and
F(Tri Xn+1 Tri xn) = (Tri Xn — Tri Xn+ls T,«i Xnel = Xps1) > 0.
n+l n rn+1 n n+l n+l

By (3.9) and (3.10), we have

1

i
rn n+l

It follows that

Ti Xui1 —%Xns1 Tixy,—%y,
Tix, —T: x Tn+l _ >
rhn Vf«+1 n+ls }"i

i
n+l 7y

This implies that

/i
. _ . . _ . . _ —_ n_
0< <Tr:1+1x,,+1 Tr;xn, Tri,xn T’Z+1x”+1 + T’Z+1x’”1 Xn— =

Tyl

It follows that

2
1T,s net = Ty

7t
< ; —T; ; —x, — (T -
= <Tr£”1xn+l Trqu”l’ Trf,l+]x”+1 Xn :Hl (Tr;ﬂxrul xn+l)>

rt
. — . — — _n : -
<Tr£l+lxn+l Trqum Xn+l —Xp + (1 i ) (TriHlan xn+l)>

14

n+l
ri

= || Tri Xl — Tri xn” Xps1 =X + (1= in (Tri Xn+l _xn+1)

n+l n rrl+1 n+l

ri

= ||Tri Xn+l — Tri xn” ||xn+1 _xn” +1- in ”Tri Xn+l _xn+1”

n+l n el n+l
=T T, 1 i T
4|%ymr-¢%nnmﬂ—%n+aznﬂ—mw,haﬂ—mﬂn
=

It follows that
. X 1, . . .
A g e e e LA | R

foreveryi=1,2,...,N.

1
- <Trf1+1x”+1 - Tri,x”’ Tri,x" — %) + B <Tr£’xn - Tr£1+lxn+17 Tr£1+1xn+1 —%ns1) > 0.

1, . .
I Trfmxnﬂ = T,ixall <||xn+1 — %, + P |er1 - ri,| I TriHlanrl - xn+1||>~

(3.9)

(3.10)

(Trl' KXn+l _xn+1)>‘
n+l

(3.11)

Page 16 of 29
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Substitute (3.11) into (3.5), we have

N N
s = 1=t -) (Sl -

i=1 i=1
+ lay — oy “f(zn—l) ” +(1-ay) ”Sﬁzn—l - Sﬁflzn—l ”

+ |05n—1 - an| || Sﬁ,lzn—l H

N

=< (l—O[n(l—Ol)) (ZS;,(”erI — %Xl + ;|’",l,,+1 _r:1|||uln+1 —Xn+l ”)

i=1

N
+Z|5L—3f;1|||u21||>
i=1

+ lay — oy “f(znfl) ” +(1-ay,) ”Sﬁznd - 52712;171 ”

+ |an—l - Ol,,| || Sﬁ_lzn—l H

N
= (1 —oy(1 —Ol))(||xn+1 —Xall + Z(S:,;‘riﬁl - 7';| ”er1+1 — Xn+1 ||

i=1

N . . .
+ § :|3; —5:1—1|H”i1-1”>
i-1

+ |an - an—1| Hf(zn—l) || + (1 - Oln) “Sﬁzn—l - Sﬁ_1zn—1 ||

+ |an—1 - Ol,,| H S‘:,‘_lzn—l H

N

= (1 —a,(l _a))”xn+1 — x| + 28;;‘7’:’”1 - }";| Hulnﬂ —Xn+l ”
i=1

N
+ 2180 = Sl + e — el |f )|
i=1

+ ”Sﬁzn_l -84

n-1%n-1 || + |an—1 - anl ”Sﬁ_lzn—l || .

By (3.12), (3.6), conditions (iii), (iv) and Lemma 2.3, we have
lim ||%,.1 — 4]l = 0.
n—00

From (3.11), (3.13) and condition (iv), we have

Jim [, ~ [ =0, Vi=12,...,N.

Letp € F. From u; = Tr;qx,, foreveryi=1,2,...,N, we have
i 2
| = p|” = 17520 = T3 011
< (Ti%n = T,ips%u =)

1 : .
= S (=2 + e = =y~ ).

