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Abstract
In this paper, using the concept of common (E.A) property, we prove some common
fixed point theorems for three pairs of weakly compatible self-maps satisfying a
generalized weakly G-contraction condition in the framework of a generalized metric
space. Our results do not rely on any commuting or continuity condition of mappings.
An example is provided to support our result in nonsymmetric G-metric space.
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1 Introduction and preliminaries
The study of fixed points and commonfixed points ofmappings satisfying certain contrac-
tive conditions has been at the center of rigorous research activity. In , Mustafa and
Sims [] introduced the concept of generalizedmetric spaces or simplyG-metric spaces as
a generalization of the notion of metric space. Based on the notion of generalized metric
spaces, Mustafa et al. [–], Obiedat and Mustafa [], Aydi [], Gajié and Stojakovié [],
Shatanawi et al. [], Zhou and Gu [] obtained some fixed point results for mappings sat-
isfying different contractive conditions. Shatanawi [] obtained some fixed point results
for �-maps in G-metric spaces. Chugh et al. [] obtained some fixed point results for
maps satisfying property P inG-metric spaces. Al-khaleel et al. [] obtained several fixed
point results for mappings that satisfy certain contractive conditions in generalized cone
metric spaces. The study of common fixed point problems in G-metric spaces was initi-
ated by Abbas and Rhoades []. Subsequently, many authors have obtained many com-
mon fixed point theorems for themappings satisfying different contractive conditions; see
[–] for more details. Recently, Abbas et al. [] andMustafa et al. [] obtained some
common fixed point results for a pair of mappings satisfying the (E.A) property under
certain generalized strict contractive conditions in G-metric spaces. Long et al. [] ob-
tained some common coincidence and common fixed points results of two pairs of map-
pings when only one pair satisfies the (E.A) property in G-metric spaces. Very recently,
Gu and Yin [] obtained some common fixed point theorems of three pairs of mappings
for which only two pairs need to satisfy the common (E.A) property in the framework of
G-metric spaces.
Now we give preliminaries and basic definitions which are used throughout the paper.
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Definition . (see []) LetX be a nonempty set, and letG : X×X×X → R+ be a function
satisfying the following axioms:
(G) G(x, y, z) =  if x = y = z;
(G)  <G(x,x, y) for all x, y ∈ X with x �= y;
(G) G(x,x, y) ≤G(x, y, z) for all x, y, z ∈ X with z �= y;
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables);
(G) G(x, y, z) ≤G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality);

then the function G is called a generalized metric or, more specifically, a G-metric on X
and the pair (X,G) is called a G-metric space.

It is known that the function G(x, y, z) on a G-metric space X is jointly continuous in all
three of its variables, and G(x, y, z) =  if and only if x = y = z; for more details, see [] and
the references therein.

Definition . (see []) Let (X,G) be aG-metric space, and let {xn} be a sequence of points
in X. A point x in X is said to be the limit of the sequence {xn} if limm,n→∞ G(x,xn,xm) = ,
and one says that the sequence {xn} is G-convergent to x.

Thus, if xn → x in a G-metric space (X,G), then for any ε > , there exists N ∈
N (throughout this paper we mean by N the set of all natural numbers) such that
G(x,xn,xm) < ε for all n,m ≥N .

Proposition . (see []) Let (X,G) be aG-metric space, then the following are equivalent:
() {xn} is G-convergent to x;
() G(xn,xn,x) →  as n→ ∞;
() G(xn,x,x)→  as n→ ∞;
() G(xn,xm,x)→  as n,m → ∞.

Definition . (see []) Let (X,G) be a G-metric space. The sequence {xn} is called a
G-Cauchy sequence if for each ε > , there exists N ∈ N such that G(xn,xm,xl) < ε for
all n,m, l ≥N ; i.e., if G(xn,xm,xl) →  as n,m, l → ∞.

Definition . (see []) A G-metric space (X,G) is said to be G-complete (or a complete
G-metric space) if every G-Cauchy sequence in (X,G) is G-convergent in X.

