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Abstract
In this paper, we make use of the relatively new analytical technique, the homotopy
decomposition method (HDM), to solve a system of fractional nonlinear differential
equations that arise in the model for HIV infection of CD4+ T cells and attractor
one-dimensional Keller-Segel equations. The technique is described and illustrated
with a numerical example. The reliability of HDM and the reduction in computations
give HDM a wider applicability. In addition, the calculations involved in HDM are very
simple and straightforward.
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1 Introduction
Fractional calculus has been used to model physical and engineering processes, which are
found to be best described by fractional differential equations []. It is worth nothing that
the standard mathematical models of integer-order derivatives, including nonlinear mod-
els, do not work adequately in many cases []. In the recent years, fractional calculus has
played a very important role in various fields such as mechanics, electricity, chemistry, bi-
ology, economics, notably control theory, and signal and image processing [–]. Major
topics include anomalous diffusion, vibration and control, continuous time random walk,
Levy statistics, fractional Brownianmotion, fractional neutron point kineticmodel, power
law, Riesz potential, fractional derivative and fractals, computational fractional derivative
equations, nonlocal phenomena, history-dependent process, porous media, fractional fil-
ters, biomedical engineering, fractional phase-locked loops, fractional variational princi-
ples, fractional transforms, fractional wavelet, fractional predator-prey system, soft mat-
ter mechanics, fractional signal and image processing, singularities analysis and integral
representations for fractional differential systems, special functions related to fractional
calculus, non-Fourier heat conduction, acoustic dissipation, geophysics, relaxation, creep,
viscoelasticity, rheology, fluid dynamics, and chaos. An excellent literature of this can be
found in [–].
The purpose of this paper is to make use of the homotopy decomposition method

(HDM) [, ], a relatively new analytical technique, to solve a system of fractional partial
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differential equations that arise in the model for HIV infection of CD+ T cells and attrac-
tor one-dimensional Keller-Segel equations. In this study, we consider a fractional case of
theHIV infectionmodel of CD+ T cells examined in []. Thismodel is given by the basic
three components which are the concentration of susceptible CD+ T cells, CD+ T cells
infected by the HIV viruses and free HIV virus particles in the blood. These CD+ T cells
with order cells in human immunity systems fight against diseases. HIV use cells in order
to propagate. In a healthy person, the number of CD+ T cells is / mm. CD+ T
cells are also called leukocytes or T helper cells on one hand. On the other hand, we con-
sider the fractional parabolic systems to describe the aggregation process of cellular slime
mold by the chemical attraction []. Recently, the Keller-Segel (KS) equations attracted
interest of many mathematicians. Local solutions were studied by the second author [].
The paper is structured as follows. In Section , we give a brief history and properties

of the fractional derivative order definition. In Section , we present the basic ideal of
the homotopy decomposition method for solving fractional partial differential equations.
We present the application of the HDM for a system of fractional nonlinear differential
equations and numerical results in Section . The conclusions are then given in the final
Section .

2 Fractional order derivative
2.1 Brief history
There exists a vast literature on different definitions of fractional derivatives. The most
popular ones are the Riemann-Liouville and the Caputo derivatives. For Caputo, we have

C
D

α
x
(
f (x)

)
=


�(n – α)

∫ x


(x – t)n–α– dnf (t)

dtn
dt. (.)

For the case of Riemann-Liouville, we have the following definition:

Dα
x
(
f (x)

)
=


�(n – α)

dn

dxn

∫ x


(x – t)n–α–f (t)dt. (.)

Each fractional derivative presents some advantages and disadvantages [, ]. The
Riemann-Liouville derivative of a constant is not zero, while the Caputo derivative of a
constant is zero but demands higher conditions of regularity for differentiability: to com-
pute the fractional derivative of a function in the Caputo sense, we must first calculate its
derivative. Caputo derivatives are defined only for differentiable functions, while functions
that have no first-order derivative might have fractional derivatives of all orders less than
one in the Riemann-Liouville sense [, ]. Recently, Guy Jumarie (see [, ]) proposed
a simple alternative definition to the Riemann-Liouville derivative

Dα
x
(
f (x)

)
=


�(n – α)

dn

dxn

∫ x


(x – t)n–α–{f (t) – f ()

}
dt. (.)