(3.12)

(3.13)

(3.14)

Page 17 of 29
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It implies that
e~ p|* < law = pI = [, — 24" (3.15)
By definition of {x,} and (3.15), we have

%1 = pI? < @ |[f2) = || + (1= 00)||S2 20 - |

< a|f @) -p|* + Q- a)lz, - plI?

N . .
> 8wl -p)
i=1

2
= a,|f @) -p|* + (1 -ay)

N
<au|fa) -p|* +Q-a) Y8 |ul - p]
i=1
2 N i i 2
< au|f@n) -p|" + Q- Y 8 (lan — pII” = ||ty — 4] )

i=1

N
< au[f(zn) = p||* + 2w =PI = (L= ) Y 85, — 5|
i=1

It implies that

N
(U -0n) Y 8|ty = 2| < 0 [f ) = p||” + 60 =PI = 001 = P11

i=1
< a|f @) -p|* + (Ix. -2l

+ i1 = Pl %01 — 2. (3.16)
From conditions (i), (iii) and (3.13), we have
lim |« —x,| =0, Vi=12,...,N. (317)
n—00
Since
Xn+l — S‘:Z,, =0y (f(zn) - S‘:Z,,),
from condition (i), we have
lim || %41 — Spza | = 0. (3.18)
n—0o0

From the definition of z,,, we have

l

N . .
PBEACAES)

i=1

N . .
< Zé;”u‘n—xn”
i=1

”Zn - xn” =

Page 18 of 29
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From condition (iii) and (3.17), we have
lim ||z, — x| = 0. (3.19)
n—00

Since

|2n = Sizn|| < 120 = %ull + 160 = Zusrl| + | %1 = Sz,
by (3.13), (3.18) and (3.19), we have
lim |z, - Siz,| = 0. (3.20)
n—oQ
Next, we show that

lim sup(f(z) —Z, %, — z) <0, (3.21)

n—0oQ

where z = Pgf(2). To show this inequality, take a subsequence {x,, } of {x,} such that

limsup(f (2) — z,%, — z) = 11m (f(z — 2, %, — ). (3.22)
n—00
Without loss of generality, we may assume that a subsequence {x,,} of {x,} converges
weakly to some g € H. From (3.19), we have that {z,, } converges weakly to g.

nj

Sincex <a <a,”,ay’,ay’ <b<1forallj=1,2,...,N. Without loss of generality, we may

assume that

v — o € (k,1), w’ > ol ek,1) and o) —> ) e(k,1) ask— oo,

Vj=1,2,...,N.

Let $4 be the SA—mapping generated by S, S,,...,Sx, T1, Ta,..., T and By, Ba,..., B>
where g; = (al,az,(x?,) Vj=1,2,...,N. By Lemma 2.8, $* is a nonexpansive mapping, and
F(S%) = MY, F(S) NNY, E(T)).
By Lemma 2.9, we have

Jim 1S Zn = Sz, || = . (3.23)
Since
”an _SAZ"k ” = HZ"‘k Sy ik ” + “ Cnk

by (3.20), (3.23), we have
klim |2, = Sz, || = 0. (3.24)

Since {z,, } converges weakly to g as k — 00 (3.24) and Lemma 2.7, we have

N N
qeF(s*) = FS) N[ )E(T). (3.25)
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Next, we show that g € ﬂf\il EDP(F;). To show this, we may assume that
lim 7 =r'€[0,n], Vi=12,...,N.
k—oo "k

By Lemmas 2.5 and 2.6, for every i = 1,2,...,N, we define T,: : H — C by
1 ,
T,i(x) = {ze C:Filzy) +—(y-zz-x) >0,¥y€ C}, VxeHandi=1,2,...,N.
r
Then we have
1 .
F(T,ix,,y) + ;(y —T.ixy, Tyix, —x,) >0, VyeCandi=1,2,...,N.
From (3.1) and #/, = T, x,, we have
1 ,
Fi(Trﬁxn,y) + rT(y— Trﬁ,x”’ Tri.x” -x,)>0, VyeCandi=12,...,N.
n
It implies that
1 ,
E'(T,ixnk, Tri}kx”k) + ;(Trﬁ’kxnk = Tyi%uy, Tyin, —%u,) >0, Vi=1,2,...,N
and