Proposition . (see []) Let (X,G) be a G-metric space. Then the following are equiva-
lent.
() The sequence {xn} is G-Cauchy.
() For every ε > , there exists k ∈N such that G(xn,xm,xm) < ε for all n,m ≥ k.

Proposition . (see []) Let (X,G) be a G-metric space. Then the function G(x, y, z) is
jointly continuous in all three of its variables.

Proposition . (see []) Let (X,G) be a G-metric space. Then, for all x, y in X, it follows
that G(x, y, y) ≤ G(y,x,x).

Definition . (see []) Let f and g be self-maps of a set X. If w = fx = gx for some x in
X, then x is called a coincidence point of f and g , and w is called a point of coincidence of
f and g .
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Definition . (see []) Two self-mappings f and g on X are said to be weakly compat-
ible if they commute at coincidence points.

Definition . (see []) Let X be a G-metric space. Self-maps f and g on X are said to
satisfy the G-(E.A) property if there exists a sequence {xn} in X such that {fxn} and {gxn}
are G-convergent to some t ∈ X.

Definition . Let (X,d) be a G-metric space and A, B, S and T be four self-maps on X.
The pairs (A,S) and (B,T) are said to satisfy the common (E.A) property if there exist
two sequences {xn} and {yn} in X such that limn→∞ Axn = limn→∞ Sxn = limn→∞ Byn =
limn→∞ Tyn = t for some t ∈ X.

Definition . (see []) Self-mappings f and g of a G-metric space (X,G) are said to be
compatible if limn→∞ G(fgxn, gfxn, gfxn) =  and limn→∞ G(gfxn, fgxn, fgxn) = , whenever
{xn} is a sequence in X such that limn→ fxn = limn→∞ gxn = t for some t ∈ X.

Definition . (see []) A pair of self-mappings (f , g) of a G-metric space is said to be
weakly commuting if

G(fgx, gfx, gfx) ≤G(fx, gx, gx), ∀x ∈ X.

Definition . (see []) A pair of self-mappings (f , g) of a G-metric space is said to be
R-weakly commuting if there exists some positive real number R such that

G(fgx, gfx, gfx) ≤ RG(fx, gx, gx), ∀x ∈ X.

Recently, Shatanawi et al. [] introduced the following definitions.

Definition . (see []) Let (X,G) be a G-metric space. A mapping f : X → X is said to
be weakly G-contractive if for all x, y, z ∈ X, the following inequality holds:

G(fx, fy, fz) ≤ 

(
G(x, fy, fy) +G(y, fz, fz) +G(z, fx, fx)

)

– φ
(
G(x, fy, fy),G(y, fz, fz),G(z, fx, fx)

)
,

where φ : [, +∞)  → [, +∞) is a continuous function with φ(t, s,u) =  if and only if
t = s = u = .

Definition . (see []) Let (X,G) be a G-metric space. A mapping f : X → X is said to
be a weaklyG-contractive-typemapping if for all x, y, z ∈ X, the following inequality holds:

G(fx, fy, fz) ≤ 

(
G(x,x, fy) +G(y, y, fz) +G(z, z, fx)

)

– φ
(
G(x,x, fy),G(y, y, fz),G(z, z, fx)

)
,

where φ : [, +∞)  → [, +∞) is a continuous function with φ(t, s,u) =  if and only if
t = s = u = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/309
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Khan et al. [] introduced the concept of altering distance function that is a control
function employed to alter the metric distance between two points enabling one to deal
with relatively new classes of fixed point problems.Here, we consider the following notion.

Definition . (see []) The function ψ : [, +∞) → [, +∞) is called an altering dis-
tance function if the following properties are satisfied:
() ψ is continuous and increasing;
() ψ(t) =  if and only if t = .

In , Aydi et al. [] introduced the concept of generalized weakly G-contraction
mapping of A and B as follows.

