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Abstract
In this work we deal with the following nonlinear Schrödinger equation:

{
–ε2�u + V(x)u = f (u) in R

N

u ∈ H1(RN),

where N ≥ 3, f is a subcritical power-type nonlinearity and V is a positive potential
satisfying a local condition. We prove the existence and concentration of nodal
solutions which concentrate around a k-dimensional sphere of RN , where
1 ≤ k ≤ N – 1, as ε → 0. The radius of such a sphere is related with the local minimum
of a function which takes into account the potential V . Variational methods are used
together with the penalization technique in order to overcome the lack of
compactness.
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1 Introduction
In the last decades, motivated by the great interest that this problem attracts in quantum
mechanics, many researchers have dedicated their efforts to the study of the nonlinear
Schrödinger equation

i�
∂ψ

∂t
= –

�


m
�ψ + W (x)ψ – |ψ |p–ψ , (t, x) ∈ R×R

N .

Of particular interest are the so-called standing wave solutions which consist in solutions
with a particle-like behavior. It is obtained by the Ansatz ψ(t, x) = e–iEt/�u(x) which asso-
ciates the NLS equation to its stationary version

–ε�u + V (x)u = |u|p–u in R
N , (.)

where ε = �
/m and V (x) = W (x) – E. As far as (.) is concerned, the behavior of the

solutions when ε →  has a great physical interest since it describes the transition from
quantum to classical mechanics, being called semiclassical states. On this specific subject,
many authors have worked on spike-layered solutions which are nontrivial ground-state
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points of the associated energy functional and tend to concentrate around one or more
critical points of the potential V . We could cite some quite influential works on this sub-
ject, as the pioneering work of Floer and Weinstein [], which have inspired the works of
Rabinowitz [], Wang [], Del Pino and Felmer [], which have influenced so many other
works in the last three decades.

In the last ten years, solutions which concentrate on higher dimensional sets have re-
ceived more and more attention. The first work which seems to show this kind of result
is [] in which the authors study an NLS equation on a bounded domain with Neumann
boundary condition and prove the existence of a sequence of solutions which concentrate
on some component of the boundary. One of the first works dealing with solutions concen-
trating around a sphere is [] in which Ambrosetti, Malchiodi and Ni give necessary and
sufficient conditions under which (.) exhibits solutions concentrating around a sphere.
The radius of such a sphere is given by a minimum point of a function M, which takes
into account the value of the radial potential V (|x|). The role played by M is in order to
balance the potential energy (coming from V ) and the volume energy which arise from
the other terms of the energy functional (see the introduction of [] for more details). In
fact, sphere-concentrating solutions show a rather different behavior when compared with
spike-layered ones. To be more specific, in [], the authors prove the existence of sphere-
concentrating solutions to (.) even for critical or supercritical exponent p. This is in a
strike contrast with the fact that, as showed in [], no spike-layered solution exists to (.)
for p = ∗ – . Other significant difference is that the energy of the sphere-concentrating
solutions tends to zero in contrast with that of spike-layered solutions which converges to
the mountain-pass level of the energy functional. In these and so many other works ([–]
for example), Lyapunov-Schmidt reduction methods have been used in order to construct
the sphere-concentrating solutions for Schrödinger equations, Schrödinger-Poisson sys-
tems and other related problems.

More recently, in [] Bonheure et al. proved the existence of solutions concentrating
around a k-dimensional sphere of RN for all k ∈ {, . . . , N – } to the following equation:

–ε�u + V (x)u = K(x)f (u) in R
N , (.)

where the potentials V and K satisfy rather generic conditions, allowing V even to van-
ish on the infinity. To do so, they use a modification of the penalization technique, origi-
nally presented in [], in such a way that compactness is recovered to the modified energy
functional. Because of the generality of conditions to which V and K are subjected, in
order to prove that the solutions of the modified problem are solutions of the original
one, they made a thorough analysis with some barrier functions which bound the solu-
tions from above. In [] the authors employ a similar argument in order to show the
existence of solutions concentrating on circumferences of R, to a Schrödinger-Poisson
system.

