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Abstract

In this article, we introduce the multivariate slash and skew-slash t distributions which
provide alternative choices in simulating and fitting skewed and heavy tailed data. We
study their relationships with other distributions and give the densities, stochastic
representations, moments, marginal distributions, distributions of linear combinations
and characteristic functions of the random vectors obeying these distributions. We
characterize the skew t, the skew-slash normal and the skew-slash t distributions using
both the hidden truncation or selective sampling model and the order statistics of the
components of a bivariate normal or t variable. Density curves and contour plots are
drawn to illustrate the skewness and tail behaviors. Maximum likelihood and Bayesian
estimation of the parameters are discussed. The proposed distributions are compared
with the skew-slash normal through simulations and applied to fit two real datasets.
Our results indicated that the proposed skew-slash t fitting outperformed the
skew-slash normal fitting and is a competitive candidate distribution in analyzing
skewed and heavy tailed data.

Mathematics Subject Classification Primary 62E10; Secondary 62P10
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1 Introduction
Skewed and heavy tailed data occur frequently in real life and pose challenges to our
usual way of thinking. Examples of such data include household incomes, loss data such
as crop loss claims and hospital discharge bills, and files transferred through the Internet
to name a few. Candidate distributions for simulating and fitting such data are not abun-
dant. One can’t simply take the normal or the t distributions or as such as substitutes.
Even though Cauchy distribution can be used to simulate and fit such data, its sharp cen-
tral peak and the fact that its first moment does not exist narrow its applications. Thus
additional distributions are needed to study such skewed and heavy tailed data.
Kafadar (1988) introduced the univariate normal slash distribution as the resulting dis-

tribution of the ratio of a standard normal random variable (rv) and an independent
uniform rv (hereafter referred to the distribution as the slash normal). Generalizing the
standard normal by introducing a tail parameter, the slash normal has heavier tails than
the standard normal, hence it could be used to simulate and fit heavy tailed data. Wang
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and Genton (2006) generalized the univariate slash normal to the multivariate slash nor-
mal and investigated its properties. They also defined the multivariate skew-slash normal
as the resulting distribution of the ratio of a skewed normal rv and an independent uni-
form rv (hereafter referred to the distribution as the skew-slash normal). They applied it
to fit two real datasets.
In this article, we introduce the slash (student) t distribution and the skew-slash (student)

t distribution. They could be used to simulate and fit skewed and heavy tailed data. The
slash t distribution generalizes the slash normal distribution of Kafadar (1988) and the
multivaraiate slash normal distribution of Wang and Genton (2006), and the skew-slash
t distribution generalizes the skew-slash normal distribution of the latter two authors. In
the skew-slash t there is one parameter to regulate the skewness of the distribution and
another parameter to control the tail behavior. By setting the skewness parameter to zero,
the skew-slash t reduces to the slash t. By letting the tail parameter to be infinity, the
skew-slash t simplifies to the skew t of Azzalini and Capitanio (2003). As both the slash
and skew t take the t and hence the normal as their special cases, so does the skew-slash t.
To fit data, one can start with the skew-slash t. If the fitted value of the degrees of freedom
is very large, then one takes the simpler skew-slash normal model. This idea of course
can be used to perform the hypothesis testing of a skew-slash normal sub-model against
a skew-slash t model. We have derived the formulas for the densities, moments, marginal
distributions and linear combinations of these distributions. Thus it could be expected
that they can be used to analyze skewed and heavy tailed data.
Compared to the slash and skew-slash normal distributions, an additional parame-

ter, the degrees of freedom, is included in the slash and skew-slash t distributions. This
parameter gives the latter distributions more flexibility in fitting data than the former.
Even though there is a tail parameter in both slash and skew-slash normal and slash
and skew-slash t distributions, the degrees of freedom in the t distribution may lend an
additional hand to model heavy (fat) tails and joints with the tail parameter to better
fit data. This could be used to explain why the skew-slash fitting to the real GAD data
in our application outperformed the skew-slash normal fitting. See Figure 1 where the
skew-slash t fitting was able to better capture the peak of the histogram, and Table 1
where the AIC values indicated that the skew-slash t fitting was better than that of
the skew-slash normal fitting. In fact, one observes that the standard error (SE) of the
MLE of the tail parameter q in the table is very big (83.194) for the skew-slash nor-
mal fitting and much smaller (2.19) for the skew-slash t fitting. Noticing also the fact
that the estimate of the degrees of freedom r is reasonable with a small SE, we would
comment that the joint endeavor of q and r had higher fitting capability than that of a
single q. Our simulation results in Section 5.1 and in particular in Table 2 also exhib-
ited the superior performance of the proposed skew-slash t distribution to the skew-slash
normal.
Azzalini and Dalla Valle (1996) introduced the multivariate skew normal distribution

that extends the normal distribution with an additional skewness parameter. It provides
an alternative modeling distribution to skewed data that are often observed in many areas
such as economics, computer science and life sciences. Many authors have investigated
skew t distributions, see e.g. Azzalini and Dalla Valle (1996), Gupta (2003), and Sahu et al.
(2003). Azzalini and Capitanio (2003) proposed the multivariate skew t distribution by
allowing a skewness parameter in a multivariate t distribution.
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Figure 1 Histogram and fitted density curves.

It is our belief that the proposed slash and skew-slash t distributions throw some addi-
tional light on this theory and contribute to the family of candidate distributions for
modeling and simulating skewed and heavy tailed data.
The article is organized as follows. In Section 2, we introduce the multivariate slash

t distribution, study its relationships with other distributions and derive the density

Table 1 The skew-slash normal and t fitting to the GAD data

SSLT SSLN

MLE SE MLE SE

AIC -242.318 -240.687

μ 3.726 0.0070 3.748 0.036

σ 2 0.002 0.0004 0.009 0.038

λ -2.056 0.6190 -3.199 3.204

q 3.812 2.1990 7.456 83.194

r 3.044 1.4080

SSLN=Skew-Slash Normal and SSLT=Skew-Slash t.
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Table 2 Skew-slash t and skew-slash normal comparison