Definition . (see []) Let (X,G) be a G-metric space and f , g : X → X be two map-
pings.We say that f is a generalized weaklyG-contractionmapping of type Awith respect
to g if for all x, y, z ∈ X, the following inequality holds:

ψ
(
G(fx, fy, fz)

) ≤ ψ

(


(
G(gx, fy, fy) +G(gy, fz, fz) +G(gz, fx, fx)

))

– φ
(
G(gx, fy, fy),G(gy, fz, fz),G(gz, fx, fx)

)
,

where
() ψ is an altering distance function;
() φ : [, +∞)  → [, +∞) is a continuous function with φ(t, s,u) =  if and only if

t = s = u = .

Definition . (see []) Let (X,G) be a G-metric space and f , g : X → X be two map-
pings. We say that f is a generalized weaklyG-contraction mapping of type Bwith respect
to g if for all x, y, z ∈ X, the following inequality holds:

ψ
(
G(fx, fy, fz)

) ≤ ψ

(


(
G(gx, gx, fy) +G(gy, gy, fz) +G(gz, gz, fx)

))

– φ
(
G(gx, gx, fy),G(gy, gy, fz),G(gz, gz, fx)

)
,

where
() ψ is an altering distance function;
() φ : [, +∞)  → [, +∞) is a continuous function with φ(t, s,u) =  if and only if

t = s = u = .

In this paper, using the concept of common (E.A) property, we prove some common
fixed point results for six self-mappings f , g , h, R, S and T , where the triple (f , g,h) is a
generalized weakly G-contraction mapping of types A and B with respect to the triple
(R,S,T). These notions will be given by Definitions . and ..

2 Main results
We start with the following definition.

Definition . Let (X,G) be aG-metric space and f , g,h,R,S,T : X → X be six mappings.
We say that the triple (f , g,h) is a generalized weakly G-contraction mapping of type A

http://www.fixedpointtheoryandapplications.com/content/2013/1/309
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with respect to the triple (R,S,T) if for all x, y, z ∈ X, the following inequality holds:

ψ
(
G(fx, gy,hz)

) ≤ ψ

(


(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

))

– φ
(
G(Rx, gy, gy),G(Sy,hz,hz),G(Tz, fx, fx)

)
, (.)

where
() ψ is an altering distance function;
() φ : [, +∞)  → [, +∞) is a continuous function with φ(t, s,u) =  if and only if

t = s = u = .

Theorem . Let (X,G) be a G-metric space and f , g,h,R,S,T : X → X be six mappings
such that (f , g,h) is a generalized weakly G-contraction mapping of type A with respect to
(R,S,T). If one of the following conditions is satisfied, then the pairs (f ,R), (g,S) and (h,T)
have a common point of coincidence in X.

(i) The subspace RX is closed in X , fX ⊆ SX , gX ⊆ TX , and two pairs of (f ,R) and (g,S)
satisfy the common (E.A) property;

(ii) The subspace SX is closed in X , gX ⊆ TX , hX ⊆ RX , and two pairs of (g,S) and
(h,T) satisfy the common (E.A) property;

(iii) The subspace TX is closed in X , fX ⊆ SX , hX ⊆ RX , and two pairs of (f ,R) and
(h,T) satisfy the common (E.A) property.

Moreover, if the pairs (f ,R), (g,S) and (h,T) are weakly compatible, then f , g , h, R, S and
T have a unique common fixed point in X .

Proof First, we suppose that the subspace RX is closed in X, fX ⊆ SX, gX ⊆ TX, and two
pairs of (f ,R) and (g,S) satisfy the common (E.A) property. Then by Definition . we
know that there exist two sequences {xn} and {yn} in X such that

lim
n→∞ fxn = lim

n→∞Rxn = lim
n→∞ gyn = lim

n→∞Syn = t

for some t ∈ X.
Since gX ⊆ TX, there exists a sequence {zn} in X such that gyn = Tzn. Hence

limn→∞ Tzn = t. Next, we will show limn→∞ hzn = t. In fact, from condition (.), we can
get

ψ
(
G(fxn, gyn,hzn)

) ≤ ψ

(


(
G(Rxn, gyn, gyn) +G(Syn,hzn,hzn) +G(Tzn, fxn, fxn)

))

– φ
(
G(Rxn, gyn, gyn),G(Syn,hzn,hzn),G(Tzn, fxn, fxn)

)
.

