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Background
Convexity plays an important role in economics, management science, engineering, 
finanace and optimization theory. Many interesting generalizations and extensions of 
classical convexity have been used in optimization and mathematical inequalities. Han-
son (1981) introduced the concept of invexity. These functions were named invex by Cra-
ven (1981) and η-convex by Kaul and Kaur (1980). Weir and Mond (1988) introduced the 
concept of preinvex function. Later, Mohan and Neogy (1995) presented few properties 
of preinvex functions. Some refinements of the mathematical inequalities on convex and 
generalized convex functions have been investigated in Barani et al. (2012), Chalco-Cano 
et al. (2012), Dragomir (2001), Dragomir and Agarwal (1998), Fok and Vong (2015), Mat-
loka (2014), Muddassar and Bhatti (2013) and Pachpatte (2004).

Let S be a nonempty subset of Rn and let η : S × S → Rn.

Definition 1  The set S ⊆ Rn is said to be invex with respect to η(u, v) if for every 
u, v ∈ S and t ∈ [0, 1],

It is obvious that every convex set is invex with respect to η(u, v) = u− v, but there 
exist invex sets which are not convex (see Mohan and Neogy 1995).

Definition 2  (Weir and Mond 1988) The function f : S → R is said to be preinvex on 
S with respect to η(u, v), if

v + tη(u, v) ∈ S.

Abstract 
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inequalities for this kind of function along with beta function are establised. The work 
extends the results appeared in the literature.
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for every u, v ∈ S and t ∈ [0, 1],

The Gauss–Jacobi type quadrature formula has the following

for certain Bm,k , γk and rest R⋆
m|f | (see Stancu et al. 2002).

Recently, Liu (2014) obtained several integral inequalities for the left hand side of (1) 
under the following P-convexity:

The function f : I → R, where I ⊆ R is said to be P-convex on a convex set, if

for every u, v ∈ I and t ∈ [0, 1]. For the applications of P-convex function and its gener-
alizations, we refer Akdemir and Ozdemir (2010), Barani and Barani (2012), Liu (2013, 
2014), Tunc (2013) and Varosanec (2007).

The main purpose of this paper is to introduce the class of P-preinvex function and 
derive new inequalities for the left hand side of (1) under these assumptions. The pre-
sented results generalize the results of Liu (2014) and references cited therein.

New integral inequalities
Definition 3  The function f : S → R is said to be P-preinvex on S with respect to 
η(u, v), if

for every u, v ∈ S and t ∈ [0, 1],

Note that every P-convex function (Liu 2014) is a P-preinvex function with respect to 
η(u, v) = u− v for any t ∈ [0, 1].

Lemma 1  Let f : S = [a, a+ η(b, a)] → R be a continous function on the interval of 
real numbers S0 (the interior of S) with a < a+ η(b, a). If f is P-preinvex function on 
[a, a+ η(b, a)], then for some fixed p, q > 0,

Proof  It is easy to observe that

� �

The following definition will be used in the sequel.

f (v + tη(u, v)) ≤ (1− t)f (v)+ tf (u)

(1)

∫ b

a
(x − a)p(b− x)qf (x)dx =

∞
∑

k=0

Bm,k f (γk)+ R⋆
m|f |,

f (tu+ (1− t)v) ≤ f (u)+ f (v).

f (v + tη(u, v)) ≤ f (u)+ f (v).

∫ a+η(b,a)

a
(x − a)p(a+ η(b, a)− x)qf (x)dx = η(b, a)p+q+1

∫ 1

0

tp(1− t)qf (a+ tη(b, a))dt.

∫ a+η(b,a)

a
(x − a)p(a+ η(b, a)− x)qf (x)dx =

∫ 1

0

(a+ tη(b, a)− a)p(a+ η(b, a)− a− tη(b, a))q

× f (a+ tη(b, a))dt

= η(b, a)p+q+1

∫ 1

0

tp(1− t)qf (a+ tη(b, a))dt
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Definition 4  The beta function is defined for x, y > 0 as

Theorem 1  Let f : S = [a, a+ η(b, a)] → R be a continous function on the interval of 
real numbers S0 (the interior of S) with a < a+ η(b, a). If |f | is P-preinvex function on 
[a, a+ η(b, a)], then for some fixed p, q > 0,

Proof  Since |f | is P-preinvex function on [a, a+ η(b, a)], we have

for all t ∈ [0, 1]. By Theorem 1 and P-preinvexity of |f |, we get

Theorem 2  Let f : S = [a, a+ η(b, a)] → R be a continous function on the interval of 
real numbers S0 (the interior of S) with a < a+ η(b, a). If |f |

k
k−1 is P-preinvex function on 

[a, a+ η(b, a)], then for some fixed p, q > 0,

Proof  The P-preinvexity of |f |
k

k−1 on [a, a+ η(b, a)] along with Lemma 1, Definition 4 
and Hölder inequality imply that

This completes the proof. � �

β(x, y) =

∫ 1

0

tx−1(1− t)y−1dt.