True Estimated True Estimated

SSLT SSLT SSLN SSLN SSLT SSLN

AIC 1524.939 1543.771 1416.485 1425.878

μ1 0 -0.160 -0.467 0 -0.309 -0.690

μ2 0 0.032 -0.225 0 0.025 -0.212

σ 2
11 1 0.827 0.809 1 0.587 0.651

σ12 0 0.122 0.230 0 0.130 0.304

σ 2
22 1 1.154 1.527 1 1.019 1.314

λ1 -5 -2.830 -1.581 -5 -1.989 -0.860

λ2 3 1.688 1.422 3 1.363 1.127

q 5 6.383 4.553 5 6.697 5.151

r 8 7.610 7.506

The comparison of the average AIC and MLE’s of the parameters between the skew-slash t and skew-slash normal based on
sample size 250 and repetitions 200. SSLT=Skew-Slash t and SSLN=Skew-Slash Normal. A smaller AIC indicates a better fit.

function. We investigate its tractable properties such as heavy tail behavior and closeness
of marginal distributions and linear combinations. We give the stochastic representa-
tions, moments and characteristic function. We close this section with an example which
graphically displays the densities. In Section 3, we define the skew-slash t distribution,
derive the densities and characteristic functions, and give the moments and distributions
of linear combinations of these distributions. We first define the standard skew-slash
distribution in Subsection 3.1 and study their relationships with other distributions. In
subsection 3.2, we characterize the skew t, skew-slash normal and skew-slash t distri-
butions using hidden truncation or selective sampling model and the order statistics of
the components of a bivariate normal or t variable. In Subsection 3.2, we define the
general multivariate skew-slash distribution. An example is presented to illustrate the
densities of the proposed distributions. Section 4 covers parameter estimation and statis-
tical inference. Here we briefly discuss the maximum likelihood and Byesian approaches.
Section 5 is devoted to simulations as well as applications of the proposed skew-slash
t distribution to fit two real datasets. Finally, some concluding remarks are given in
Section 6.

2 Themultivariate slash t distribution
In this section, we define the multivarate slash t distribution, derive the density and study
its tail behaviors and relationships with other distributions. We give the stochastic repre-
sentations, moments, and characteristic function and discuss marginal distributions and
linear combinations. We close this section with an example.
Let us first recall the multivariate t distribution. There are several variants of the defi-

nitions in the literature and we will adopt the following one. Details can be found in e.g.
Kotz and Nadarajah (2004) or Johnson and Kotz (1972, p. 134). A continuous k-variate
random vector T has a t distribution with degrees of freedom r, mean vectorm, and cor-
relation matrix R (covariance matrix �), written T ∼ tk(r,m,R), if it has the probability
density function (pdf) given by

tk(t; r,m,R)=
�

(
r+k
2

)
(rπ)k/2�

( r
2
) |R|1/2

(
1 + (t − m)�R−1(t − m)

r

)−(r+k)/2
, t ∈ R

k ,
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where |M| denotes the determinant of a square matrix M. If m = 0 and R = Ik where Ik
denotes the k× k indentity matrix, it is referred to as the standard k-variate t distribution
and denoted by tk(r). We now introduce the k-variate slash t distribution. Write U ∼
U(0, 1) for the rv uniformly distributed over (0, 1).

Definition 1. A k-variate continuous random vector X is said to have a slash t dis-
tribution with tail parameter q > 0, degrees of freedom r, m ∈ R

k , and matrix R,
written X ∼ SLTk(q, r,m,R), if it can be expressed as the ratio of two independent rv’s
T ∼ tk(r,m,R) and U ∼ U(0, 1) as follows:

X = T/U1/q.

Whenm = 0 andR = Ik , it is referred to as the standard (k-variate) slash t and denoted
by SLTk(q, r). It can be easily seen that the k-variate slash t distribution generalizes the
k-variate t distribution as stated below.

Remark 1. The limiting distribution of the slash t distribution SLTk(q, r), as q → ∞, is
the student t distribution tk(r).

Let us now derive the density of the slash t distribution. Note that the joint density of T
and U is

tk(t; r,m,R)1[0,1](u), t ∈ R
k , u ∈[0, 1] .

For the substitution v = u1/q, x = t/u1/q = t/v, the Jacobian determinant is qvk+q−1.
Hence the joint density of (X,V ) is given by

qvk+q−1tk(vx; r,m,R)1[0,1](v), x ∈ R
k , v ∈[ 0, 1] .

Integrating v out yields the density fk(x; q, r,m,R) of X as follows:

fk(x; q, r,m,R) =
∫ 1

0
qvk+q−1tk(xv; r,m,R) dv, x ∈ R

k . (2.1)

From this density it immediately follows that the standard k-variate slash t distribution
SLTk(q, r) is symmetric about 0 as the standard k-variate t is so.

The heavy-tail behavior The cumulative distribution function (cdf) of the k-variate
slash t is given by

Fk(x; q, r,m,R) =
∫ x

−∞
fk(y; q, r,m,R) dy =

∫ 1

0
qvk+q−2Hk(xv; r,m,R) dv,

for x ∈ R
k , where Hk is the cdf of the k-variate tk(r,m,R). Denote by H̄k = 1 − Hk the

survival function. The survival function of the k-variate slash t is then given by

F̄k(x; q, r,m,R) = k − 1
k + q − 1

+
∫ 1

0
qvk+q−2H̄k(xv; r,m,R) dv, x ∈ R

k . (2.2)

Let us focus on the standard univariate case and write f = f1, F = F1, F̄ = 1 − F and
H = H1, H̄ = 1−H . It is well known that the univariate t distribution t1(r, 0, 1) is a heavy
tailed distribution with tail index r. In other words, the survival function decays at the
rate of the power function r:

H̄(t; r, 0, 1) ∝ t−r , t → ∞,
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where a(t) ∝ b(t) if lim supt→∞ a(t)/b(t) < ∞. Let c be the constant in the density of the
k-variate t. Then by L’Hopital’ Rule we have

lim
x→∞

H̄(x)
x−r = c lim

x→∞

∫ ∞
x (1 + t2/r)−(r+1)/2 dt

x−r

= c lim
x→∞

−(1 + x2/r)−(r+1)/2 dt
−rx−r−1 = cr(r−1)/2 < ∞.

This shows the above rate holds. Similarly, one can show that if q > r then

F̄(x; q, r, 0, 1) ∝ x−r , x → ∞.

This manifests that the standard univariate slash t is also heavy tailed.
Further, by (2.2) and in view of H̄(xv; r, 0, 1) ≥ H̄(x; r, 0, 1) for v ∈[0, 1] one derives

F̄(x; q, r, 0, 1) ≥ (k − 1)/(k + q − 1) + H̄(x; r, 0, 1)
∫ 1

0
qvk+q−2 dv

≥ (k − 1)/(k + q − 1) + q/(k + q − 1)H̄(x; r, 0, 1)

≥ H̄(x; r, 0, 1), x ≥ 0.

