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Abstract
We introduce some new contractions on intuitionistic fuzzy metric spaces, and give
fixed point results for these classes of contractions. A stability result is established.
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1 Introduction and preliminaries
The great interest in the study of various fixed point theories for different classes of con-
tractions on some specific spaces is known. We underline studies on quasi-metric spaces
[, ], quasi-partial metric spaces [], convex metric spaces [], cone metric spaces [–],
partially ordered metric spaces [–], partial metric spaces [], Menger spaces [], G-
metric spaces [, ], and fuzzy metric spaces [–].
The concept of fuzzy set was introduced by Zadeh in  []. Ten years later, Kramosil

and Michalek introduced the notion of fuzzy metric spaces [] and George and Veera-
mani modified the concept in  []. Also, they defined the notion of Hausdorff topol-
ogy in fuzzy metric spaces [].
In , Park introduced the notion of intuitionistic fuzzy metric space. In his elegant

article [], he showed that for each intuitionistic fuzzy metric space (X,M,N ,∗,♦), the
topology generated by the intuitionistic fuzzy metric (M,N) coincides with the topology
generated by the fuzzy metricM.
Actually, Park’s notion is useful in modeling some phenomena where it is necessary to

study the relationship between two probability functions. Some authors have introduced
and discussed several notions of intuitionistic fuzzy metric spaces in different ways (see,
for example, [–]. Grabiec obtained a fuzzy version of the Banach contraction principle
in fuzzymetric spaces in Kramosil andMichalek’s sense [], and since thenmany authors
have proved fixed point theorems in fuzzy metric spaces [–].
For necessary notions to our results, such as continuous t-norm, intuitionistic fuzzy

metric space and the induced topology, which is denoted by τ(M,N), we refer the reader to
[] and [].
A sequence {xn} in an intuitionistic fuzzymetric space (X,M,N ,∗,♦) is said to beCauchy

sequence whenever, for each ε >  and t > , there exists a natural number n such that
M(xn,xm, t) >  – ε and N(xn,xm, t) < ε for all n,m ≥ n.
The space (X,M,N ,∗,♦) is called complete whenever every Cauchy sequence is conver-

gent with respect to the topology τ(M,N).
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Let (X,M,N ,∗,♦) be an intuitionistic fuzzy metric space. According to [], the fuzzy
metric (M,N) is called triangular whenever


M(x, y, t)

–  ≤ 
M(x, z, t)

–  +


M(z, y, t)
– 

and

N(x, y, t)≤ N(x, z, t) +N(z, y, t)

for all x, y, z ∈ X and t > .
We shall use the above background to develop our new results in this article. Our results

are stated on complete triangular intuitionistic fuzzymetric spaces. In this framework, we
introduce some new classes of contractive conditions and give fixed point results for them.

2 Main results
Now, we are ready to state and prove our main results.

Theorem. Let (X,M,N ,∗,♦) be a complete triangular intuitionistic fuzzymetric space,
h ∈ [, ) and let T : X → X be a continuous mapping satisfying the contractive condition


M(Tx,Ty, t)

–  ≤ hmax

{


M(x,Tx, t)
– ,


M(y,Ty, t)

– 
}

for all x, y ∈ X. Then T has a fixed point.

Proof Let x ∈ X. Put x = Tx and xn+ = Tn+x for all n≥ .
If xn = xn+ for some n, then we have nothing to prove.
Assume that xn �= xn+ for all n. Then


M(xn+,xn, t)

–  =


M(Txn,Txn–, t)
– 

≤ hmax

{


M(xn,Txn, t)
– ,


M(xn–,Txn–, t)

– 
}

for all n.
Now, for each n, put tn =max{ 

M(xn ,Txn ,t) – , 
M(xn–,Txn–,t)

– }.
If tn = 

M(xn ,Txn ,t) – , then


M(xn+,xn, t)

–  ≤ h
(


M(xn,Txn, t)

– 
)
= h

(


M(xn,xn+, t)
– 

)
,

which is a contradiction. Thus, tn = 
M(xn–,Txn–,t)

–  for all n, and so


M(xn+,xn, t)

–  ≤ h
(


M(xn–,Txn–, t)

– 
)
.
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But


M(xn,xn–, t)

–  =


M(Txn–,Txn–, t)
– 

≤ hmax

{


M(xn–,Txn–, t)
– ,


M(xn–,Txn–, t)

– 
}

and 
M(xn ,xn–,t)

–  ≤ h( 
M(xn–,Txn–,t)

– ) for all n.
Thus,


M(xn+,xn, t)

–  ≤ h
(


M(xn,xn–, t)

– 
)

≤ · · · ≤ hn
(


M(x,x, t)

– 
)
.