His modified Riemann-Liouville derivative seems to have advantages over both the stan-
dard Riemann-Liouville and the Caputo fractional derivatives: it is defined for arbitrary
continuous (non-differentiable) functions, and the fractional derivative of a constant is
equal to zero.
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We can point out that Caputo and Riemann-Liouville derivatives may have their dis-
advantages, but they are more useful when dealing with some real world problems [].
Every definition must be used accordingly.

2.2 Properties and definitions
Definition  A real function f (x), x > , is said to be in the space Cμ, μ ∈R if there exists
a real number p > μ, such that f (x) = xph(x), where h(x) ∈ C[,∞), and it is said to be in
the space Cm

μ if f (m) ∈ Cμ,m ∈N.

Definition  TheRiemann-Liouville fractional integral operator of order α ≥ , of a func-
tion f ∈ Cμ, μ ≥ –, is defined as

Jαf (x) =


�(α)

∫ x


(x – t)α–f (t)dt, α > ,x > ,

Jf (x) = f (x).
(.)

Properties of the operator can be found in [, ], we mention only the following.
For f ∈ Cμ, μ ≥ –, α,β ≥  and γ > –:

JαJβ f (x) = Jα+β f (x),

JαJβ f (x) = Jβ Jαf (x),

Jαxγ =
�(γ + )

�(α + γ + )
xα+γ .

(.)

Lemma  If m –  < α ≤ m,m ∈N and f ∈ Cm
μ , μ ≥ –, then

DαJαf (x) = f (x) and JαDα
 f (x) = f (x) –

m–∑
k=

f (k)(+)
xk

k!
, x > . (.)

Definition  (Partial derivatives of fractional order) Assume now that f (x) is a function of
n variables xi, i = , . . . ,n, which is also of class C on D ∈Rn. We define a partial derivative
of order α for f with respect to xi

a∂α
x f =


�(m – α)

∫ xi

a
(xi – t)m–α–∂m

xi f (xj)
∣∣∣∣
xj=t

dt. (.)

If it exists, where ∂m
xi is the usual partial derivative of integer orderm.

3 Basic idea of the HDM [11, 12]
To illustrate the basic idea of this method, we consider a general nonlinear non-
homogeneous fractional partial differential equation with initial conditions of the fol-
lowing form:

∂αU(x, t)
∂tα

= L
(
U(x, t)

)
+N

(
U(x, t)

)
+ f (x, t), α > , (.)
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subject to the initial conditions

Dα–k
 U(x, ) = fk(x) (k = , . . . ,n – ), Dα–n

 U(x, ) =  and n = [α],

Dk
U(x, ) = gk(x) (k = , . . . ,n – ), Dn

U(x, ) =  and n = [α],

where ∂α

∂tα denotes the Caputo or Riemann-Liouville fraction derivative operator, f is a
known function, N is the general nonlinear fractional differential operator and L repre-
sents a linear fractional differential operator. The first step of the method here is to trans-
form the fractional partial differential equation to the fractional partial integral equation
by applying the inverse operator ∂α

∂tα on both sides of equation (.) to obtain: in the case
of the Riemann-Liouville fractional derivative,

U(x, t) =
n–∑
j=

fj(x)
�(α – j + )

tα–j

+


�(α)

∫ t


(t – τ )α–

[
L
(
U(x, τ )

)
+N

(
U(x, τ )

)
+ f (x, τ )

]
dτ ; (.)

in the case of the Caputo fractional derivative,

U(x, t) =
n–∑
j=

gj(x)
�(α – j + )

tα–j+


�(α)

∫ t


(t–τ )α–

[
L
(
U(x, τ )

)
+N

(
U(x, τ )

)
+ f (x, τ )

]
dτ .

Or, in general, by putting

n–∑
j=

fj(x)
�(α – j + )

tα–j = f (x, t) or f (x, t) =
n–∑
j=

gj(x)
�(α – j + )

tj,

we obtain

U(x, t) = T(x, t) +


�(α)

∫ t


(t – τ )α–

[
L
(
U(x, τ )

)
+N

(
U(x, τ )

)
+ f (x, τ )

]
dτ . (.)