This shows that the standard univariate slash t has heavier tails than the standard uni-
variate t. In fact, the last inequality also holds for k-variate slash t for x = (x1, . . . , xk)�

with xi ≥ 0, i = 1, . . . , k as

F̄k(x; q, r,m,R) = P(X1 > x1, . . . ,Xk > xk)

=
∫ 1

0
P(T1 > u1/qx1, . . . ,Tk > u1/qxk) du

≥
∫ 1

0
P(T1 > x1, . . . ,Tk > xk) du = H̄k(x; r,m,R).

Stochastic representations Stochastic Representations not only reveal the relations
with other distributions but are very useful, for instance, in calculating moments and ran-
dom generation. We provide two stochastic representations for the slash t distribution
based on the two stochastic representations of the multivariate t distribution. According
to Kafadar (1988), a continuous random variable ξ has a slash normal distribution, writ-
ten ξ ∼ SLN(q, 0,�), if it can be expressed as ξ = Z/U1/q where Z ∼ Nk(0,�) and
U ∼ U(0, 1) are independent.
Note that if a rv T has a k-variate t distribution tk(r,m,R), then it has the stochastic

representation

T = S−1Z + m,

where Z ∼ Nk(0,R), rS2 has the Chi-square distribution χ2
r with r degrees of freedom,

and Z and S are independent. This can be easily verified. Let X ∼ SLTk(q, r,m,R). Then
from the definition of the k-variate slash t it immediately follows that

X = S−1ξ + η, (2.3)

where ξ ∼ SLNk(q, 0,R), η = mU−1/q, and both ξ and η are independent of S.
Using another stochastic representation of the k-variate t distribution from page 7 of

Kotz and Nadarajah (2004), we obtain the second stochastic representation for the k-
variate slash t rv X ∼ SLTk(q, r,m,R) as follows:

X = V−1/2ξ + η, (2.4)
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where ξ ∼ SLNk(q, 0, rIk), η = mU−1/q, and ξ , η are independent of V. Here V−1/2

is the inverse of the symmetric square root V1/2 of V, where V has a k-variate Wishart
distribution with degrees of freedom r + k − 1 and covariance matrix R−1.

The moments Let us now calculate the mean vector and covariance matrix of the k-
variate slash t. For X ∼ SLTk(q, r,m,R) with R = (Rij), by the independence of T and U
we have

μ = E(X) = E(T/U1/q) = E(T)E(U−1/q).

It is easy to calculate

E(U−1/q) = q/(q − 1), q > 1, (2.5)

and

E(U−2/q) = q/(q − 2), q > 2. (2.6)

For T ∼ tk(r,m,R), from page 11 of Kotz and Nadarajah (2004) it follows

E(T) = m, Var(T) = Rr/(r − 2), r > 2. (2.7)

Hence by (2.5) and the first equality of (2.7) one has

μ = mq/(q − 1). (2.8)

To calculate Var(X) we use the formula

Var(X) = Var(E(X|U)) + E
(
Var(X|U)

)
. (2.9)

It is easy to see for r > 2,

Var(X|U) = Var(T)/U2/q = Rr/((r − 2)U2/q),

hence by (2.6) one has

E
(
Var(X|U)

) = Rrq/((r − 2)(q − 2)), q > 2, r > 2. (2.10)

Also since E(X|U) = E(T)/U1/q = m/U1/q it follows from (2.6) that

E((E(X|U))⊗2) = m⊗2q/(q − 2), E(X⊗2) = m⊗2q2/(q − 1)2, q > 2,

whereM⊗2 = MM�. Hence for q > 2,

Var(E(X|U)) = m⊗2q/(q − 2) − m⊗2q2/(q − 1)2

= m⊗2q/((q − 1)2(q − 2)), q > 2.

This, (2.10) and (2.9) yield the variance-covariance matrix X as follows:

Var(X) = rqR
(r − 2)(q − 2)

+ qm⊗2

(q − 1)2(q − 2)
, q > 2, r > 2. (2.11)

In particular, ifm = 0 one has

Var(X) = rqR
(r − 2)(q − 2)

, q > 2, r > 2. (2.12)

Hence the k-variate slash t has the same correlation matrix R as the k-variate t.
In the case of the standard t, there are convenient formulae for the moments. Given

non-negative integers p1, . . . , pk such that p = p1 + . . .+pk < r/2. If any of the p1, . . . , pk
is odd, then

E
(
Tp1
1 · · ·Tpk

k
) = 0.
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If all of them are even and r > p, then

E
(
Tp1
1 · · ·Tpk

k
) = rp/2	k

j=1
[
1 · 3 · 5 · · · (2pj − 1)

]
(r − 2)(r − 4) · · · (r − p)

:= c. (2.13)

For details, see Kotz and Nadarajah (2004). Based on these formulae we have the
following.

Theorem 1. Let X = (X1, . . . ,Xk)
� ∼ SLTk(q, r). Assume p1, . . . , pk are nonnegative

integers such that p = p1 + . . . + pk < r/2.

1) Suppose at leasts one of the p1, . . . , pk is odd. If q > p, then

E
(
Xp1
1 · · ·Xpk

k
) = 0.

2) Suppose all p1, . . . , pk are even. If q > p then

E
(
Xp1
1 · · ·Xpk

k
) = cq/(q − p),

where c is given in (2.13). Otherwise if q ≤ p then E(Xp1
1 · · ·Xpk

k ) diverges.

PROOF. By the density formula (2.1) and using the substitution t = vx we have

E
(
Xp1
1 · · ·Xpk

k
) =

∫
xp11 · · · xpkk

{∫ 1

0
qvk+q−1tk(vx1, . . . , vxk ; r) dv

}
dx1 · · · dxk

=
∫ 1

0
qvq−1−p dv

{
E

(
Tp1
1 · · ·Tpk

k
)}

.

Note that the integral
∫ 1
0 qv

q−1−p dv converges to q/(q − p) if q − p > 0 and diverges
otherwise. These and (2.13) yield the desired results.

The marginal distributions Since the marginal distributions of a k-variate t are still t,
the marginal distributions of a k-variate slash t are slash t.

Theorem 2. The marginal distributions of a k-variate slash t distribution are still
slash t.