Hence, for each n >m, we obtain


M(xn,xm, t)

–  ≤ 
M(xn,xn–, t)

–  + · · · + 
M(xm+,xm, t)

– 

≤ (
hn– + hn– + · · · + hm

)( 
M(x,x, t)

– 
)

≤ hm

 – h

(


M(x,x, t)
– 

)
.

Therefore, {xn} is a Cauchy sequence and so there exists x∗ ∈ X such that xn → x∗. Since
T is continuous, xn+ = Txn → Tx∗ and so x∗ = Tx∗. �

Theorem . Let (X,M,N ,∗,♦) be a complete triangular intuitionistic fuzzy metric space
and let T : X → X be a selfmap which satisfies the contractive condition


M(Tx,Ty, t)

–  ≤
[ 

M(x,Ty,t) –  + 
M(y,Tx,t) – 


M(x,Tx,t) –  + 

M(y,Ty,t) –  + 
t

](


M(x, y, t)
– 

)

for all x, y ∈ X. Then T has a fixed point.

Proof Let x ∈ X. Define the sequence {xn} by xn+ = Txn for all n. Then


M(xn+,xn, t)

–  =


M(Txn,Txn–, t)
– 

≤
[ 

M(xn ,xn ,t) –  + 
M(xn–,xn+,t)

– 


M(xn ,xn+,t)
–  + 

M(xn–,xn ,t)
–  + 

t

](


M(xn,xn–, t)
– 

)

=
[ 

M(xn–,xn+,t)
– 


M(xn ,xn+,t)

–  + 
M(xn–,xn ,t)

–  + 
t

](


M(xn,xn–, t)
– 

)

≤
[ 

M(xn–,xn ,t)
–  + 

M(xn ,xn+,t)
– 


M(xn ,xn+,t)

–  + 
M(xn–,xn ,t)

–  + 
t

](


M(xn,xn–, t)
– 

)

≤ 
M(xn,xn–, t)

– 

for all n and t > . Therefore, { 
M(xn ,xn–,t)

– } is a non-increasing sequence and so it is
convergent to some r ≥ .
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If r > , then by putting

βn =
[ 

M(xn–,xn ,t)
–  + 

M(xn ,xn+,t)
– 


M(xn ,xn+,t)

–  + 
M(xn–,xn ,t)

–  + 
t

]
,

we obtain limn→∞ βn = r
r+ 

t
and so r ≤ r

r+ 
t
r, which is a contradiction. Thus, r = .

Note that


M(xn+,xn, t)

–  ≤ βn

[


M(xn,xn–, t)
– 

]
≤ βnβn–

[


M(xn–,xn–, t)
– 

]

≤ · · · ≤ (βnβn– · · ·β)
[


M(x,x, t)

– 
]

for all n. Thus, for eachm > n, we get


M(xm,xn, t)

– 

≤ 
M(xn,xn+, t)

–  +


M(xn+,xn+, t)
–  + · · · + 

M(xm–,xm, t)
– 

≤ [
(βnβn– · · ·β) + (βn+βn · · ·β) + · · · + (βm–βm– · · ·β)

]( 
M(x,x, t)

– 
)
.

Now, we consider an = βn– · · ·ββ. Since limn→∞ an+
an = limn→∞ βn = , it follows that∑∞

k= ak < ∞. Hence, {xn} is a Cauchy sequence and so it converges to some x∗ ∈ X.
We claim that x∗ is a fixed point of T .
Since


M(xn+,Tx∗, t)

–  ≤
[ 

M(xn ,Tx∗ ,t) –  + 
M(x∗ ,Txn ,t) – 


M(x∗ ,Tx∗ ,t) –  + 

M(xn ,Txn ,t) –  + 
t

](


M(xn,x∗, t)
– 

)

for all n, we get 
M(x∗ ,Tx∗ ,t) –  =  and so Tx∗ = x∗. �

The following example shows that there are discontinuous mappings which satisfy the
conditions of Theorem ..

Example. LetX = [, –
√
) endowedwith the usual distance d(x, y) = |x–y|. Consider

M(x, y, t) = t
t+d(x,y) and N(x, y, t) = d(x,y)

t+d(x,y) for all x, y ∈ X and t ≥ . Define the selfmap T on
X by

Tx =

⎧⎨
⎩
, x ∈ [,  –

√
),

 –
√
, x =  –

√
.

It is easy to check that T satisfies the conditions of Theorem ..
In fact, for x =  –

√
 and  ≤ y <  –

√
, we have

(


M(Tx,Ty, t)
– 

)[


M(x,Tx, t)
–  +


M(y,Ty, t)

–  +

t

]

=
( |Tx – Ty|

t

)[ |x – Tx|
t

+
|y – Ty|

t
+

t

]
=
 –

√


t

[
y
t
+

t

]
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≤ 
t

[
( –

√
 – y) – ( –

√
)( –

√
 – y)

]

=
[ |x – Ty|

t
+

|y – Tx|
t

] |x – y|
t

=
[


M(x,Ty, t)

–  +


M(y,Tx, t)
– 

](


M(x, y, t)
– 

)
,

and so


M(Tx,Ty, t)

–  ≤
[ 

M(x,Ty,t) –  + 
M(y,Tx,t) – 


M(x,Tx,t) –  + 

M(y,Ty,t) –  + 
t

](


M(x, y, t)
– 

)
.