1 .
F,'(Trqux,,k, T,i%xn) + l.—(T,ix,,k - Trilkx"k’ Trf,kx"k -%xy) >0, Vi=12,...,N.
ng

By (A2), we have

1
F<Tri}kx”k = Tyi%yy Tyidny — Xy ) + l,—(T,ixnk - Tr;;kxnk’ T,;'qu,,k — %) > 0.
i

It implies that

T, T, T,i%, — %, Trf;kxnk — Xy -
r,;lkxnk — ,zx,,k, rl, —

rﬁlk
It follows that

/i

<Tr§4kx,,k = Ti%pys Tyi, — %Xy — T(Trqux"k —x,,k)> >0.
Mg

Then

rl
0 <(T, %p — Tyikpys Tyidiny — Ti Xy + Ty Xy =Xy, — = (Tpi Xy — %Xy
ni nj ni rl nj
Mg
/i
= <Trquxnk = Titkny Tyidkny, — Tri,kx"k + (1 - f)(Trilkxnk —xnk)>.

i
rnk


http://www.fixedpointtheoryandapplications.com/content/2013/1/295

Kangtunyakarn Fixed Point Theory and Applications 2013, 2013:295
http://www.fixedpointtheoryandapplications.com/content/2013/1/295

It follows that

ri
2
I Trilkxnk - Trixnk I~ < <Tr£,k‘x”‘/< - Trlxnk¢ (1 - FT)(Trilkxnk _xnk)>

ni
ri
1-—
i

N

= ” Trilkxnk - Trixnk ”
It implies that
Lo
I T,«quxnk - Trixnk|| = ;‘rnk -r |||Tr£,kx”k = Xny Il
From limy o 7, = r* and (3.17), we have
lim (1T, s = Tyt | =0, Vi=1,2,..0,N.

Foreveryi=1,2,...,N, we have

|xnk - Trixnk” = ”xnk - T’kank” + ||Trf1kx"k - Trixnk”

= |on —uay, || + 1T, % = Tt
by (3.17) and (3.26), we have

lim (%, — T,i%y, | =0, Vi=1,2,...,N.
k—00

” Trﬁlkxnk - xnk ”

Page 21 of 29

(3.26)

(3.27)

Since a subsequence {x,, } of {x,} converges weakly to g as k — 00, from (3.27) and Lem-

ma 2.7, we have
qeF(T,.), VYi=12,...,N.

Then

N
qe( \E(T,).
i=1

From Lemma 2.6, we have EP(F;) = F(T,:),Vi=1,2,...,N. From (3.28), we have

N N
qe( \F(T,) = \EPE).
i=1

i=1

By (3.25) and (3.29), we have
qeF.

Since x,,, — g as k — oo and g € F and (3.22), we have

limsup(f (2) — z,%, — z) = klim (f(2) -z, 20, —2) = {f(2) —2,g—2) < 0.

n—0oQ0

(3.28)

(3.29)

(3.30)
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Finally, we show that {x,} converges strongly to z = Pgf(z). Putting z = Prf(z), by nonex-
pansiveness of $4, we have
s =202 = e (F(2n) = 2) + (1 - ) (S0 - 2) |
< (=) | S8z, - 2| + 204{f (20) = 2,001 — 2)
= (- )?[[Spzn — 2| + 200{f (2) — £ (2), mi1 — 2)
+20,(f (2) — 2, %01 — 2)
< (1-20 + )20 = zl* + 200t | 2 — 2l || %11 — 2l
+20,(f (2) — 2,%41 — 2)
< (1-200 + o)) llzn = 2lI* + w2 = 211> + ot 201 — 2|
+20,(f (2) — 2,%41 — 2)
< (1= 20 + 00 @) 20 = 2|1* + gl = 2117 + ctnerl| 01 — 21|
+20,(f (2) = 2, %41 — 2)
= (1- apor = 20, (1 — @) |2 — 2]1* + 0t} 16 — 21| + ot ]| %1 — 2]

+20,(f (2) = 2, %1 — 2).