In the spike-layered solutions setting, the existence of sign-changing (or nodal) solutions
was investigated by some authors. In [] and [], Alves and Soares study problem (.),
with K to be a constant, and prove the existence of nodal solutions which concentrate on
minima of the potential V . They consider f as a subcritical power-type nonlinearity in
their first work and as presenting a critical exponential growth at infinity in the second. In
both they employ the penalization technique together with a careful analysis of the profile
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of the solutions. In [], Sato proposes a different kind of penalization in order to show
the existence of multi-peak nodal solutions to a Schrödinger equation with a vanishing
potential.

A question that naturally arises is whether there exists a sequence of nodal solutions to
the NLS equation which concentrate around a k-dimensional sphere. In this work we give
a positive answer to this question. More specifically, we study the existence and concen-
tration of nodal solutions to the following nonlinear Schrödinger equation:

⎧⎨
⎩–ε�u + V (x)u = f (u) in R

N ,

u ∈ H(RN ),
(.)

where N ≥ , exhibiting a cylindrical symmetry which implies this sort of concentration.
The nonlinearity f is assumed to be a C(R) odd function satisfying the following:

(f) There exists ν >  such that f (|s|) = o(|s|ν) as s → ;
(f) There exist c, c >  such that |f ′(s)| ≤ c + c|s|p–, where  < p < N

N– – ;
(f) There exists θ >  such that

 < θF(s) ≤ f (s)s for s �= ,

where F(s) =
∫ s

 f (t) dt;
(f) s 	→ f (s)/s is increasing in s >  and decreasing for s < .

The potential V will be assumed to satisfy a symmetry condition which we explain in
the next section.

1.1 Statement of the main result
Let  ≤ k ≤ N –  be an integer which determines the dimension of the sphere in which the
solutions obtained are going to concentrate. Consider H to be an (N – k – )-dimensional
linear subspace of RN and note that H⊥ is a (k + )-dimensional subspace. All along the
paper we use the notation for x ∈R

N as x = (x′, x′′), in which x′ ∈H, x′′ ∈H⊥ are such that
x = x′ + x′′.

From now on, if h : RN → R is a function, by saying that h(x′, x′′) = h(x′, |x′′|) (which
rigorously does not make sense), we mean that h(x′, y) = h(x′, z) for all y, z ∈H⊥ such that
|y| = |z|.

The condition in V which is considered is the following:

(V) There exists V >  such that V ≤ V (x) and, for all x ∈ R
N , V (x) = V (x′, x′′) =

V (x′, |x′′|).

Unlike spike-layered solutions, whose concentration occurs around minimum points of
V , the solutions we are going to study concentrate around minimum points of an auxiliary
potential. To see how we define them, let us consider the limit problem

–�u + au = f (u) in R
N–k . (.)
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It is well known (see [] for instance) that there exists a ground state solution w ∈ H(RN–k)
of (.) which minimizes the energy functional

Ia(u) =



∫
RN–k

(|∇u| + au)dx –
∫
RN–k

F(u) dx,

in the corresponding Nehari manifold given by

Na =
{

u ∈ H(
R

N–k)\{}; I ′
a(u)u = 

}
.

We define the ground-energy function E : R+ →R
+ by

E(a) = inf
Na

Ia.

Finally, we define the auxiliary potential M : RN → (, +∞] by

M(x) =
∣∣x′′∣∣kE

(
V (x)

)
,

where x = (x′, x′′), x′ ∈H and x′′ ∈H⊥.
On the auxiliary potential M, we impose the following condition:

(M) There exists an open bounded set � ⊂ R
N such that if (x′, x′′) ∈ � then (x′, y′′) ∈ �

for all y′′ ∈H⊥, |x′′| = |y′′|. Moreover,

 < M := inf
x∈�

M(x) < inf
x∈∂�

M(x).