PROOF. It suffices to show without loss of generality that for every 0 ≤ s ≤ k,∫
· · ·

∫
fk(x1, . . . , xs, xs+1, . . . , xk) dxs+1 · · · dxk = fs(x1, . . . , xs), x1, . . . , xs ∈ R,

where fk(x) = fk(x; q, r,m,R). Substitution of the density (2.1) in the left hand of the above
equality gives∫

· · ·
∫
fk(x) dxs+1 · · · dxk =

∫ 1

0
qvk+q−1

∫
· · ·

∫
tk(vx)dxs+1 · · · dxkdv,

where tk(t) = tk(t; r,m,R). By substitution ys+1 = vxs+1, . . . , yk = vxk one derives∫
· · ·

∫
tk(vx)dxs+1 · · · dxk = vs−k

∫
· · ·

∫
tk(vx1, . . . , vxs, ys+1, . . . , yk) dys+1 · · · dyk .

Because the marginals of the k-variate t distribution are still t, we have∫
· · ·

∫
tk(vx1, . . . , vxs, ys+1, . . . , yk) dys+1 · · · dyk = ts(vx1, . . . , vxk ; r,m1,R11),
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where m = (m�
1 ,m�

2 )� with m1 ∈ R
s and R is partitioned into the 2 × 2 block matrix

with R11 being the s× smatrix at the position of (1, 1)-block. See pages 15-16 of Kotz and
Nadarajah (2004). Combining the last two equalities yields the desired equality.

Linear combinations Since the distribution of a linear function of a k-variate t variable
is still t, it immediatly yields the following.

Theorem 3. Let A be a nonsingular nonrandom matrix. If X ∼ SLTk(q, r,m,R), then
AX ∼ SLTk(q, r,Am,ARA�).

The characteristic function Several authors derived the formulas for the characteristic
functions ϕT of the k-variate t rvT, see e.g. Joarder and Ali (1996), Dreier and Kotz (2002).
Based on these formulas we can obtain the characteristic functions of the k-variate slash
t using the following formula. For X ∼ SLTk(q, r,m,R), it can be expressed as the ratio
X = T/U1/q of two independent rv’s, so that its characteristic function ϕX can be written
as

ϕX(t) = E(exp(it�X)) =
∫ 1

0
E(exp(it�Tu−1/q)) du =

∫ 1

0
ϕT(tu−1/q) du (2.14)

for t in some neighborhood N of the origin in which the above integral converges.

Example 1. For the standard univariate and bivariate slash t distributions
SLTk(q, r), k = 1, 2, their densities are given by

f1(x; q, r) =
∫ 1

0
qvqt1(vx; r) dv, x ∈ R,

and

f2(x; q, r) =
∫ 1

0
qvq+1t2(vx; r) dv, x ∈ R

2.

Displayed in Figure 2 are the density curves and contours. On the left panel are the
density curves of the normal, t and the standard slash t with q = 1 and r = 3 degrees
of freedom. The curves are calibrated so that they have the same height at the origin.
Observe that the slash t has the fattest tail whereas the normal has the slimmest one. On
the right panel are the contours of the bivariate slash t with q = 3 and r = 5. Clearly the
contours are symmetric.

3 Themultivariate skew-slash t distributions
In this section, we first recall the skew normal and skew t. In subsection 3.1, we define
the standard skew-slash t distribution, study its relationships with other distributions and
give themoments and characteristic function. In subsection 3.2, we use hidden truncation
or selective sampling model and the order statistics to characterize the skew, slash and
skew-slash normal and t distributions. In subsection 3.2, we define the general skew-slash
t distribution, study its linear transformation and give an example in the end.
Azzalini and Dalla Valle (1996) introduced the skew normal distribution. A k-variate

standard skew normal distribution has the density given by

2φk(z)�(λ�z), λ, z ∈ R
k ,
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Figure 2 Density curves and contours of slash t. Left panel: Density curves of normal (N), student t (T), and
the slash t (SLT1(1, 3)). Right panel: Contours of the bivariate slash t distribution SLT2(3, 5).

where φk is the pdf of the k-variate standard normal Nk(0, I) and � is the cdf of the
standard normal N(0, 1). Denote it by SKNk(λ).
Kotz and Nadarajah (2004) wrote “. . . that the possibilities of constructing skewed mul-

tivariate t distributions are practically limitless". The two authors surveyed the definitions
given by Gupta (2003), Sahu et al. (2003), Jones (2002) and Azzalini and Capitanio (2003).
Based on these definitions, we may define the skew-slash t distributions in different

ways. In this article, however, we will take the following approach. First, we will define
the standard skew-slash t based on the standard skew t, a common special case of Gupta
(2003), Azzalini and Capitanio (2003), and others.We then introduce a general skew-slash
t distribution by introducing location and scale parameters. Our definitionmay lose some
nice interpretations. But we think that this definition is natural, concise and, in particular,
convenient in applications.
According to Gupta (2003), a k-variate skew t distribution with parameters μ ∈ R

k , �
(correlation matrix R), λ ∈ R

k and r > 0 has the density

hk(t;λ, r,�) = 2tk(t; r, 0,R)

(
λ�t√

1 + t��−1t/r
; r + k

)
, t ∈ R

k , (3.15)

where  is the cdf of the univariate standard t distribution with r+ k degrees of freedom.
Denote this distribution by SKTk(λ, r,�). This form of the density given here is slightly
different from that of Gupta (2003). Several constant parameters appeared in his density
formual are not explicitly expressed in our form of the density. We have incorporated
them in the parameters in the above density. Accordingly parameters of the same names
may have different values.
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When � is the identity matrix Ik , SKTk(λ, r, Ik) is referred to as the standard skew t and
denoted by SKTk(λ, r) with density hk(t;λ, r) given by

hk(t;λ, r) = 2tk(t; r)
(

λ�t√
1 + t�t/r

; r + k
)
, t ∈ R

k ,

where tk(t; r) is the density of the standard k-variate distribution tk(r) with degrees of
freedom r. This is a common special case of the skew t shared by Gupta (2003), Azzalini
and Capitanio (2003), and others.

3.1 The standard multivariate skew-slash t distribution

We begin with the definition, followed the moments and characteristic function.

Definition 2. A k-variate continuous random vector W0 is said to have a standard
multivariate skew-slash t distribution with skewness parameter λ, tail parameter q and
degrees of freedom r, written W0 ∼ SSLTk(λ, q, r), if it can be written as the ratio of two
independent rv’s § ∼ SKTk(λ, r) and U ∼ U(0, 1) as follows:

W0 = S/U1/q.