It implies that

20, (1 - ) o?
1 —zl* < (1= =——— ) ll%u — 2]|* + ——|l% — 2|
1-o,a 1-o,a
20,
+ ——{f(2) —z, %441 — 2).
1—0[,,0(<f( ) n+l >

This implies that by condition (i), (3.21) and Lemma 2.2, we have that the sequence {x,}
converges strongly to z = Prf(2). By (3.19), we have

lzn —zll < llzn = %ull + lXn — 2 > O asn— oo.
This completes the proof. O

4 Applications

In this section, we apply our main result to prove strong convergence theorems involving
variational inclusion problems and variational inequality problems. To prove these results,
we need definition and lemmas as follows.

A set-valued mapping M : H — 2 is called monotone if for all x,y € H, f € Mx and
g € My imply that (x — y,f — g) > 0. A monotone mapping M : H — 2 is maximal if
the graph Graph(M) of M is not properly contained in the graph of any other monotone
mapping. It is known that a monotone mapping M is maximal if and only if for (x,f) €
Hx H, (x-y,f-g) >0 for every (y,g) € Graph(M) implies that f € Mx.

Next, we consider the following so-called variational inclusion problem: Find a u € H
such that

0 € Bu + Mu, (4.1)
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where B: H — H, M : H — 2™ are two nonlinear mappings, and 6 is zero vector in H (see,
for instance, [16—21]). The set of the solution of (4.1) is denoted by VI(H, B, M).

Definition 4.1 (See [16]) Let M : H — 2" be a multi-valued maximal monotone mapping,
then the single-valued mapping /a1, : H — H defined by

Jua(u) =T + AM) ™ (u), YueH,

is called the resolvent operator associated with M, where X is any positive number, and /

is an identity mapping.

Lemma 4.1 (See [16]) u € H is a solution of variational inclusion (4.1) if and only if u =
]M,;\(u — ABu), VA > 0, i.e.,

VI(H,B,M) = F(Jyi,,(I - AB)), Vi>0.
Further, if A € (0,2w], then VI(H, B, M) is a closed convex subset in H.

Lemma 4.2 (See [6]) The resolvent operator ], associated with M is single-valued, non-
expansive for all A > 0 and 1-inverse-strongly monotone.

A mapping A of C into H is called a-inverse strongly monotone, see [22], if there exists

a positive real number « such that
(x -y Ax - Ay) > a|| Ax - Ay|®
for all x,y € C. The variational inequality problem is to find « € C such that
(Au,v—u) >0 (4.2)

for all v € C. The set of solutions of the variational inequality is denoted by VI(C,A). We

need the following lemma to prove a strong convergence theorem in this section.

Lemma 4.3 (See [23]) Let C be a closed convex subset of Hilbert space H. Let A; : C — H be
mappings, and let G; : C — C bedefined by G;(y) = Pc(I - A;)y with »; >0,¥i=1,2,...,N.
Then x* € ﬂf\il VI(C, A;) if and only if x* € ﬂﬁl F(G)).

Theorem 4.4 Let C be a nonempty closed convex subset of Hilbert spaces H, and let f be
an a-contraction on H. For every i =1,2,...,N, let F; be a bifunction from C x C into R
satisfying (A1)-(A4),let A; : C — H be an o;-inverse strongly monotone, and let G;: C — C
be a mapping defined by G;(y) = Pc(I — A ;A;)y, Yy € C with A; € (0,1] C (0,2¢;). Let {Ti}fil
be a finite family of k;-strict pseudo-contractions of C into itself with F = ﬂf\il VI(C,A;)N
N, E(T) N Y, EP(F) # 0 and k = max{k; :i=1,2,...,N}, and let o" = (o, 0y’ 03”) €
IxIx1,j=1,2,3,...,N,where I = [0,1], &} + oy’ + a3’ =1, )", 00y’ , 03" € [a,b] C (x,1)
forallj=1,2,...,N. Let 2 be the S*-mapping generated by Gi,G,,...,Gy, T1, Ts,..., Tx
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and ain) ,otg') . ,ag'). Let {x,} and {z,} be the sequences generated by x, € C and

Fi(uﬁ;,y)+i.(y—ui,,uﬁl—x,,)z(), Vye Candi=1,2,...,N,
Zy =N 8yl (4.3)

i=1 % Uy

Ko = 0 f @) + (1= 0,)S0z, Yn=1,

where {a,} is a sequence in [0,1]. Assume that the following conditions hold.:
() limyooay =0, Y ooy oty = 00;
(ii) >0, |a"+1] —oc1’| <00, Y0 |an+1’ —oz3]| <oo forallje{1,2,3,...,N} and
P 1|Oln+1 | < 003
(iii) Zl 8 =1,53") 181, = 8! | < 00 and lim,,_, o, 8! = 8; € (k,1) for every i=1,2,...,N;
(iv) K<9§rn§nforeveryi=1,2, Nandznlv

el — Tl < 00.