On letting n→ ∞ and using the continuities of ψ and φ, we can obtain

ψ
(
G

(
t, t, lim

n→∞hzn
))

≤ ψ

(



(
 +G

(
t, lim

n→∞hzn, limn→∞hzn
)
+ 

))

– φ
(
,G

(
t, lim

n→∞hzn, limn→∞hzn
)
, 

)
. (.)

By Proposition ., we have

G
(
t, lim

n→∞hzn, limn→∞hzn
)

≤ G
(
t, lim

n→∞hzn, limn→∞hzn
)
,

http://www.fixedpointtheoryandapplications.com/content/2013/1/309
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and hence using the fact that ψ is increasing, (.) becomes

ψ
(
G

(
t, t, lim

n→∞hzn
))

≤ ψ

(



(
G

(
t, t, lim

n→∞hzn
)))

– φ
(
,G

(
t, lim

n→∞hzn, limn→∞hzn
)
, 

)

≤ ψ
(
G

(
t, t, lim

n→∞hzn
))

– φ
(
,G

(
t, lim

n→∞hzn, limn→∞hzn
)
, 

)
,

which implies that φ(,G(t, limn→∞ hzn, limn→∞ hzn), ) = , and so limn→∞ hzn = t.
Since RX is a closed subspace of X and limn→∞ Rxn = t, there exists p in X such that

t = Rp. We claim that fp = t. In fact, by using (.), we obtain

ψ
(
G(fp, gyn,hzn)

) ≤ ψ

(


(
G(Rp, gyn, gyn) +G(Syn,hzn,hzn) +G(Tzn, fp, fp)

))

– φ
(
G(Rp, gyn, gyn),G(Syn,hzn,hzn),G(Tzn, fp, fp)

)
.

Taking n→ ∞ on the two sides of the above inequality, using the continuities of ψ and φ,
Proposition . and the fact that ψ is increasing, we can get

ψ
(
G(fp, t, t)

) ≤ ψ

(


(
 +  +G(t, fp, fp)

))
– φ

(
,,G(t, fp, fp)

)

≤ ψ

(


(
G(fp, t, t)

))
– φ

(
,,G(t, fp, fp)

)

≤ ψ
(
G(fp, t, t)

)
– φ

(
,,G(t, fp, fp)

)
,

which implies that φ(, ,G(t, fp, fp)) = , and hence fp = t = Rp. Therefore, p is the coin-
cidence point of a pair (f ,R).
By the condition fX ⊆ SX and fp = t, there exist a point u in X such that t = Su. Now, we

claim that gu = t. In fact, from (.) we have

ψ
(
G(fp, gu,hzn)

) ≤ ψ

(


(
G(Rp, gu, gu) +G(Su,hzn,hzn) +G(Tzn, fp, fp)

))

– φ
(
G(Rp, gu, gu),G(Su,hzn,hzn),G(Tzn, fp, fp)

)
.

Letting n → ∞ on the two sides of the above inequality, using the continuities of ψ and
φ, Proposition . and the fact that ψ is increasing, we can obtain

ψ
(
G(t, gu, t)

) ≤ ψ

(


(
G(t, gu, gu) +  + 

))
– φ

(
G(t, gu, gu), , 

)

≤ ψ

(


(
G(t, gu, t)

))
– φ

(
G(t, gu, gu), , 

)

≤ ψ
(
G(t, gu, t)

)
– φ

(
G(t, gu, gu), , 

)
,

which implies that φ(G(t, gu, gu), , ) = , hence gu = t = Su, and so u is the coincidence
point of a pair (g,S).
Since gX ⊆ TX and gu = t, there exist a point v in X such that t = Tv. We claim that

hv = t. In fact, from (.), using fp = Rp = gu = Su = t, Proposition . and the fact that ψ is

http://www.fixedpointtheoryandapplications.com/content/2013/1/309
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increasing, we have