In the homotopy decomposition method, the basic assumption is that the solutions can
be written as a power series in p

U(x, t,p) =
∞∑
n=

pnUn(x, t), (.a)

U(x, t) = lim
p→

U(x, t,p), (.b)

and the nonlinear term can be decomposed as

NU(x, t) =
∞∑
n=

pnHn(U), (.)
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where p ∈ (, ] is an embedding parameter.Hn(U) is He’s polynomials that can be gener-
ated by

Hn(U, . . . ,Un) =

n!

∂n

∂pn

[
N

( ∞∑
j=

pjUj(x, t)

)]
, n = , , , . . . . (.)

The homotopy decomposition method is obtained by the graceful coupling of homotopy
technique with the Abel integral and is given by

∞∑
n=

pnUn(x, t) – T(x, t)

=
p

�(α)

∫ t


(t – τ )α–

[
f (x, τ ) + L

( ∞∑
n=

pnUn(x, τ )

)
+N

( ∞∑
n=

pnUn(x, τ )

)]
dτ . (.)

Comparing the terms of the same powers of p gives solutions of various orders with the
first term

U(x, t) = T(x, t). (.)

Theorem ([]) Suppose that X and Y are the Banach spaces and V : X → Y is a contrac-
tion nonlinear mapping. If the sequence generated by the homotopy decomposition method
is regarded as

Un(x, t) = V
(
Un–(x, t)

)
=

n–∑
i=

Ui(x, t), n = , ,  . . . ,

then the following statements hold:
() ‖Un(x, t) –U(x, t)‖ ≤ ϕn‖T(x, t) –U(x, t)‖;
() Un(x, t) is always in the neighbourhood of U(x, t) meaning Un(x, t) ∈ B(U(x, t), r) =

{U*(x, t)/‖U*(x, t) –U(x, t)‖};
() limn→∞ Un(x, t) =U(x, t).

Proof () We prove the statement () by induction on n, ‖U – U‖ = ‖G(U) – U‖, and
according to the Banach fixed point theorem, V has a fixed point U meaning V (U) = U ;
therefore,

‖U –U‖ = ∥∥G(U) –U
∥∥ =

∥∥G(U) –G(U)
∥∥ ≤ ϕ‖U –U‖ = ϕ

∥∥T(x, t) –U
∥∥

since V is a contraction mapping.
Assume that ‖Un– –U‖ ≤ ϕn–‖T(x, ) –U(x, t)‖ is an induction hypothesis, then

‖Un –U‖ = ∥∥G(Un–) –G(U)
∥∥ ≤ ϕ‖Un– –U‖ ≤ ϕϕn–∥∥T(x, t) –U

∥∥.
() The first concern here is to prove that T(x, t) ∈ B(U(x, t), r), and this is achieved by

induction on m. So, for m = , ‖T(x, t) –U(x, t)‖ = ‖U(x, ) –U(x, t)‖ ≤ r with U(x, ) the
initial condition.
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Assume that ‖T(x, t) –U(x, t)‖ ≤ r form –  is an induction hypothesis, then

∥∥T(x, t) –U(x, t)
∥∥ =

∥∥∥∥Tm–(x, t) –
fm(x)

�(α –m + )
tα–m

∥∥∥∥
≤ ∥∥Tm–(x, t) –U(x, t)

∥∥ +
∥∥∥∥ fm(x)
�(α –m + )

tα–m
∥∥∥∥

= r.

Now, for all n≥ , using () we have

‖Un –U‖ ≤ ϕn∥∥T(x, t) –U
∥∥ ≤ ϕnr ≤ r.

() Using () and the fact that limn→∞ ϕn =  yields that limn→∞ ‖Un–U‖ = ; therefore,

lim
n→∞Un =U . �

4 Application
‘In learning science examples are more useful than rules’ (Isaac Newton). In this section
we apply this method to solving a system of fractional differential equations.