The standard skew-slash t generalizes the proposed standard k-variate slash t, the stan-
dard skew t of Gupta (2003) and Azzalini and Capitanio (2003), the standard slash normal
of Kafadar (1988), and the standard skew-slash normal of Wang and Genton (2006). This
is stated below.

Remark 2. The limiting distribution of the standard skew-slash t distribution SSLTk
(λ, q, r) is, as q → ∞, the standard skew t distribution SKTk(λ, r). The limiting distribu-
tion of SSLTk(λ, q, r) is, as r → ∞, the standard skew-slash normal SSLNk(λ, q), which
includes as special cases the standard skew normal SKNk(λ) (q = ∞) and the standard
slash normal SLNk(q) (λ = 0). As λ = 0, SSLTk(λ, q, r) reduces to the slash t distribution
SLTk(q, r).

In a similar way to the derivation of the standard slash t density in Section 2, we can
obtain the density of the standard skew-slash t distribution SSLTk(λ, q, r) as follows: for
w ∈ R

k ,

gk(w;λ, q, r) = 2q
∫ 1

0
uk+q−1tk(uw; r)

(
uλ�w√

1 + u2w�w/r
; k + r

)
du, (3.16)

Themoments Using the results of Azzalini and Dalla Valle (1996) or Kotz andNadarajah
(2004)(p.100-101) for the mean vector and covariance of the k-variate skew t distribution
(i.e. by setting their α equal to λ/

√
1 + p/ν with their p = k and ν = r here), we obtain

the mean vector and covariance matrix of W0 ∼ SSLTk(λ, q, r) as follows:

E(W0) = E(S)E(U−1/q) =
√
2qr√

π(q − 1)(r − 2)
λ√

r + k + rλ�λ
, q > 1, r > 2,

Var(W0) = qr
(q − 2)(r − 2)(r − 4)

(
Ik − 2(r + 4)

π(r − 2)
rλλ�

r + k + rλ�λ

)
, q > 2, r > 4.
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The characteristic function As in deriving the characteristic function for the mul-
tivariate slash t in (2.14), one can obtain the characteristic function ϕW0 of W0 as
follows:

ϕW0(t) = E(exp(it�W0)) =
∫ 1

0
ϕS(tu−1/q) du, t ∈ N

for some neighborhood N of the origin in which the above integral converges, where ϕS
is the characteristic function of the standard skew t distribution S ∼ SKTk(λ, r).

3.2 Hidden truncation and order-statistics characterization

In this subsection, we characterize the skew t, skew-slash normal and skew-slash t distri-
butions using the hidden truncation or selective sampling model and the order statistics
of the components of a bivariate normal or t variable.

Hidden truncation or selective sampling We first give a fact about conditional pdf. Let
X be a continuous random vector that has pdf f . Let X0 be a random variable with cdf F0.
Let a be a measurable function of X such that P(A) > 0 with A = {a(X) ≥ X0}. Suppose
X and X0 are independent. Then for every x,

P(X ≤ x|a(X) ≥ X0) = P(X ≤ x, a(X) ≥ X0)/P(A)

= E(1[X ≤ x] F0(a(X)))/P(A) =
∫ x

−∞
f (y)F0(a(y)) dy/P(A).

Hence the conditional pdf of X given A is

f (x|A) = f (x)F0(a(x))/P(A). (3.17)

Using this we immediately derive the following results.

Proposition 1. Suppose T ∼ tk(r) and T0 ∼ t1(r + k) are independent. Then the
conditional pdf of T given A is

f (t|A) = tk(t; r)(a(t); r + k)/P(A), t ∈ R
k . (3.18)

Consequently, if U ∼ U(0, 1) is independent of both T and T0 then the conditional pdf
of T/U1/q for 0 < q < 1 given A is

g(t|A) = 2q
∫ 1

0
uk+q−1t(ut; r)(a(ut); r + k) du/2P(A), t ∈ R

k . (3.19)

In particular, both (3.18) and (3.19) hold for a(t) = (τ0 + τ�t)/
√
1 + t�t/r where τ0, τ

are arbitrary constants. In this case,

f (t|A) = 2tk(t; r)
(

τ0 + τ�t√
1 + t�t/r

; r + k
)

/2P(A), t ∈ R
k , (3.20)

g(t|A) = 2q
∫ 1

0
uk+q−1t(ut; r)

(
τ0 + uτ�t√
1 + u2t�t/r

; r + k
)

du/2P(A). (3.21)

Remark 3. The density function in (3.21) is the conditional pdf of the k-variate slash
t rv X = T/U1/q given A. It is noteworthy that the hidden truncation model yields the
pdf (3.20) and (3.21), the former is proportional to the pdf (3.15) of the skew t distribution
and the latter is proportional to the pdf (3.16) of the proposed skew-slash t distribution.
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For more discussion see e.g. Chapter 6 of Genton (2004) and the references therein. The
skew-slash normal of Wang and Genton (2006) is the special case of r = ∞.

Order statistics characterization Generalizing (c) of Theorem 1 in Arnold and Lin
(2004), we give the following fact. Let (Y1,Y2) be a bivarate rv with pdf f and cdf F . Let
Y1,2 = min(Y1,Y2) and Y2,2 = max (Y1,Y2) be the order statistics of the components of
the bivarate random vector. Then

P
(
Y1,2 > y1

) = P (Y2 ≥ Y1 > y1) + P(Y1 > Y2 > y1)

=
∫ ∞

y1
dx1

∫ ∞

x1
f (x1, x2) dx2 +

∫ ∞

y1
dx2

∫ ∞

x2
f (x1, x2) dx1.

Thus the pdf f(1)(y1) of Y1,2 is given by

f(1) ( y1) =
∫ ∞

y1
f ( y1, x2) dx2 +

∫ ∞

y1
f (x1, y1) dx1. (3.22)

Let f1, f2 be the respective marginal pdf of Y1,Y2. Let

F1 ( y1|y2) = P (Y1 ≤ y1|Y2 = y2) , F2 ( y2|y1) = P (Y2 ≤ y2|Y1 = y1) .

Then using
∫ ∞
y1 f (y1, x2) dx2 = f1 ( y1)

∫ ∞
y1 f ( y1, x2) /f1 ( y1) dx2 = f1 ( y1) F̄2 ( y1) and

(3.22) we derive

f(1) ( y1) = f1 ( y1) F̄2 ( y1|y1) + f2 ( y1) F̄1 ( y1|y1) . (3.23)

Similarly we derive the pdf f(2)(y2) of Y2,2 below:

f(2) ( y2) = f2 ( y2) F1 ( y2|y2) + f1 ( y2) F2 ( y2|y2) . (3.24)

In their Theorem 1, Arnold and Lin (2004) showed that the order statistics of the com-
ponents of a random vector from a bivariate normal distribution obey the skew-normal
law. Using (3.23) and (3.24) we can show that the order statistics of the components of a
random vector from a bivariate t distribution obey the skew t law. Thus we extend their
result from the normal to t distribution as stated below.