∫ a+θ(b,a)

a
(x − a)p(a+ η(b, a)− x)qf (x)dx ≤ η(b, a)p+q+1β(p+ 1, q + 1)(|f (a)| + |f (b)|).

|f (a+ tη(b, a))| ≤ |f (a)| + |f (b)|

∫ a+η(b,a)

a
(x − a)p(a+ η(b, a)− x)qf (x)dx = η(b, a)p+q+1

∫ 1

0

tp(1− t)q|f (a+ tη(b, a))|dt

≤ η(b, a)p+q+1

∫ 1

0

tp(1− t)q(|f (a)| + |f (b)|)dt

= η(b, a)p+q+1β(p+ 1, q + 1)(|f (a)| + |f (b)|)

(by the definition 4).

∫ a+η(b,a)

a
(x − a)p(a+ η(b, a)− x)qf (x)dx

≤ η(b, a)p+q+1[β(kp+ 1, kq + 1)]
1

k

(

|f (a)|
k

k−1 + |f (b)|
k

k−1

)

k−1

k
.

∫ a+η(b,a)

a
(x − a)p(a+ η(b, a)− x)qf (x)dx

≤ η(b, a)p+q+1

[

∫ 1

0

tkp(1− t)kq

]
1
k
[

∫ 1

0

|f (a+ tη(b, a))|
k

k−1 dt

]
k−1
k

≤ η(b, a)p+q+1[β(kp+ 1, kq + 1)]
1
k

[

∫ 1

0

(

|f (a)|
k

k−1 + |f (b)|
k

k−1

)

dt

]
k−1
k

= η(b, a)p+q+1[β(kp+ 1, kq + 1)]
1
k

(

|f (a)|
k

k−1 + |f (b)|
k

k−1

)

k−1
k
.
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Theorem 3  Let f : S = [a, a+ η(b, a)] → R be a continous function on the interval of 
real numbers S0 (the interior of S) with a < a+ η(b, a). If |f |l is P-preinvex function on 
[a, a+ η(b, a)], then for some fixed p, q > 0,

Proof  The P-preinvexity of |f |l on [a, a+ η(b, a)] along with Lemma 1, Definition 4 and 
Hölder inequality give

This completes the proof. 	� �

Intergal inequalities involving prequasi‑invex
I state the following theorems as the proof follow on the same lines of the theorems of 
“New integral inequalities” section.

Definition 5  (Pinni 1991) The function f : S → R is said to be prequasi-invex on S 
with respect to η(u, v), if

for every u, v ∈ S and t ∈ [0, 1].

Theorem 4  Let f : S = [a, a+ η(b, a)] → R be a continous function on the interval of 
real numbers S0 (the interior of S) with a < a+ η(b, a). If f is prequasi-invex function on 
[a, a+ η(b, a)], then for some fixed p, q > 0

Theorem 5  Let f : S = [a, a+ η(b, a)] → R be a continous function on the interval of 
real numbers S0 (the interior of S) with a < a+ η(b, a). If |f | is prequasi-invex function on 
[a, a+ η(b, a)], then for some fixed p, q > 0,

∫ a+η(b,a)

a
(x − a)p(a+ η(b, a)− x)qf (x)dx ≤ η(b, a)p+q+1β(p+ 1, q + 1)

(

|f (a)|l + |f (b)|l
)

.

∫ a+η(b,a)

a
(x − a)p(a+ η(b, a)− x)qf (x)dx

= η(b, a)p+q+1

∫ 1

0

[

tp(1− t)q
]
l−1
l
[

tp(1− t)q
]
l
l f (a+ tη(b, a))dt

≤ η(b, a)p+q+1

[

∫ 1

0

tp(1− t)qdt

]
l−1
l
[

∫ 1

0

tp(1− t)q|f (a+ tη(b, a))|dt

]
1
l

≤ η(b, a)p+q+1[β(p+ 1, q + 1)]
1−l
l

[(

|f (a)|l + |f (b)|l
)

β(p+ 1, q + 1)

]
1
l

= η(b, a)p+q+1β(p+ 1, q + 1)

(

|f (a)|l + |f (b)|l
)

1
l
.

f (tu+ (1− t)v) ≤ max(f (u), f (v))

∫ a+η(b,a)

a
(x − a)p(a+ η(b, a)− x)qf (x)dx ≤ η(b, a)p+q+1β(p+ 1, q + 1)max(f (a), f (b)).
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Theorem 6  Let f : S = [a, a+ η(b, a)] → R be a continous function on the interval of 
real numbers S0 (the interior of S) with a < a+ η(b, a). If |f |

k
k−1 is prequasi-invex function 

on [a, a+ η(b, a)], then for some fixed p, q > 0,

Theorem 7  Let f : S = [a, a+ η(b, a)] → R be a continous function on the interval of 
real numbers S0 (the interior of S) with a < a+ η(b, a). If |f |l is prequasi-invex function 
on [a, a+ η(b, a)], then for some fixed p, q > 0,

Remark 1  If η(b, a) = b− a in the theorems of “Intergal inequalities involving pre-
quasi-invex” section, then we get the Theorems appeared in Liu (2013).

Conclusion
In this paper, I have introduced the P-preinvex function and used it along with beta 
function to establish the new integral type inequalities. I also stated the other integral 
type inequalities under prequasi-invex function. The presented results may be futher 
generalized under weaker convexity assumptions.
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