4.1 Fractional model for HIV infection of CD4+ T
This model is characterized by the system of nonlinear differential equations

⎧⎪⎪⎨
⎪⎪⎩

dμT
dtμ = p – αT + rT( – T+I

Tmax
) – kVT ,

dηI
dtη = kVT – βI,  < μ,η,υ ≤ ,
dυV
dtυ =NβI – γV

(.)

subject to the initial conditions

T() = T, I() = I, V () = V. (.)

Here, r is any positive constant; T(t), I(t) and V (t) show the concentration of susceptible
CD+ T cells, CD+ T cells infected by the HIV viruses and free HIV virus particles in
the blood, respectively; α, β and γ stand for natural turnover rates of uninfected T cells,
infected T cells and virus particles, respectively; ( – T+I

Tmax
) describes the logistic growth

of healthy CD+ T cells, and proliferation of infected CD+ T cells is neglected. For k > 
is the infection rate, the term KVT describes the incidence of HIV infection of healthy
CD+ T cells. Each infected CD+ T cell is assumed to produce one virus particle during
its lifetime, including any of its daughter cells. The body is believed to produce CD+ T
cells from precursors in the bone marrow and thymus at a constant rate p. T cells multi-
ply through mitosis with a rate r when T cells are stimulated by antigen or mitogen. Tmax

denotes the maximum CD+ T cell concentration in the body [–]. We chose the fol-
lowing initial condition and parameters as in []:

T = ., I = , V = ., p = ., α = .,

β = ., γ = ., k = ., Tmax = ,, N = .

http://www.advancesindifferenceequations.com/content/2013/1/94
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Following the HDM steps, we arrive at the following integral equations:

∞∑
n=

pnTn(t) = T() +
p

�(μ)

∫ t


(t – τ )μ–

(
p – α

∞∑
n=

pnTn(τ )

+ r
∞∑
n=

pnTn(τ )
(
 –

∑∞
n= pnTn(τ ) +

∑∞
n= pnIn(τ )

Tmax

)

– k
∞∑
n=

pnTn(τ )
∞∑
n=

pnVn(τ )

)
dτ , (.)

∞∑
n=

pnIn(t) = I() +
p

�(η)

∫ t


(t – τ )η–

(
k

∞∑
n=

pnTn(τ )
∞∑
n=

pnVn(τ ) – β

∞∑
n=

pnIn(τ )

)
dτ ,

∞∑
n=

pnVn(t) = V () +
p

�(υ)

∫ t


(t – τ )υ–

(
βN

∞∑
n=

pnTn(τ ) – γ

∞∑
n=

pnVn(τ )

)
dτ .

Comparing the terms of the same power of p, we obtain the following integral equations
that are very easy to solve. Note that, with the homotopy perturbation method (HPM),
one will obtain a set of ordinary differential equations after comparing the terms of the
same power of p, which is very hard to compute in the case of high order ODE

p = T(t) = T, T() = T,

p = I(t) = I, I() = I,

p = V(t) = V, V() = V,

p: T(t) =


�(μ)

∫ t


(t – τ )μ–

(
p – αT + rT

(
 –

T + I
Tmax

)
– kVT

)
dτ ,

T() = ,

p: I(t) =


�(η)

∫ t


(t – τ )η–(kVT – βI)dτ , I() = ,

p: V(t) =


�(υ)

∫ t


(t – τ )υ–(NI – γV)dτ , V() = , (.a)

pn: Tn(t) =


�(μ)

∫ t


(t – τ )μ–

(
(r – α)Tn– –

r
Tmax

( n–∑
j=

TjTn–j– +
n–∑
j=

TjIn–j–

)

– k
n–∑
j=

TjVn–j–

)
dτ , Tn(t) = ,n≥ ,

pn: In(t) =


�(η)

∫ t


(t – τ )η–

(
k

n–∑
j=

VjTn–j– – βIn–

)
dτ , In(t) = ,n≥ ,

pn: Vn(t) =


�(υ)

∫ t


(t – τ )υ–(NβIn– – γVn–)dτ , Vn(t) = ,n≥ .