Then the sequence {x,} converges strongly to x* = Pgf (x*).

Proof First, we show that (I — A;A;) is a nonexpansive mapping for every i =1,2,...,N. For
x,y € C, we have

| = 2z = (1= 2ADy|| = 2=y - MlAsx— A)|?
= e =yl = 20i(x — 3, Apx — Ay) + A2 [ A — Ay
< llx=ylI> = 20l A — Aiyll> + A7 | A — Ay
= [l = yl* + Ak — 20) A — Ay ®

< - yl*. (4.4)

Thus, (I — A;A;) is a nonexpansive mapping, and so is G; for all i = 1,2,...,N. Then we
obtain the desired result from Lemma 4.3 and Theorem 3.1. O

Corollary 4.5 Let C be a nonempty closed convex subset of Hilbert spaces H, and let f
be an a-contraction on H. For every i =1,2,...,N, let F; be a bifunction from C x C into
R, satisfying (Al)-(A4), let A; : C — H be an wo;-inverse strongly monotone, and let G; :
C — C be a mapping defined by G;(y) = Pc(I — M iA;)y, Yy € C with &; € (0,1] C (0,2;). Let
{T:}N, be a finite family of nonexpansive mappmgs ofC into itself with F = ﬂl VI(C,A)N
ﬂl LE( T)ﬂﬂl 1EP(F) £, andletoc(") = (", ) ,agl) elIxIxI,j=1,2,3,...,N, where

=[0,1], ;" +a21+a3 =10 ',Olz Jory” € [a,b] C (0,1) forallj=1,2,. N.LetS‘: be the
SA-mapping generated by G,,G,,...,Gy, T1, Ta,..., Ty and a{”),agn), ,oe](\;'). Let {x,} and
{z.} be the sequences generated by x; € C and

Fi(ul,y) + L.(y—u;,u;—xn) >0, VyeCandi=12,...,N,

Zz 1 n n’ (4'5)
Xni1 = of (20) + (1 — @) Sz, Vn =1,

where {a,} is a sequence in [0,1]. Assume that the following conditions hold:
(i) limyooay =0, Y ooq 0ty = 00;
(i) >0, |ot"+1] —ot1]| <00, Y > 1|a”+1] —013]| <oo forallje{1,2,3,...,N} and

Zn:l |an+1 - an| < 005
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(i) SN, 80 =1, |8, — 8| < 00 and lim,_,, 8., = §; € (0,1) for every i =1,2,...,N;
(iv) 0<0 <ri <nforeveryi=12,....,Nand) oo |r
Then the sequence {x,} converges strongly to x* = Pgf(x*).

n+l V;|<OO.

Proof Since {T;}¥, is a finite family of nonexpansive mappings, we have that {T;}Y, is a
finite family of «;-strict pseudo-contractive mappings. From Theorem 4.4, we can draw
the desired conclusion. O

Theorem 4.6 Let C be a nonempty closed convex subset of Hilbert spaces H, and let f
be an a-contraction on H. For every i =1,2,...,N, let F; be a bifunction from C x C into
R satisfying (A1)-(A4). Let M; : H — 2 be maximal monotone mappings for every i =
1,2,...,N, and let B, : H — H be a §;-inverse strongly monotone mapping for every i =
1,2,...,N. Let G; : H — H be a mapping defined by Ju,,(I — nB;)x = G for every x € H
with n € (0,28;) i=1,2,...,N. Let {Ti}¥, be a finite family of k;-strict pseudo-contractions
of H into itself with F = ﬂfvl V(H Bl,M )N ﬂfvl F(T)N ﬂfvl EP(F;)) # 0 and x = max{«; :
i=1,2,...,N}, amdleta = (a0 ,a3 )elx1x11—123 .,N, where I = [0,1],
o:ln’j+012/+oz3 =1, (xlj,o:;’/,ag [a,b] C (x,1) for all j =1,2,...,N. Let S? be the S*-
mapping generated by Gy, G, ..., Gy, T1, Ts, ..., Ty and a{"),oé"), ,oc](\;'). Let {x,} and {z,)
be the sequences generated by x, € H and