Proposition 2. Let (T1,T2) have a bivariate t distribution t2(r, 0,R) with degrees of
freedom r, mean zero vector and correlation matrix R = (1, ρ, ρ, 1) with −1 < ρ < 1.
Define T1,2 = min(T1,T2) and T2,2 = max (T1,T2). Then the pdf t(1), t(2) of T1,2,T2,2 are
given by

t(1)(t1) = 2t1(t1; r)

⎛⎜⎝ −λt1√
1 + t21/r

; r + 1

⎞⎟⎠ , t1 ∈ R, (3.25)

t(2)(t2) = 2t1(t2; r)

⎛⎜⎝ λt2√
1 + t22/r

; r + 1

⎞⎟⎠ , t2 ∈ R, (3.26)

where λ = λ(r, ρ) = √
(1 + 1/r)(1 − ρ)/(1 + ρ).

Remark 4. The density functions in (3.25) and (3.26) reduce to the result (c) of Theorem
1 of Arnold and Lin (2004) when the df r = ∞ as λ(∞, ρ) = √

(1 − ρ)/(1 + ρ) is equal to
their skewness parameter γ in the skew-normal distribution.
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PROOF OF PROPOSITION 2. Note first that T1,T2 have the same standard univariate t
distribution t1(r). Using the formula for the conditional pdf of t distribution (see e.g. page
16 of Kotz and Nadarajah (2004)), the conditional cdf of T2 given T1 = t1 can be written
as

P(T2 ≤ t2|T1 = t1) = (b(t1, t2; r, ρ); r + 1), t1, t2 ∈ R,

where

b(t1, t2; r, ρ) = (t2 − ρt1)
√
1 + 1/r√

(1 + t21/r)(1 − ρ2)
.

Similarly,

P(T1 ≤ t1|T2 = t2) = (b(t2, t1; r, ρ); r + 1), t1, t2 ∈ R.

We now apply (3.24), with both f1 and f2 equal to the pdf of t1(r) and both F1 and F2 equal
to the cdf (; r + 1) of the t distribution t(r + 1), to obtain the pdf t(2) given in (3.26),
noting in this case b(t2, t2; r, ρ) = λt2/

√
1 + t22/r. Aanloguously we can prove (3.25) in

view of the equality ̄(t; r) = (−r; r) by the symmetry of the univariate t distribution.
This completes the proof.

As a corollary of Proposition 2, we obtain a characterization of the skew-slash normal
and t distributions through the order statistics of the components of a random vector
from a bivariate t distribution as stated below.

Corollary 1. Let (T1,T2) be given in Proposition 2. Assume U ∼ U(0, 1) is independent
of (T1,T2). Then the pdf g(1), g(2) of T1,2/U1/q,T2,2/U1/q for 0 < q < 1 are given by

g(1)(t1) = 2q
∫ 1

0
uqt1(ut1; r)

⎛⎜⎝ −uλt1√
1 + u2t21/r

; r + 1

⎞⎟⎠ du, t1 ∈ R, (3.27)

g(2)(t2) = 2q
∫ 1

0
uqt1(ut2; r)

⎛⎜⎝ uλt2√
1 + u2t22/r

; r + 1

⎞⎟⎠ du, t2 ∈ R. (3.28)

Remark 5. The density functions in (3.27) and (3.28) are (i) the pdf of the order statistics
of the components of the random vector (T1,T2)/U1/q from the bivariate slash t distri-
bution t2(r, q), and (ii) reduce to the case of the skew-slash normal of Wang and Genton
(2006) when the df r = ∞.

PROOF OF COROLLARY 1. The desired (3.27) follows from (3.25) and the equalities

P(T1,2/U1/q ≤ t1) =
∫ 1

0
P(T1,2 ≤ u1/qt1) du = 2q

∫ t1

−∞

∫ 1

0
vqt(1)(vs) dv ds,

where the independence of T1,2 and U is used to claim the first equality while the second
equality follows from a change of variables. Similarly (3.28) can be proved and this finishes
the proof.

The multivariate skew-slash t distributions We now introduce a general multivariate
skew-slash t distribution by incorporating location and scale parameters.
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Definition 3. A continuous k-variate rvW has amultivariate skew-slash t distribution
with locationμ, scale�, skewness parameter λ ∈ R

k , tail parameter q and degrees of free-
dom r, writtenW ∼ SSLTk(λ, q, r,μ,�), if it can be represented as a linear transformation
of the standard multivariate skew-slash t rvW0 ∼ SSLTk(λ, q, r) as follows:

W = μ + �1/2W0,

where�1/2 is the the choleski decomposition of the positive definite covariancematrix�.

By a change of variables in (3.16), we derive the density ofW given by

gk(w;λ, q, r,μ,�) = 2q|�|−1/2
∫ 1

0
uk+q−1tk(u�−1/2(w − μ); r)

× 

(
uλ��−1/2(w − μ)√
1 + u2Q(w;μ,�)/r

; k + r
)

du, w ∈ R
k ,

(3.29)

where Q(w;μ,�) = (w − μ)��−1(w − μ).
As in the case of the standard skew-slash t, one notices that the skew-slash t generalizes

the slash t, the skew t of Azzalini and Capitanio, the slash normal of Kafadar, the skew
normal of Azzalini and Dalla Valle and the skew-slash normal of Wang and Genton. This
is stated below.

Remark 6. The limiting distribution of the multivariate skew-slash t distribution
SSLTk(λ, q, r,μ,�), as q tends to infinity, is the skew t distribution SKTk(λ, r,μ,�).
The limiting distribution of SSLTk(λ, q, r,μ,�) is, as r tends to infinity, the skew-slash
normal SSLNk(λ, q,μ,�), which include as special cases the k-variate skew normal
SKNk(λ,μ,�) (q = ∞) and the k-variate slash normal SLNk(q;μ,�) (λ = 0).
As λ = 0, SSLTk(λ, q, r,μ,�) simplifies to the k-variate slash t distribution SLTk
(q, r,μ,�).