ψ
(
G(t, t,hv)

)
= ψ

(
G(fp, gu,hv)

)

≤ ψ

(


(
G(Rp, gu, gu) +G(Su,hv,hv) +G(Tv, fp, fp)

))

– φ
(
G(Rp, gu, gu),G(Su,hv,hv),G(Tv, fp, fp)

)

= ψ

(


(
G(t, t, t) +G(t,hv,hv) +G(t, t, t)

))

– φ
(
G(t, t, t),G(t,hv,hv),G(t, t, t)

)

≤ ψ

(


(
G(t, t,hv)

))
– φ

(
,G(t,hv,hv), 

)

≤ ψ
(
G(t, t,hv)

)
– φ

(
,G(t,hv,hv), 

)
.

This implies that φ(,G(t,hv,hv), ) = , and so hv = t = Tv, hence v is the coincidence
point of a pair (h,T).
Therefore, in all the above cases, we obtain fp = Rp = gu = Su = hv = Tv = t. Now, weak

compatibility of the pairs (f ,R), (g,S) and (h,T) gives that ft = Rt, gt = St and ht = Tt.
Next, we show that ft = t. In fact, using (.), Proposition . and the fact that ψ is in-

creasing, we have

ψ
(
G(ft, t, t)

)
= ψ

(
G(ft, gu,hv)

)

≤ ψ

(


(
G(Rt, gu, gu) +G(Su,hv,hv) +G(Tv, ft, ft)

))

– φ
(
G(Rt, gu, gu),G(Su,hv,hv),G(Tv, ft, ft)

)

= ψ

(


(
G(ft, t, t) +G(t, t, t) +G(t, ft, ft)

))

– φ
(
G(ft, t, t),G(t, t, t),G(t, ft, ft)

)
≤ ψ

(
G(ft, t, t)

)
– φ

(
G(ft, t, t), ,G(t, ft, ft)

)
,

which implies that φ(G(ft, t, t), ,G(t, ft, ft)) = , and so G(ft, t, t) = G(t, ft, ft) = , that is,
ft = t, and so ft = Rt = t. Similarly, it can be shown that gt = St = t and ht = Tt = t, so we
get ft = gt = ht = Rt = St = Tt = t, which means that t is a common fixed point of f , g , h, R,
S and T .
Next, we will show that the common fixed point of f , g , h, R, S and T is unique. Actually,

suppose that w ∈ X is another common fixed point of f , g , h, R, S and T , then by condition
(.), Proposition . and the fact that ψ is increasing, we have

ψ
(
G(w, t, t)

)
= ψ

(
G(fw, gt,ht)

)

≤ ψ

(


(
G(Rw, gt, gt) +G(St,ht,ht) +G(Tt, fw, fw)

))

– φ
(
G(Rw, gt, gt),G(St,ht,ht),G(Tt, fw, fw)

)

= ψ

(


(
G(w, t, t) +G(t, t, t) +G(t,w,w)

))

http://www.fixedpointtheoryandapplications.com/content/2013/1/309
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– φ
(
G(w, t, t),G(t, t, t),G(t,w,w)

)
≤ ψ

(
G(w, t, t)

)
– φ

(
G(w, t, t), ,G(t,w,w)

)
,

which implies that φ(G(w, t, t), ,G(t,w,w)) = , and so G(w, t, t) = G(t,w,w) = , hence
w = t, that is, mappings f , g , h, R, S and T have a unique common fixed point.
Finally, if condition (ii) or (iii) holds, then the argument is similar to that above, so we

delete it.
This completes the proof of Theorem .. �

Now we introduce an example to support Theorem ..

Example . Let X = {, , } be a set with G-metric defined by Table .

Note that G is non-symmetric as G(, , ) �= G(, , ). Let f , g,h,R,S,T : X → X be de-
fined by Table .
Clearly, the subspace RX is closed in X, fX ⊆ SX and gX ⊆ TX with the pairs (f ,R), (g,S)

and (h,T) being weakly compatible. Also, two pairs (f ,R) and (g,S) satisfy the common
(E.A) property, indeed, xn =  and yn =  for each n ∈ N are the required sequences. The
control functions ψ : [,∞)→ [,∞) and φ : [,∞)  → [,∞) are defined by

ψ(t) = t and φ(t, s,u) =
t + s + u


.