The components of the series solution are obtained directly

T(t) = T = ., I(t) = I = , V(t) = V = .,

T(t) = .
tμ

�(μ + )
, I(t) = .

tη

�(η + )
,

http://www.advancesindifferenceequations.com/content/2013/1/94
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V(t) = –.
tυ

�(υ + )
,

T(t) = tμ
(
–

.–tη

�( +μ + η)
+
.tμ

�( + μ)
+
.tυ

�( +μ + υ)

)
,

(.b)

I(t) = tη
(
–
.× –

�( + η)
tη +

.tμ

�( + η +μ)
–
.tυ

�( +μ + υ)

)
,

V(t) =
.tη+υ

�( + η + υ)
+

.tυ

�( + υ)
.

Using the package Mathematica, in the same manner one can obtain the rest of the com-
ponents. But here, a few terms were computed and the asymptotic solution is given by

T(t) = T(t) + T(t) + T(t) + T(t) + T(t) + T(t) + T(t) + T(t) + T(t) + · · · ,
I(t) = I(t) + I(t) + I(t) + I(t) + I(t) + I(t) + I(t) + I(t) + I(t) + · · · , (.)

V (t) = V(t) +V(t) +V(t) +V(t) +V(t) +V(t) +V(t) +V(t) +V(t) + · · · .

Figures - show the graphical representation of the approximated solutions obtained via
HDM for μ = ., η = . and υ = . It is worth nothing that the solution of the fractional
system is not only a function of time, but also a continuous function of fractional order
derivatives υ and η. The new parameters (μ, υ and η) introduced in the model can be
viewed as new physical parameters that characterise the interaction between the concen-

Figure 1 Solution for N = 8.

Figure 2 Approximated solution for T(t) and N = 8.

http://www.advancesindifferenceequations.com/content/2013/1/94


Atangana and Alabaraoye Advances in Difference Equations 2013, 2013:94 Page 9 of 14
http://www.advancesindifferenceequations.com/content/2013/1/94

Figure 3 Approximated solution for I(t) and N = 8.

Figure 4 Approximated solution for V(t) and N = 8.

tration of susceptible CD+ T cells, CD+ T cells infected by the HIV viruses and free HIV
virus particles in the blood.

4.2 Fractional attractor one-dimensional Keller-Segel equations
In  Keller and Segel [] presented parabolic systems to describe the aggregation pro-
cess of cellular slime mold by chemical attraction. The system of a simplified form in the
one-dimensional case is written as follows:

∂u(x, t)
∂t

= a
∂u(x, t)

∂x
–

∂

∂x

(
u(x, t)

∂χ (ρ)
∂x

)
,

∂ρ(x, t)
∂t

= b
∂ρ(x, t)

∂x
+ cu(x, t) – dρ(x, t)

(.)

subject to the boundary condition

∂u(α, t)
∂x

=
∂u(β , t)

∂x
=

∂ρ(α, t)
∂x

=
∂ρ(β , t)

∂x
= , (.)

and the initial conditions

u(x, ) = u(x), ρ(x, ) = ρ(x), x ∈ I. (.)

Here, I = (α,β) is a bounded open interval, a, b, c and d are positive constants. The un-
known functions u(x, t) and ρ(x, t) denote the concentration of amoebae and the con-
centration of a chemical substance, respectively, in I × (,∞). The chemotactic term
∂
∂x (u(x, t)

∂χ (ρ)
∂x ) indicates that the cells are sensitive to the chemicals and are attracted by

http://www.advancesindifferenceequations.com/content/2013/1/94
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them. χ (ρ), called the sensitivity function, is a smooth function of ρ ∈ (,∞) which de-
scribes a cell’s perception and response to the chemical stimulus ρ .

Example  Consider the following Keller-Segel equation with the sensitivity function
χ (ρ) = .
Then the chemotactic term ∂

∂x (u(x, t)
∂χ (ρ)

∂x ) = 

∂μu(x, t)
∂tμ

= a
∂u(x, t)

∂x
,

∂ηu(x, t)
∂tη

= b
∂ρ(x, t)

∂x
+ cu(x, t) – dρ(x, t)

subject to the initial conditions

u(x, ) =me–x, ρ(x, ) = ne–x, x > . (.)

