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Abstract
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metric spaces are obtained. As application, invariant approximation theorems are
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1 Introduction and preliminaries
We first review needed definitions. Let X be a metric space with metric d, M ⊂ X and
J = [, ]. The space X is called
() M-starshaped [] if there exists a continuous mappingW : X ×M× J → X satisfying

d
(
x,W (y,q,λ)

) ≤ λd(x, y) + ( – λ)d(x,q)

for all x, y ∈ X , q ∈M and all λ ∈ J ;
() stronglyM-starshaped [, ] if it isM-starshaped and satisfies the property (I), that

is,

d
(
W (x,q,λ),W (y,q,λ)

) ≤ λd(x, y)

for all x, y ∈ X , q ∈M and all λ ∈ J ;
() (strongly) convex if it is (strongly) X-starshaped;
() starshaped if it is {q}-starshaped for some q ∈ X .

Astrongly convexmetric space is also said to be ametric space of hyperbolic type (seeCiric
[]). Obviously, every normed space X is a strongly convex metric space with W defined
byW (x,q,λ) = λx+(–λ)q for all x,q ∈ X and all λ ∈ J . More generally, ifX is a linear space
with a translation invariant metric satisfying d(λx + ( – λ)y, ) ≤ λd(x, ) + ( – λ)d(y, ),
then X is a strongly convexmetric space. A subsetD of anM-starshapedmetric space X is
called q-starshaped if there exists q ∈ D ∩M such that W (x,q,λ) ∈ D for all x ∈ D and all
λ ∈ J . For details, we refer the reader to Al-Thagafi [], Guay et al. [] and Takahashi [].
Let I,T : X → X be two mappings and D⊂ X. Then T is called
() I-nonexpansive on D if d(Tx,Ty) ≤ d(Ix, Iy) for all x, y ∈D;
() I-contraction on D if there exists k ∈ [, ) such that d(Tx,Ty) ≤ kd(Ix, Iy) for all

x, y ∈D.
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A point x ∈ D is a coincidence point (common fixed point) of I and T if Ix = Tx
(x = Ix = Tx). The set of coincidence points of I and T is denoted by C(I,T). The map-
pings I and T are called
() commuting on D if ITx = TIx for all x ∈D;
() weakly compatible if they commute at their coincidence points, i.e., if ITx = TIx

whenever Ix = Tx.
The ordered pair (I,T) of two self-maps of a metric space X is called a Banach operator

pair if the set Fix(T) is I-invariant, namely I(Fix(T)) ⊆ Fix(T). Obviously, a commuting
pair (I,T) is a Banach operator pair but not conversely in general, see [–].
Let S ⊂ X and x̂ ∈ X. Then PS (̂x) = {x ∈ S : d(x, x̂) = d(̂x,S)} is called the set of best S-

approximants to x̂, where d(̂x,S) = inf{d(̂x, y) : y ∈ S} and CI
S (̂x) = {x ∈ S : Ix ∈ PS (̂x)}.

In , Meinardus [] employed the Schauder fixed point theorem to prove a result
regarding invariant approximation. In , Singh [] proved the following extension of
the result of Meinardus.

Theorem. Let T be a nonexpansive operator on a normed space X, letM be a nonempty
subset of X, T(M) ⊂M and u ∈ F(T). If PM(u) is nonempty compact and starshaped, then
PM(u)∩ F(T) �= ∅.

Hicks andHumphries [] found that Singh’s results remain true ifT(M) ⊂M is replaced
by T(∂M) ⊂ M. In , Sahab et al. [] established the following result which contains
the result of Hicks and Humphries and Theorem ..

Theorem . Let I and T be self-maps of a normed space X with u ∈ F(I)∩ F(T),M ⊂ X
with T(∂M) ⊂ M, and q ∈ F(I). If D = PM(u) is compact and q-starshaped, I(D) = D, I is
continuous and linear on D, I and T are commuting on D and T is I-nonexpansive on
D∪ {u}, then PM(u)∩ F(T)∩ F(I) �= ∅.