Fi(u;,y)+i.(y—ui,,u£,—xn)20, Vye Candi=1,2,...,N,
Zy= YN Sl (4.6)

i=1 9% Uy

Ko = f @) + (1= 0,)S0z, Yn=1,

where {a,} is a sequence in [0,1]. Assume that the following conditions hold:
() limyooay =0, Y ooy oty = 00;
(ii) >0, |a"+1’ —a1’| <00, Y > 1|a"+1] —a3]| <oo forallje{1,2,3,...,N} and
PR Iam —a,| < 00;
(i) SN 81 =1, 32 |88, - 8L < 00 and lim, o, 8, = §; € (i,1), for every i =1,2,...,N;
(iv) K<6§rn§n,f0reveryi:1,2, Nandzn 1|r

el — Thl <00,

Then the sequence {x,} converges strongly to x* = Pgf (x*).

Proof By using the same method as (4.4), we have that I — nB; is a nonexpansive map-
ping for every i = 1,2,...,N. By Lemma 4.2, we have Ju;,,(I — nB;) = G; is a nonexpansive
mapping for every i = 1,2,...,N. Then we obtain the desired result from Theorem 3.1.

O

5 Example and numerical results
In the last section, we give numerical examples to support our main results.

Example 5.1 Let R be the set of real numbers. For every i =1,2,...,N, let the mappings
F:RxR—->R, T;:R—>R,S;:R—R,f:R— R defined by

Fi(x,y) = i(4y2 +xy— 5x2),

13
T,»x — (_1)21+1 gx’
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for every x,y € R.
Suppose that S% is the SA-mapping generated by Si,S,...,Sx, T1,Ts,..., Ty and

afn),otén), e ,a}(,“, where oz;") = (ain’j),a(zn’j),aén’/)) and ain’j) = (xén’j) = a;n’j) = % for everyn >1
and j =1,2,...,N. Let the sequences {x,} and {z,} be generated by (3.1), where &, = %,

8L = (12—;2 + NinzN) and ', = % for every n>1and i =1,2,...,N. Then the sequences {x,}
and {z,} converge strongly to 0.
Solution. For every i =1,2,...,N. It is easy to see that S; is nonexpansive and T; is
%—strictly pseudo contractive mappings with {0} = ﬂﬁl EF(S;) N ﬂﬁl F(T;).
Since $4 is the S*-mapping generated by S,S,,...,Sx, T1, Ta,..., Tn and ai"),(xé"),
(n)

...,ay, Where oz;") = (ain’j)aén’j),aén’j)) and a{n’/) = ozén’j) = oeén’/) = % for every n > 1 and

j=1,2,...,N, then we have

L[n,Ox =%

3 2 3 3

41 -3 1 1
U,,,zx:g —x—L[,,,1+—xLI,,,1+§ X,

61 -3 1 1
Unyng— §><7L[,,,2+§><Un,2+§ X,

2/(1 -3 1 1
L[n,lng —x —Uyo+ = xUyp+ =%

u 2N-1) (1 3, Lo 1
= — = x — o+ = X o+ = |,
TN - +1\3 T 2 T3 T T T

Sx=U,Nx= 2N 1x_—gl,[ +1xl,1 +1 X
n TN TN +1\3 T g TN T g T e T g

for every x € R. From Lemma 2.8, we have {0} = ﬂf\il F(S)N ﬂf\il F(T;) = F(S%). For every
n>1andi=1,2,...,N, we can see that Y\, 8! = Zfil(lz—z + Ni%) =1. From definition of
F;, we have (Y, EP(F;) = {0}. Then {0} = Y, F(S;) N X, F(T:) N (¥, EP(F;) = F.
Foreveryn>1andi=1,2,...,N, the mappings F;, T}, S; and «,, 1}, §,, satisfy conditions
in Theorem 3.1. Then from Theorem 3.1, we have the sequences {x,} and {z,} converge
to 0.
Next, we give numerical results to support this example. Let 7 > 0 and z € R. For every

yeRandi=1,2,...,N, and from Lemma 2.5, there exist x € R such that
1
Fix,y)+-(y—xx-2)>0
r
o) 2y, L
l(4y +xy—5x )+—(y—x,x—z)20
r