In view of the homotopy decomposition method, we obtain the following equations:

∞∑
n=

pnun(x, t) – u(x, ) =
p

�(μ)

∫ t


(t – τ )μ–a

∂

∂x

( ∞∑
n=

pnun(x, τ )

)
dτ ,

∞∑
n=

pnρn(x, t) + ρ(x, )

=
p

�(η)

∫ t


(t – τ )η–

(
b

∂

∂x

( ∞∑
n=

pnρn(x, τ )

)

+ c
∞∑
n=

pnun(x, τ ) – d
∞∑
n=

pnρn(x, τ )

)
dτ .

(.)

Now, comparing the terms of the same power of p, we obtain the following integral equa-
tions:

p: u(x, t) = u(x, ) =me–x, u(x, ) = u,

p: ρ(x, t) = ρ(x, ) = ne–x, ρ(x, ) = ρ(x, ),

p: u(x, t) =
a

�(μ)

∫ t


(t – τ )μ–

(
∂u
∂x

)
dτ , u(x, ) = ,

p: ρ(x, t) =


�(η)

∫ t


(t – τ )η–

(
b
∂ρ

∂x
+ cu – dρ

)
dτ , ρ(x, ) = ,

...

pn: un(x, t) =
a

�(μ)

∫ t


(t – τ )μ–

(
∂un–
∂x

)
dτ , un(x, ) = ,

pn: ρn(x, t) =


�(η)

∫ t


(t – τ )η–b

(
∂ρn–

∂x
+ cun– – dρn–

)
dτ , ρn(x, ) = .

(.a)
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The following solutions are obtained:

u(x, t) =me–x, ρ(x, t) = ne–x,

u(x, t) =
ae–xmtμ(– + x)

�(μ + )
, ρ(x, t) =

e–xtη(cm – n(d + b( – x)))
�( + η)

,

u(x, t) =
ae–xmtμ( + x(– + x))

�( + μ)
,

ρ(x, t)

= e–xtη
(
tη(d(–cm + dn) + b(cm – dn)(– + x) + bn( – x + x))�( + η)

�( + η)

)

+
e–xtη

�( + η +μ)
(
acmtμ

(
– + x

))
.

(.b)

Using the software Mathematica, we can obtain the remaining terms. But here only a few
terms of the series solutions are considered and the asymptotic solution is given as

u(x, t) = u(x, t) + u(x, t) + u(x, t) + u(x, t) + · · · ,
ρ(x, t) = ρ(x, t) + ρ(x, t) + ρ(x, t) + ρ(x, t) + · · · .

(.c)

Figures  and  show the biological behaviour of the coupled solution for the following
set of theoretical parameters: m = , n = , a = ., b = , c = , and d = , for a fixed
distance x = ,μ = ., η = .. It is worth noting that the solution of the fractional system
is not only a function of time, but also a continuous function of fractional order derivatives.
The new parameters (μ and η) introduced in the model can be viewed as new physical

Figure 5 Biological behaviour of concentrations as a function of space for N = 5.

Figure 6 Coupled solutions behaviour for N = 5.
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parameters that characterise the interaction between the concentration of amoebae and
the concentration of a chemical substance.

Example  Consider the following Keller-Segel equation with the sensitivity function
χ (ρ) = ρ .
Then the chemotactic term ∂

∂x (u(x, t)
∂χ (ρ)

∂x ) = ∂u(x,t)
∂x

∂ρ(x,t)
∂x + u(x, t) ∂ρ(x)

∂x

∂μu(x, t)
∂tμ

= a
∂u(x, t)

∂x
–

∂u(x, t)
∂x

∂ρ(x, t)
∂x

+ u(x, t)
∂ρ(x)
∂x

,

∂ηu(x, t)
∂tη

= b
∂ρ(x, t)

∂x
+ cu(x, t) + cu(x, t) – dρ(x, t)

(.)

subject to the initial conditions

u(x, ) = u(x), ρ(x, ) = ρ(x), x ∈ I. (.)