Invariant approximation results for commuting maps due to Al-Thagafi [] extended
and generalized Theorems .-. and the works of [, , ]. Al-Thagafi results were fur-
ther extended by [, , –] to R-subweakly commuting, pointwise R-subweakly com-
muting and a Banach operator pair.
The aim of this paper is to establish certain common fixed point theorem for a Banach

operator pair in the setup of stronglyM-starshaped metric spaces. As application, invari-
ant approximation results for this class of maps are derived. Our results extend and unify
the work of Al-Thagafi [, ], Dotson [], Habiniak [], Hicks andHumphries [], Hus-
sain and Berinde [], Hussain et al. [], Naz [], Latif [], Sahab et al. [] and Singh
[, ].
The following result will be needed.

Lemma . [] Let D be a subset of an M-starshaped metric space (X,d) and x̂ ∈ X. Then
PD (̂x) ⊂ ∂D∩D.

2 Main results
The following result will be needed (see Lemma . [] and Lemma . []).
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Lemma . Let S be a nonempty subset of a metric space (X,d), and let T , f be self-maps
of S. If F(f ) is nonempty, clT(F(f ))⊆ F(f ), cl(T(M)) is complete, and T and f satisfy for all
x, y ∈ S and ≤ h < ,

d(Tx,Ty) ≤ hmax
{
d(fx, fy),d(Tx, fx),d(Ty, fy),d(Tx, fy),d(Ty, fx)

}
, (.)

then S ∩ F(T)∩ F(f ) is a singleton.

Theorem . Let S be a nonempty subset of a strongly M-starshaped metric space X and
let T , f be self-maps of S. Suppose that F(f ) is q-starshaped, clT(F(f )) ⊆ F(f ), cl(T(S)) is
compact, T is continuous on S and

‖Tx – Ty‖ ≤ max
{‖fx – fy‖,dist(fx, [q,Tx]),dist(fy, [q,Ty]),

dist
(
fy, [q,Tx]

)
,dist

(
fx, [q,Ty]

)}
, (.)

for all x, y ∈ S, then S ∩ F(T)∩ F(f ) �= ∅.

Proof Define Tn : F(f ) → F(f ) by Tnx =W (Tx,q,kn) for all x ∈ F(f ) and a fixed sequence
of real numbers kn ( < kn < ) converging to . Since F(f ) is q-starshaped and clT(F(f )) ⊆
F(f ), therefore clTn(F(f )) ⊆ F(f ) for each n ≥ . Also, by (.),

d(Tnx,Tny) = d
(
W (Tx,q,kn),W (Ty,q,kn)

)
= knd(Tx,Ty)

≤ knmax
{
d(fx, fy),dist

(
fx, [q,Tx]

)
,dist

(
fy, [q,Ty]

)
,

dist
(
fx, [q,Ty]

)
,dist

(
fy, [q,Tx]

)}
≤ knmax

{
d(fx, fy),d(fx,Tnx),d(fy,Tny),d(fy,Tnx),d(fx,Tny)

}

for each x, y ∈ F(f ) and  < kn < . If cl(T(S)) is compact for each n ≥ , then cl(Tn(S)) is
compact and hence complete. By Lemma ., for each n ≥ , there exists xn ∈ F(f ) such
that xn = fxn = Tnxn. The compactness of cl(T(M)) implies that there exists a subsequence
{Txm} of {Txn} such that Txm → z ∈ cl(T(M)) as m → ∞. Since {Txm} is a sequence in
T(F(f )) and clT(F(f )) ⊆ F(f ), therefore z ∈ F(f ). Further, xm = Tmxm =W (Txm,q,km) → z.
By the continuity of T , we obtain Tz = z = fz. Thus, S ∩ F(T)∩ F(f ) �= ∅. �

Corollary . Let S be a nonempty subset of a strongly M-starshaped metric space X and
let T , f be self-maps of S. Suppose that F(f ) is q-starshaped, clT(F(f )) ⊆ F(f ), cl(T(S)) is
compact, T is continuous on S and T is f -nonexpansive on S, then S ∩ F(T)∩ F(f ) �= ∅.

Corollary . Let S be a nonempty subset of a strongly M-starshaped metric space X and
let T , f be self-maps of S. Suppose that F(f ) is closed and q-starshaped, (T , f ) is a Ba-
nach operator pair, cl(T(S)) is compact, T is continuous on S and T satisfies (.) or T is
f -nonexpansive on S, then S ∩ F(T)∩ F(f ) �= ∅.