4iry* + irxy - 5irs® + (y —x)(x —2) > 0

<
<
& diry? +irxy -5 +xy—x* —zy +zx > 0
<

4iry* + (rix +x — 2)y — (51’rx2 +a% - zx) > 0.

Page 26 of 29
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Put G(y) = 4iry? + (rix + x — z)y — (5irx®> + x> — zx). Then G is a quadratic function of y with
coefficient a = 4ir, b = rix + x — z, ¢ = —(5irx* + x* — zx). Next, we compute the discriminant
A of G as follows:
A = b? - dac

= (rix + x — 2)* + 4(4ir) (5irx2 +x2 - zx)

= (rix + x)? = 2z(rix + x) + 2% + 802r%x* + 16irx* — 16irzx

= 812r%4% + 18irx? + &% — 18irzx — 2zx + 2

=22+ (811’2;'2 +18ir + l)x2 —2zx(9ir + 1)

= (z —x(9ir + 1))2.
Since G(y) > 0 for all y € R. If it has most one solution in R, so A < 0. It implies that
z =x(9ir + 1). Then we have

z
=Tz=——— 51
* z i9r) +1 6D

forall¥r>0andi=1,2,...,N. From (3.1) and (5.1), we have

—_ xn
S i9riy+1

i_T.
uy, = T,ixn

(5.2)

1 — in_

_ : _ i _ (1" 1" i
foreveryn>1andi=1,2,...,N.Sincea, = ¢, 3, = (; + W)’ r, = 55 and (5.2), we can

rewrite (3.1) as follows:

— N (1" 1” Xn
Zn = Zz’zl(zi + N><2N)i(9%)+l’

Xn+l = 5%1_/[(2;1) +(1- %)Sﬁzm Vn>1

(5.3)

foreveryn>1landi=1,2,...,N.

Put N = 8 and initial points x; = 700, x; = —500 in (5.3) we have the following results
respectively.

The numerical results for initial points x; = 700 and x; = -500 were shown in Tables 1
(Figure 1(b)) and 2 (Figure 1(a)), respectively. We observe that the sequences {x,} and {z,}
converge to 0 € ﬂf\ilF(S,-) n ﬂﬁlF(Ti) al ﬂf\il EP(F)).

Table 1 The values of {z,} and {x,} with initial points x; =700,n=8and N=8

n z Xn

1 75.9495089241  700.0000000000
2 1.8273618170 21.5559869697
3 0.0387720272 0.5073319122
4 0.0007709831 0.0106843198
5 0.0000147261 0.0002116628
6
7
8

0.0000002736 0.0000040337
0.0000000050 0.0000000748
0.0000000001 0.0000000014
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Table 2 The values of {z,,} and {x,} with initial points x; =-500,n=8and N=8

n z, Xn
1 =542496492315  -500.0000000000
2 -1.3052584407 —-15.3971335498
3 -0.0276943051 -0.3623799373
4 -0.0005507022 —-0.0076316570
5 -0.0000105186 -0.0001511877
6 -0.0000001955 —-0.0000028812
7 -0.0000000036 -0.0000000535
8 —-0.0000000001 —0.0000000010
i} — === = 700
50 /,, fr T J l —==I
—— 600 H ——y
-100 / ] }
/ i
150 jj 800 1
i
o lf anf g
)| \
300 f’ 300 1‘ -
30 !1 o l‘ ]
4ot f i
100 i 4
450# N
500 , . . . . . Y RN . . . . .
1 2z 3 4 5 B 7 1 2 3 4 5 & 7 8
(a) £; = —500 (b) 2, = 700
Figure 1 The convergence comparison with different initial values (a) x; =-500 and (b) x; = 700.
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