In view of the homotopy decomposition method, we arrive at the following set of integral
equations that are very easy to handle:

p: u(x, t) = u(x), u(x, ) = u(x, ),

p: ρ(x, t) = ρ(x), ρ(x, ) = ρ(x),

p: u(x, t) =


�(μ)

∫ t


(t – τ )μ–

(
a
∂u
∂x

–
∂u
∂x

∂ρ

∂x
+ u

∂ρ

∂x

)
dτ ,

p: ρ(x, t) =


�(η)

∫ t


(t – τ )η–

(
b
∂ρ

∂x
+ cu – dρ

)
dτ , ρ(x, ) = , (.)

pn: un(x, t) =


�(μ)

∫ t


(t – τ )μ–

(
a
∂un–
∂x

–
n–∑
j=

∂uj
∂x

∂ρn–j–

∂x

+
n–∑
j=

uj
∂ρn–j–

∂x

)
dτ , un(x, ) = ,

pn: ρn(x, t) =


�(η)

∫ t


(t – τ )η–

(
b
∂ρn–

∂x
+ cun– – dρn–

)
dτ , ρn(x, ) = .

The following solutions are read:

u(x, t) =me–x, ρ(x, t) = ne–x,

u(x, t) =
e–xmtμ(–n + aex(– + x))

�(μ + )
,

ρ(x, t) =
e–xtη(cm – n(d + ( – x)))

�(η + )
,

u(x, t) =


�( +μ)�( + η)�(. +μ)�( +μ + η)
(
–μe–xm

√
π�( + η)

× (
+μtμ

(
–aexn

(
– + x

)
+ n

(
 + x

)
+ aex

(
 + x

(
– + x

)))
�( + η +μ)

(.)

– extη
(
μ(cm – dn)× +μbn

(
– + x

))
�( + μ)

))
,
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ρ(x, t) =


�( + η)�( + η +μ)
(
e–x

(
cmtη+μ

(
–n + aex

(
– + x

))
�( + η)

+ extη
(
d(–cm + dn) + b(cm – dn)

(
– + x

)
+ bn

(
– + x

(
– + x

)))
�( + η +μ)

))
.

Using the software Mathematica, the remaining terms can be obtained. But here only a
few terms of the series solutions are considered and the asymptotic solution is given as

u(x, t) = u(x, t) + u(x, t) + u(x, t) + u(x, t) + · · · ,
ρ(x, t) = ρ(x, t) + ρ(x, t) + ρ(x, t) + ρ(x, t) + · · · .

(.)

5 Conclusions
Our concern was to provide asymptotic solutions to the system of fractional nonlinear dif-
ferential equations that arise in the model for HIV infection of CD+ T cells and attractor
one-dimensional Keller-Segel equations, using a relatively new analytical technique, the
homotopy decomposition method.We presented the brief history and some properties of
the fractional derivative concept. It is demonstrated that HDM is a powerful and efficient
tool for a system of FPDEs. In addition, the calculations involved in HDM are very simple
and straightforward.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AA wrote the first draft and EA corrected and improved the final version. Both authors read and approved the final draft.

Author details
1Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein,
South Africa. 2Department of chemistry, University of the Free State, Bloemfontein, South Africa.

Received: 18 February 2013 Accepted: 15 March 2013 Published: 5 April 2013

References
1. Atangana, A: Numerical solution of space-time fractional order derivative of groundwater flow equation. In:

International Conference of Algebra and Applied Analysis, Istanbul, June 20-24, vol. 2, p. 20 (2012)
2. Caputo, M: Linear models of dissipation whose Q is almost frequency independent, part II. Geophys. J. Int. 13(5),

529-539 (1967)
3. Oldham, KB, Spanier, J: The Fractional Calculus. Academic Press, New York (1974)
4. Podlubny, I: Fractional Differential Equations. Academic Press, New York (1999)
5. Baleanu, D, Diethelm, K, Scalas, E, Trujillo, JJ: Fractional Calculus: Models and Numerical Methods. Series on

Complexity, Nonlinearity and Chaos. World Scientific, Singapore (2012)
6. Kilbas, AA, Srivastava, HH, Trujillo, JJ: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam

(2006)
7. Miller, KS, Ross, B: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York

(1993)
8. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives: Theory and Applications. Gordon & Breach,

Yverdon (1993)
9. Zaslavsky, GM: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, London (2005)
10. Perelson, AS, Kirschner, DE, Boer, RD: Dynamics of HIV infection CD4+ T cells. Math. Biosci. 114, 81-125 (1993)
11. Atangana, A, Secer, A: The time-fractional coupled-Korteweg-de-Vries equations. Abstr. Appl. Anal. 2013, Article ID

947986 (2013). doi:10.1155/2013/947986
12. Atangana, A, Botha, JF: Analytical solution of groundwater flow equation via homotopy decomposition method.

J. Earth Sci. Clim. Change 3, 1000115 (2012). doi:10.4172/2157-7617.1000115
13. Keller, EF, Segel, LA: Initiation of slime mold aggregation viewed as instability. J. Theor. Biol. 26, 399-415 (1970)
14. Yagi, A: Norm homotopy of solutions to the parabolic system of chemotaxis. Math. Jpn. 45, 241-265 (1997)
15. Atangana, A: New class of boundary value problems. Inf. Sci. Lett. 1(2), 67-76 (2012)
16. Atangana, A, Secer, A: A note on fractional order derivatives and table of fractional derivative of some specials

functions. Abstr. Appl. Anal. 2013, Article ID 279681 (2013). doi:10.1155/2013/279681
17. Podlubny, I: Fractional Differential Equations. Academic Press, San Diego (1999)

http://www.advancesindifferenceequations.com/content/2013/1/94
http://dx.doi.org/10.1155/2013/947986
http://dx.doi.org/10.4172/2157-7617.1000115
http://dx.doi.org/10.1155/2013/279681


Atangana and Alabaraoye Advances in Difference Equations 2013, 2013:94 Page 14 of 14
http://www.advancesindifferenceequations.com/content/2013/1/94

18. Samko, SG, Kilbas, AA, Marichev, OI: Fractional Integrals and Derivatives. Gordon & Breach, Yverdon (1993). Translated
from the 1987 Russian original

19. Jumarie, G: On the representation of fractional Brownian motion as an integral with respect to (dt)a . Appl. Math. Lett.
18(7), 739-748 (2005)

20. Atangana, A, Ahmed, A, Bıldık, N: A generalized version of a low velocity impact between a rigid sphere and a
transversely isotropic strain-hardening plate supported by a rigid substrate using the concept of noninteger
derivatives. Abstr. Appl. Anal. 2013, Article ID 671321 (2013)

21. Perelson, AS, Nelson, PW: Mathematical analysis of HIV-I dynamics in vivo. SIAM Rev. 41(1), 3-44 (1999)
22. Wang, L, Li, MY: Mathematical analysis of the global dynamics of a model for HIV infection of CD4+ T cells. Math.

Biosci. 200, 44-57 (2006)
23. Asquith, B, Bangham, CRM: The dynamics of T-cell fratricide: application of a robust approach to mathematical

modelling in immunology. J. Theor. Biol. 222, 53-69 (2003)
24. Nowak, M, May, R: Mathematical biology of HIV infections: antigenic variation and diversity threshold. Math. Biosci.

106, 1-21 (1991)
25. Ongun, MY: The Laplace Adomian decomposition method for solving a model for HIV infection of CD4+ T cells. Math.

Comput. Model. 53, 597-603 (2011)

doi:10.1186/1687-1847-2013-94
Cite this article as: Atangana and Alabaraoye: Solving a system of fractional partial differential equations arising in
the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations. Advances in Difference
Equations 2013 2013:94.

http://www.advancesindifferenceequations.com/content/2013/1/94

	Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations
	Abstract
	Keywords

	Introduction
	Fractional order derivative
	Brief history
	Properties and deﬁnitions

	Basic idea of the HDM 24,25
	Application
	Fractional model for HIV infection of CD4+ T
	Fractional attractor one-dimensional Keller-Segel equations

	Conclusions
	Competing interests
	Authors' contributions
	Author details
	References