Corollary . ([], Theorem .) Let M be a nonempty closed and q-starshaped subset of
a normed space X and let T and f be self-maps of M such that T(M) ⊆ f (M). Suppose that
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T commutes with f and q ∈ F(f ). If cl(T(M)) is compact, f is continuous and linear and T
is f -nonexpansive on M, then M ∩ F(T)∩ F(f ) �= ∅.

Corollary . (([], Theorem .)) Let M be a nonempty subset of a normed space X and
let T and f be self-maps ofM. Suppose that F(f ) is q-starshaped, clT(F(f )) ⊆ F(f ), cl(T(M))
is compact, T is continuous onM and (.) holds for all x, y ∈M.ThenM∩F(T)∩F(f ) �= ∅.

Corollary . ([], Theorem .) LetM be a nonempty subset of a normed space X and let
T , f be self-maps of M. Suppose that F(f ) is q-starshaped and closed cl(T(M)) is compact,
T is continuous on M, (T , f ) is a Banach operator pair and satisfies (.) for all x, y ∈ M.
Then M ∩ F(T)∩ F(f ) �= ∅.

Corollary . Let X be a strongly M-starshaped metric space, let f ,T : X → X be two
mappings, S be a subset of X such that T(∂S ∩ S) ⊂ S and x̂ ∈ F(T) ∩ F(f ). Suppose that
PS (̂x) is nonempty closed and q-starshaped with q ∈ F(f )∩M and cl(T(PS (̂x))) is compact
and f (PS (̂x)) = PS (̂x). If T is continuous, clT(F(f ))⊆ F(f ) and satisfies, for all x ∈ PS (̂x)∪{̂x},

d(Tx,Ty) ≤

⎧⎪⎪⎨
⎪⎪⎩
d(fx, fu) if y = u,

max{d(fx, fy),dist(fx, [q,Tx]),dist(fy, [q,Ty]),
dist(fx, [q,Ty]),dist(fy, [q,Tx])} if y ∈ PS (̂x),

(.)

then PS (̂x)∩ F(T)∩ F(f ) �= ∅.

Proof Let x ∈ PS (̂x). Then by Lemma ., x ∈ ∂S∩ S and so Tx ∈ S since T(∂S∩ S)⊂ S. As
T satisfies (.) on PS (̂x)∪ {̂x} and I(PS (̂x)) = PS (̂x), we have

d(Tx, x̂) = d(Tx,Tx̂) ≤ d(Ix, Îx) = d(Ix, x̂) = d(̂x,S).

This implies that Tx ∈ PS (̂x). Thus T(PS (̂x)) ⊂ PS (̂x) = f (PS (̂x)). Now Theorem . implies
that PS (̂x)∩ F(T)∩ F(f ) �= ∅. �

Theorem. Let X be a strongly M-starshapedmetric space, letf ,T : X → X be twomap-
pings, S be a subset of X such that T(∂S ∩ S) ⊂ S and x̂ ∈ F(T) ∩ F(f ). Suppose that PS (̂x)
is nonempty closed and q-starshaped with q ∈ F(f ) ∩ M and cl(T(PS (̂x))) is compact and
f (PS (̂x)) = PS (̂x). If T is continuous, clT(F(f )) ⊆ F(f ) andT is f -nonexpansive on PS (̂x)∪{̂x},
then PS (̂x)∩ F(T)∩ F(f ) �= ∅.

Remark . A subset S of a strongly M-starshaped metric space X is said to have the
property (N) w.r.t. T [, ] if

(i) T : S → S,
(ii) W (Tx,q,kn) ∈ S for some q ∈ S ∩M and a fixed sequence of real numbers kn

( < kn < ) converging to  and for each x ∈ S.
All results of the paper (Theorem .-Theorem .) remain valid provided f is assumed
to be surjective and q-starshapedness of the set F(f ) is replaced by the property (N) re-
spectively. Consequently, recent results due to Hussain and Berinde [] and Hussain et
al. [] are improved and extended.
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Remark . Recently, in [], the author obtained certain fixed point theorems in con-
vex metric spaces. Using Theorems . and . [] and the technique in [], we can prove
more common fixed point and approximation results for Banach pairs satisfying general-
ized nonexpansive conditions in a stronglyM-starshaped metric space X.

Remark . All results of the paper can be proved formultivalued Banach operator pairs
defined and studied in [].
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