Linear combinations Since the distribution of a linear function of a k-variate skew t
variable is still skew t (see e.g. Section 5.9 of Kotz and Nadarajah (2004)), it immediatly
yields the following result. Note that the relationship between our skewness parameter λ

and their α is λ = √
1 + k/rα. Let D = diag(σ1,1, . . . , σk,k) denote the diagonal matrix

consisting of the diagonal entries of � = (σi,j) and R = D−1/2�D−�/2 be the correlation
matrix.

Theorem 4. Let A be a nonsingular matrix. If W ∼ SSLTk(λ, q, r,μ,�), then AW ∼
SSLTk(λ̃, q, r,Aμ, �̃) where �̃ = A�A� and

λ̃ = �̃−1/2B�λ√
1 + (1 + k/r)−1λ�(R − B�̃−1B�)λ

, B = D−1/2�A.

To give graphical view of the skewness and tail behaviors of the skew-slash t distribu-
tions, we plot the density curves of the univariate standard skew-slash t and contours of
the bivariate standard skew-slash t below.
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Example 2. For the univariate and bivariate standard skew-slash t distributions
SSLT1(λ, q, r) and SSLT2(λ1, λ2, q, r), the densities are given by

g1(w; λ, q, r) = 2q
∫ 1

0
uqt1(uw; r)

(
uλw√

1 + u2w2/r
; 1 + r

)
du, w ∈ R, (3.30)

and, with w = (w1,w2)� ∈ R
2 and λ = (λ1, λ2)�,

g2(w;λ, q, r) = 2q
∫ 1

0
uq+1t2(uw; r)

⎛⎜⎝ u(λ1w1 + λ2w2)√
1 + u2(w2

1 + w2
2)/r

; 2 + r

⎞⎟⎠ du. (3.31)

Displayed in Figure 3 are the density curves of the standard skew-slash t distribution
SSLT1(3, 1, 2), the skew t distribution SKT1(3, 2), and the slash t distribution SLT1(1, 2)
distributions. The curves are shifted and rescaled for comparison. Observe that the skew-
slash t has the fattest tail and is skewed to the right most.
Displayed in Figure 4 are the contour plots of the bivariate standard skew-slash t distri-

bution SSLT2(λ, 3, 5) for different values of the skewness parameter vector λ. Clearly the
contours are more skewed as the skewness parameter vector λ gets longer.

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

w

pd
f

SSLT
SLT
SKT

Figure 3 Density curves of skew-slash t SSLT1(3, 1, 2), slash t SLT1(1, 2), and skew t SKT1(3, 2).
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Figure 4 Contours of the standard 2-dimensional skew-slash t distribution SSLT2(λ, 3, 5).

4 Statistical inference
In this section, we discuss maximum likelihood estimation and the Bayesian method and
provide the approximate sampling distribution of the estimates.

The likelihood approach Let p(z; θ) denote either the slash t density in (2.1) or the
skew-slash t density in (3.29), where θ denotes the corresponding parameter vector, i.e.
θ = (q, r,m,R) or θ = (λ, q, r,μ,�). As the degrees of freedom r is unknown, we estimate
it by the MLE treating it as a positive real number. Let Z1, . . . ,Zn be a random sample
from the density p. Based on the sample, the parameter θ can be estimated by the MLE
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θ̂ . This is the parameter value θ̂ which maximizes L(θ) = 1
n

∑n
i=1 log p(Zi; θ) of the log

likelihood functions of the sample over the parameter space �, that is,

L(θ̂) = max
θ∈�

1
n

n∑
i=1

log p(Zi; θ). (4.32)

Let Si(θ) = ∂
∂θ

log p(Zi; θ) be the score for the observation Zi. Under suitable
conditions, the MLE θ̂ is the solution to the score equation

n∑
i=1

Si(θ) = 0. (4.33)

Let J(θ) = E(S1(θ)S1(θ)�) be the information matrix. Clearly the information matrix
can be estimated by

Ĵ = 1
n

n∑
i=1

Si(θ̂)Si(θ̂)�. (4.34)

Under suitable conditions, the sampling distribution of θ̂ can be approximated by the
normal distribution with mean vector θ and variance-covariance matrix Ĵ−1, that is,
approximately

θ̂ ∼ N (θ , n−1Ĵ−1). (4.35)

Based on this normal approximation, one can perform hypothesis testing, construct
confidence intervals and, in particular, calculate the standard error (SE) of each compo-
nent θ̂ j of the MLE θ̂ as follows:

SE(θ̂ j) =
√
n−1Ĵjj, j = 1, . . . , k, (4.36)

where Ĵjj is the (j, j)- entry of the estimated inverse information matrix Ĵ−1.
The numerical value of the MLE θ̂ can be found by solving the score equation (4.33)

using the newton’s method. Alternatively, one can directly search the solution of the
maximization problem (4.32), for example, using the subroutine optim in the R package.
As for initial values of the newton’s algorithm, one can use the moment estimates of the

parameters or other available consistent estimates. One technical issue here is that the
estimate �̂ of � must be positive definite. What we did in our applications was that we
estimated the entries of � and then verified the positive definiteness of �̂.

The Bayesian approach Given observed data D, the likelihood function L(D|θ) can be
obtained from the proposed multivariate slash or skew-slash t distribution with parame-
ter vector θ . The posterior density then satisfies p(θ |D) ∝ L(D|θ)π(θ), where π(θ) is the
joint prior density of θ based on the available prior information on it. We choose a prior
density for each component of θ and take the joint prior density of θ to be equal to the
product of the marginal prior densities. The resulting full Bayesian model has the hierar-
chical structure with the conditional density of D|θ and the prior distribution θ ∼ π(θ)

in the proposed model. One can obtain a random sample from the joint posterior density
by the Markov Chain Monte Carlo (MCMC) method, and a parametric Baysian analysis
of the model can be implemented using the Gibbs sampling method in R or JAGS.
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5 Simulations and applications
In this section, we use simulations to compare the performance of the skew-slash t and
the skew-slash normal distributions. Simulations are also used to demonstrate parameter
estimation using both the maximum likelihood criterion and Bayesian paradigm. Then
the skew-slash t, with the density given in (3.29), and the skew-slash normal, with the
density given below, are applied to fit two real datasets.

ηk(w;λ, q,μ,�) = 2q
∫ 1

0
uk+q−1φk(uw;uμ,�)

× �
(
uλ��−1/2(w − μ)

)
du, w ∈ R

k ,
(5.37)

where φk is the density of the k-variate normal distribution Nk(μ,�) with mean vector μ

and covariance matrix �.