Theorem. Let (X,M,N ,∗,♦) be a complete triangular intuitionistic fuzzymetric space,
α,β ∈ [, ) with α + β <  and let T : X → X be a continuous mapping which satisfies the
contractive condition


M(Tx,Ty, t)

–  ≤ α
( 
M(x,Tx,t) – )( 

M(y,Ty,t) – )


M(x,y,t) – 
+ β

(


M(x, y, t)
– 

)

for all x, y ∈ X. Then T has a unique fixed point in X.

Proof Let x ∈ X. Put x = Tx and xn+ = Tn+x for all n≥ .
If xn = xn+ for some n, then we have nothing to prove.
Assume that xn �= xn+ for all n. Then


M(xn+,xn, t)

–  =


M(Txn,Txn–, t)
– 

≤ α
( 
M(xn ,Txn ,t) – )( 

M(xn–,Txn–,t)
– )


M(xn ,xn–,t)

– 
+ β

(


M(xn,xn–, t)
– 

)
,

and so


M(xn+,xn, t)

–  ≤
(

β

 – α

)(


M(xn,xn–, t)
– 

)

≤ · · · ≤
(

β

 – α

)n( 
M(x,x, t)

– 
)

for all n.
By using the triangular inequality, for eachm ≥ n, we obtain


M(xn,xm, t)

–  ≤ 
M(xn,xn+, t)

–  +


M(xn+,xn+, t)
–  + · · · + 

M(xm–,xm, t)
– 

≤ (
kn + kn+ + · · · + km–)( 

M(x,Tx, t)
– 

)

≤ kn

 – k

(


M(x,Tx, t)
– 

)
,

where k = β

–α
. Thus, {xn} is a Cauchy sequence, therefore it converges to some x∗ ∈ X.

Since t is continuous, it follows Tx∗ = x∗, hence x∗ is a fixed point of T .
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Now, suppose that T has another fixed point y∗ �= x∗. Then we have


M(x∗, y∗, t)

–  =


M(Tx∗,Ty∗, t)
– 

≤ α
( 
M(y∗ ,Ty∗ ,t) – )( 

M(x∗ ,Tx∗ ,t) – )


M(x∗ ,y∗ ,t) – 
+ β

(


M(x∗, y∗, t)
– 

)

= β

(


M(x∗, y∗, t)
– 

)
<

(


M(x∗, y∗, t)
– 

)
,

which is a contradiction. Hence, T has a unique fixed point. �

We would like to prove that the iterative process utilized above is stable [, ]. More
accurately, we need this definition.

Definition . On an intuitionistic fuzzy metric space (X,M,N ,∗,♦), consider T a self-
map on X, with a fixed point p. For x ∈ X, consider the Picard iteration, xn+ = Txn, which
converges to p. Let (yn) be an arbitrary sequence in X. If

[(
M(yn+,Tyn, t) → 

) ∧ (
N(yn+,Tyn, t)→ 

)] �⇒ yn → p,

we say that the Picard iteration is T-stable.

Corollary . Provided that the conditions of Theorem . are fulfilled, suppose that p is
the unique fixed point of T . Then the Picard iteration is T-stable.

Proof Indeed, using the triangular condition, we get


M(yn+,p, t)

– 

≤ 
M(yn+,Tyn, t)

–  +


M(Tyn,Tp, t)
– 

≤ 
M(yn+,Tyn, t)

–  + α
( 
M(yn ,Tyn ,t) – )( 

M(p,Tp,t) – )


M(yn ,p,t) – 
+ β

(


M(yn,p, t)
– 

)

=


M(yn+,Tyn, t)
–  + β

(


M(yn,p, t)
– 

)

and so


M(yn+,p, t)

–  ≤ 
M(yn+,Tyn, t)

–  + β

(


M(yn,p, t)
– 

)
.

Now, we have to interpret this relation in terms of real sequences. For this purpose, we
need the following result, [].

Lemma . Let us consider δ ∈ [, ) to be a real number and {εn} to be a sequence of
positive numbers such that lim εn = . If {un} is a sequence of positive real numbers such
that un+ ≤ δun + εn, then limun = .

Using Lemma . it follows that limn→∞ yn = p, and the corollary is proved. �
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3 Conclusion
In this work, we introduced some classes of contractive conditions on intuitionistic fuzzy
metric spaces endowedwith triangularmetric.With additional condition of completeness,
we introduced new fixed point results for these classes of mappings. A stability result is
established.
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