It is easy to show that the triple (f , g,h) is a generalized weakly G-contraction mapping
of type A with respect to the triple (R,S,T). In fact, contractive condition (.) and the
following inequality are equivalent:

ψ
(
G(fx, gy,hz)

) ≤ 


(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
. (.)

To check contractive condition (.) for all x, y, z ∈ X, we consider the following cases.
Note that for Cases () x = y = z = , () x = y = , z = , () x = z = , y = , () x = ,

y = , z = , () x = , y = z = , () x = , y = , z = , () x = y = , z = , () x = y = , z = ,

Table 1 The definition of G-metric on X

(x,y,z) G(x,y,z)

(0, 0, 0), (1, 1, 1), (2, 2, 2), 0
(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), 1
(1, 2, 2), (2, 1, 2), (2, 2, 1), 2
(0, 0, 2), (0, 2, 0), (2, 0, 0), (0, 2, 2), (2, 0, 2), (2, 2, 0), 3
(1, 1, 2), (1, 2, 1), (2, 1, 1), (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), (2, 0, 1), (2, 1, 0) 4

Table 2 The definition of maps f , g, h, R, S and T on X

x f (x) g(x) h(x) R(x) S(x) T(x)

0 0 0 0 0 0 0
1 0 0 1 2 0 2
2 0 1 0 2 2 1
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() x = , y = z = , () x = z = , y = , () x = , y = , z =  and () x = z = , y = , we
have G(fx, gy,hz) =G(, , ) = , and hence (.) is obviously satisfied.
Case () If x = y = , z = , then fx = gy = , hz = , Rx = Sy = , Tz = , hence we have

ψ
(
G(fx, gy,hz)

)
= G(, , ) =  =




· 

=



(
G(, , ) +G(, , ) +G(, , )

)

=



(
G(R, g, g) +G(S,h,h) +G(T, f , f )

)

=



(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
.

Case () If x = , y = z = , then fx = gy = , hz = , Rx = Sy = , Tz = , hence we have

ψ
(
G(fx, gy,hz)

)
= G(, , ) =  =




· 

=



(
G(, , ) +G(, , ) +G(, , )

)

=



(
G(R, g, g) +G(S,h,h) +G(T, f , f )

)

=



(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
.

Case () If x = z = , y = , then fx = hz = , gy = , Rx = , Sy = , Tz = , hence we have

ψ
(
G(fx, gy,hz)

)
= G(, , ) =  =




· 

=



(
G(, , ) +G(, , ) +G(, , )

)

=



(
G(R, g, g) +G(S,h,h) +G(T, f , f )

)

=



(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
.

Case () If x = , y = , z = , then fx = , gy = hz = , Rx = , Sy = Tz = , hence we have

ψ
(
G(fx, gy,hz)

)
= G(, , ) =  <




· 

=



(
G(, , ) +G(, , ) +G(, , )

)

=



(
G(R, g, g) +G(S,h,h) +G(T, f , f )

)

=



(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
.

Case () If x = , y = z = , then fx = hz = , gy = , Rx = , Sy = , Tz = , hence we have

ψ
(
G(fx, gy,hz)

)
= G(, , ) =  <




· 

=



(
G(, , ) +G(, , ) +G(, , )

)

http://www.fixedpointtheoryandapplications.com/content/2013/1/309
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=



(
G(R, g, g) +G(S,h,h) +G(T, f , f )

)

=



(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
.

Case () If x = z = , y = , then fx = gy = , hz = , Rx = , Sy = , Tz = , hence we have

ψ
(
G(fx, gy,hz)

)
= G(, , ) =  <




· 

=



(
G(, , ) +G(, , ) +G(, , )

)

=



(
G(R, g, g) +G(S,h,h) +G(T, f , f )

)

=



(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
.