5.1 Simulation study

Comparison between the skew-slash t and skew-slash normal To compare the two
distributions, we first generated data from the 2-variate skew-slash t then fitted it with
both 2-variate skew-slash t and skew-slash normal, and vice versa (i.e. generated data
from the 2-variate skew-slash normal then fitted it with the two distributions). Reported
in Table 2 are the average AIC values and average MLE’s of the parameters based on the
sample size n = 250 and repetitionsM = 200.
Notice that for data generated from both the skew-slash t and skew-slash normal,

the average AIC values of the skew-slash t fitting were lower than those of the skew-
slash normal, indicating a better overall model fitting of the former to the data than the
latter.

Parameter estimation by the Bayesian method We now conducted simulations to
study the behaviors of the MLE’s and Bayesian estimates of the parameters in the
data-generation models for the standard univariate and bivariate slash and skew-slash
t distributions. Here the prior distributions are the standard normal N(0, 1) for the
skewness parameter λ (or the components of the parameter vector λ), the exponential
distribution with rate 0.1 truncated at 2 for the tail parameter q and truncated at 4 for the
degrees of freedom r. It follows from Sahu et al. (2003) and Fernandez and Steel (1998)
that the resulting distributions have finite variances. We generated 100 random samples
of size 200 from the standard univariate slash and skew-slash t and the standard bivariate
slash and skew-slash t. Reported in Table 3 are the average estimates of the parameters
based on the maximum likelihood criterion and Bayesian paradigm. Observe that the two
types of estimates are close for all the simulation setups.

5.2 Applications

Model fitting to the GAD Data Gestational age at delivery (GAD) is a variable widely
studied in epidemiology, see, for example, Longnecker et al. (2001). We applied the skew-
slash t and skew-slash normal distributions to fit the log transformed GAD of n = 100
observations. Figure 1 is the histogram superimposed with the fitted density curves, while
Table 1 reports the MLE’s, the standard errors (SE) of the parameter estimates and the
AIC.We can see from Figure 1 that the skew-slash t distribution was able to better capture
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Table 3Maximum likelihood and Bayesian estimates comparison

True SLT SSLT

Parameter Value MLE Bayes MLE Bayes

Univariate

λ 3 2.496 2.511

q 5 6.196 6.236 6.689 6.479

r 8 8.015 7.084 7.650 7.194

Bivariate

λ1 -5 -5.543 -3.288

λ2 3 3.333 1.967

q 5 6.410 4.113 5.899 4.118

r 8 7.480 8.468 7.726 8.609

The average maximum likelihood and Bayesian estimates based on 100 samples of size 200. SLT=Slash t and
SSLT=Skew-Slash t.

the peak of the histogram, giving a better estimation of the density to the majority of data
points. In the mean time, the AIC values in Table 1 indicated that the skew-slash t fitting
was better than the skew-slash normal.

Model fitting to the AIS data Azzalini and Dalla Valle (1996) used their skew normal
distribution to fit (LBM-lean body mass, BMI-body mass index) pairs of the athletes from
Australian Institute of Sport (AIS), where the data of n = 202 observations were reported
in Cook and Weisberg (1994). Wang and Genton (2006) used their skew-slash normal
distribution to re-fit the data. Here we applied the proposed skew-slash t distribution to
re-fit the (LBM, BMI) pairs in the AIS data. Before fitting we standardized the variables.
Figure 5 is the scatter plot superimposed with the fitted skew-slash t and skew-slash

normal contours in the scale of LBM and BMI. The skew-slash normal contour is similar
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Figure 5 Scatter plot and fitted contours.
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to what was reported in Wang and Genton (2006). The comparison between the two
contours seemed to indicate that the fittings based on two models were close.
Reported in Table 4 are the MLE’s, standard errors and AIC. A smaller AIC value of

the skew-slash normal fitting than the skew-slash t fitting indicated that the former was a
better fit to this data.When the skew-slash normal was used to fit the data we were able to
obtain the MLE’s. But the row and column corresponding to parameter q in the Hessian
matrix were zero, suggesting a simpler skew normal fitting to this data. The skew-slash
normal fitting by Wang and Genton (2006) led to the same conclusion though they did
not report the standard errors of the parameter estimates.
In conclusion, the proposed slash and skew-slash t are competitive candidate models

for fitting skewed and heavy tailed data. The parameters can be estimated under either
the frequentist method or Bayesian paradigm. Although for a particular dataset the skew-
slash t may not be the final model, it is a good choice to start with in model selection
due to its flexibility and the fact that it takes the skew normal, skew t and hence the usual
normal and t as its submodels.

6 Concluding remarks
In this article, we defined the multivariate slash and skew-slash distributions in a pursuit
of providing additional distributions to simulate and fit skewed and heavy tailed data. We
investigated the heavy tail behaviors and tractable properties of these distributions which
are useful in simulations and applications to real data. We characterized the skew t, the
skew-slash normal and the skew-slash t distributions using both the hidden truncation or
selective sampling model and the order statistics of the components of a bivariate normal
or t variable. We demonstrated that the proposed skew-slash tmodel takes as sub-models
the slash t, the slash normal, the skew-slash normal, the skew normal, the skew t and
hence the usual normal and t. This nested property can be used in hypothesis testing.
Our simulations and applications to real data indicated that the proposed skew-slash t

fitting outperformed the skew-slash normal fitting. Even though the skew-slash normal
contains a tail parameter q, the fitting with it to the GAD data was unsatisfactory as the SE
of the MLE of the tail parameter q was large, see Table 1. This suggests that not all heavy-
tail properties in data can be explained by the tail parameter q in the slash distributions.
Thus it makes sense for us to further search for distributions which can be used to fit

Table 4 The skew-slash normal and t fitting to the AIS data

SSLT SSLN

MLE SE MLE

AIC 981.018 978.426

μ1 -0.210 0.151 -0.210

μ2 -0.936 0.110 -0.954

σ 2
11 0.566 0.097 0.831

σ12 0.465 0.086 0.708

σ 2
22 2.042 0.454 1.486

λ1 -1.745 0.531 -2.225

λ2 3.771 1.016 2.091

q 121.021 660.502 22.534

r 25.124 17.756

SSLN=Skew-Slash Normal and SSLT=Skew-Slash t.
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heavy tailed data. Our proposed slash and skew-slash t distributions can be considered as
an example in this attempt. We complete our remarks by pointing out that the degrees-
of-freedom parameter r and the tail parameter q would explain different types of fat tail
behaviors existed in data.
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