Case () x = y = z = , then fx = gy = , hz = , Rx = , Sy = , Tz = , hence we have

ψ
(
G(fx, gy,hz)

)
= G(, , ) =  <




· 

=



(
G(, , ) +G(, , ) +G(, , )

)

=



(
G(R, g, g) +G(S,h,h) +G(T, f , f )

)

=



(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
.

Case () If x = , y = , z = , then fx = hz = , gy = , Rx = , Sy = , Tz = , hence we
have

ψ
(
G(fx, gy,hz)

)
= G(, , ) =  <




· 

=



(
G(, , ) +G(, , ) +G(, , )

)

=



(
G(R, g, g) +G(S,h,h) +G(T, f , f )

)

=



(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
.

Case () If x = z = , y = , then fx = , gy = hz = , Rx = Sy = Tz = , hence we have

ψ
(
G(fx, gy,hz)

)
= G(, , ) =  <




· 

=



(
G(, , ) +G(, , ) +G(, , )

)

=



(
G(R, g, g) +G(S,h,h) +G(T, f , f )

)

=



(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
.
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Case () If x = , y = z = , then fx = hz = , gy = , Rx = Sy = , Tz = , hence we have

ψ
(
G(fx, gy,hz)

)
= G(, , ) =  <




· 

=



(
G(, , ) +G(, , ) +G(, , )

)

=



(
G(R, g, g) +G(S,h,h) +G(T, f , f )

)

=



(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
.

Case () If x = , y = , z = , then fx = gy = , hz = , Rx = , Sy = , Tz = , hence we
have

ψ
(
G(fx, gy,hz)

)
= G(, , ) =  <




· 

=



(
G(, , ) +G(, , ) +G(, , )

)

=



(
G(R, g, g) +G(S,h,h) +G(T, f , f )

)

=



(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
.

Case () If x = , y = z = , then fx = gy = , hz = , Rx = , Sy = , Tz = , hence we have

ψ
(
G(fx, gy,hz)

)
= G(, , ) =  <




· 

=



(
G(, , ) +G(, , ) +G(, , )

)

=



(
G(R, g, g) +G(S,h,h) +G(T, f , f )

)

=



(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
.

Case () If x = y = , z = , then fx = hz = , gy = , Rx = , Sy = , Tz = , hence we have

ψ
(
G(fx, gy,hz)

)
= G(, , ) =  <




· 

=



(
G(, , ) +G(, , ) +G(, , )

)

=



(
G(R, g, g) +G(S,h,h) +G(T, f , f )

)

=



(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
.

Case () x = y = , z = , then fx = , gy = hz = , Rx = Sy = Tz = , hence we have

ψ
(
G(fx, gy,hz)

)
= G(, , ) =  <




· 

=



(
G(, , ) +G(, , ) +G(, , )

)
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=



(
G(R, g, g) +G(S,h,h) +G(T, f , f )

)

=



(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
.

Case () If x = y = z = , then fx = hz = , gy = , Rx = Sy = , Tz = , hence we have

ψ
(
G(fx, gy,hz)

)
= G(, , ) =  <




· 

=



(
G(, , ) +G(, , ) +G(, , )

)

=



(
G(R, g, g) +G(S,h,h) +G(T, f , f )

)

=



(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
.

Hence, all of the conditions of Theorem . are satisfied. Moreover,  is the unique com-
mon fixed point of f , g , h, R, S and T .

Corollary . Let (X,G) be a G-metric space. Suppose that mappings f , g,h,R,S,T : X →
X satisfy the following conditions:

G(fx, gy,hz) ≤ α
(
G(Rx, gy, gy) +G(Sy,hz,hz) +G(Tz, fx, fx)

)
(.)

for all x, y, z ∈ X, where α ∈ [,  ). If one of the following conditions is satisfied, then the
pairs (f ,R), (g,S) and (h,T) have a common point of coincidence in X.

(i) The subspace RX is closed in X , fX ⊆ SX , gX ⊆ TX , and two pairs of (f ,R) and (g,S)
satisfy the common (E.A) property;

(ii) The subspace SX is closed in X , gX ⊆ TX , hX ⊆ RX , and two pairs of (g,S) and
(h,T) satisfy the common (E.A) property;

(iii) The subspace TX is closed in X , fX ⊆ SX , hX ⊆ RX , and two pairs of (f ,R) and
(h,T) satisfy the common (E.A) property.

Moreover, if the pairs (f ,R), (g,S) and (h,T) are weakly compatible, then f , g , h, R, S and
T have a unique common fixed point in X .

Proof It suffices to take ψ(t) = t and φ(t, s,u) = (  – α)(t + s + u) in Theorem .. �

Definition . Let (X,G) be aG-metric space and f , g,h,R,S,T : X → X be six mappings.
We say that the triple (f , g,h) is a generalized weakly G-contraction mapping of type B
with respect to the triple (R,S,T) if for all x, y, z ∈ X, the following inequality holds:

ψ
(
G(fx, gy,hz)

) ≤ ψ

(


(
G(Rx,Rx, gy) +G(Sy,Sy,hz) +G(Tz,Tz, fx)

))

– φ
(
G(Rx,Rx, gy),G(Sy,Sy,hz),G(Tz,Tz, fx)

)
, (.)

where
() ψ is an altering distance function;
() φ : [, +∞)  → [, +∞) is a continuous function with φ(t, s,u) =  if and only if

t = s = u = .

http://www.fixedpointtheoryandapplications.com/content/2013/1/309
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Using arguments similar to those in Theorem ., we can prove the following theorem.

Theorem . Let (X,G) be a G-metric space and f , g,h,R,S,T : X → X be six mappings
such that (f , g,h) is a generalized weakly G-contraction mapping of type B with respect to
(R,S,T). If one of the following conditions is satisfied, then the pairs (f ,R), (g,S) and (h,T)
have a common point of coincidence in X.

(i) The subspace RX is closed in X , fX ⊆ SX , gX ⊆ TX , and two pairs of (f ,R) and (g,S)
satisfy the common (E.A) property;

(ii) The subspace SX is closed in X , gX ⊆ TX , hX ⊆ RX , and two pairs of (g,S) and
(h,T) satisfy the common (E.A) property;

(iii) The subspace TX is closed in X , fX ⊆ SX , hX ⊆ RX , and two pairs of (f ,R) and
(h,T) satisfy the common (E.A) property.

Moreover, if the pairs (f ,R), (g,S) and (h,T) are weakly compatible, then f , g , h, R, S and
T have a unique common fixed point in X .

As in the case of Theorem ., we can deduce the following corollary fromTheorem ..

Corollary . Let (X,G) be a G-metric space. Suppose that mappings f , g,h,R,S,T : X →
X satisfy the following conditions:

G(fx, gy,hz) ≤ α
(
G(Rx,Ry, gy) +G(Sy,Sz,hz) +G(Tz,Tx, fx)

)
(.)

for all x, y, z ∈ X, where α ∈ [,  ). If one of the following conditions is satisfied, then the
pairs (f ,R), (g,S) and (h,T) have a common point of coincidence in X.

(i) The subspace RX is closed in X , fX ⊆ SX , gX ⊆ TX , and two pairs of (f ,R) and (g,S)
satisfy the common (E.A) property;

(ii) The subspace SX is closed in X , gX ⊆ TX , hX ⊆ RX , and two pairs of (g,S) and
(h,T) satisfy the common (E.A) property;

(iii) The subspace TX is closed in X , fX ⊆ SX , hX ⊆ RX , and two pairs of (f ,R) and
(h,T) satisfy the common (E.A) property.

Moreover, if the pairs (f ,R), (g,S) and (h,T) are weakly compatible, then f , g , h, R, S and
T have a unique common fixed point in X .

Remark . If we take: () R = S = T ; () f = g = h; () R = S = T = I (I is an identity
mapping); () S = T and g = h; () S = T , g = h = I in Theorems . and ., Corollaries .
and ., then several new results can be obtained.
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