Before we state our main result, let us define, for x = (x′, x′′), y = (y′, y′′) ∈R
N ,

dk(x, y) =
√(

x′ – y′) +
(∣∣x′′∣∣ –

∣∣y′′∣∣), (.)

as to be the distance between the k-dimensional spheres centered at the origin, parallel to
H⊥ and of radius |x′′| and |y′′|, respectively. Now we can finally state our main result.

Theorem . Let f satisfy (f)-(f) and V such that (V) and (M) hold. Then, for each se-
quence εn → , there exists a subsequence still denoted by (εn) such that (.) (with ε = εn)
has a nodal bound state un such that u(x′, x′′) = u(x′, |x′′|) and, if εnP

n and εnP
n are respec-

tively a minimum and a maximum point of un, then εnPi
n ∈ �, i = , , for n sufficiently

large,

εnPi
n → x, as n → ∞, (.)

where M(x) = M and

∣∣un(x)
∣∣ ≤ C

(
e– β

εn dk (x,εnP
n) + e– β

εn dk (x,εnP
n)), x ∈ R

N ,

where C,β >  and dk is the distance defined in (.).
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The arguments in proving the existence of solutions were strongly influenced by the
works of Alves and Souto [], in which they prove the existence of nodal solutions to a
Schrödinger-Poisson system. In the concentration, we follow closely the arguments in []
and [, ].

After our work has been finished, we found a very recent paper [] in which the au-
thor uses a similar argumentation in order to prove the existence of a sequence of nodal
multi-peak solutions which concentrate around the minimum points of a modified po-
tential, associated to a vanishing potential. The existence arguments in both works rely
on a minimization of the penalized energy functional on the nodal Nehari set, and the
concentration arguments follow the same general lines. Nevertheless, it is worth pointing
out that in our work, since we get sphere-concentrating solutions, several technical dif-
ficulties arise. Moreover, in our work proving that the solution of the modified problem
is in fact a solution of the original one involves different comparison functions since our
penalization is slightly different.

In Section  we present the penalization scheme and the variational framework. In Sec-
tion  we prove the existence of nodal solutions of the modified problem. In Section  we
exhibit the concentration arguments in order to prove that the solutions of the modified
problem concentrate around a k-dimensional sphere; and in the last section we complete
the proof of Theorem . by showing that the solutions of the modified problem satisfy
the original one.

2 The penalized nonlinearity and the variational framework
The penalization we are going to apply is a variation of the classical method of Del Pino
and Felmer in [], developed by Sato in [], in order to allow its use in finding nodal
solutions. Fixing  < τ < θ , let rε >  such that

f (rε)
rε

= ετ and
f (–rε)

–rε

= ετ .

Since rε →  as ε → , (f) implies that

ετ =
f (|rε |)
|rε | ≤ |rε |ν–.

Thus ε
τ

ν– ≤ |rε |, and we can choose an odd function f̃ε ∈ C(R) satisfying

f̃ε(s) =

⎧⎨
⎩f (s) if |s| ≤ 

ε
τ

ν– ,

ετ s if |s| ≥ ε
τ

ν– ,∣∣f̃ε(s)
∣∣ ≤ ετ |s| for all s ∈R, (.)

 ≤ f̃ ′
ε (s) ≤ ετ for all s ∈R (.)

and

s 	→ f̃ε(s)/s is increasing for s >  and decreasing for s < . (.)
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Let us define gε(x, s) := χ�(x)f (s) + ( – χ�(x))f̃ε(s), where χ� is the characteristic func-
tion of �. Note that by (f)-(f), g is a Charathéodory function such that gε(x′, x′′, s) =
gε(x′, |x′′|, s) satisfying

(g) gε(x, s) = o(|s|ν), as s → , uniformly in compact sets of RN .
(g) There exist c, c >  such that |gε(x, s)| ≤ c|s| + c|s|p, where  < p < N+

N– ;
(g) There exists θ >  such that:

(i)  < θGε(x, s) ≤ gε(x, s)s for x ∈ � and s �= ,
(ii)  < Gε(x, s) ≤ gε(x, s)s for x ∈R

N\� and s �= ,
where Gε(x, s) =

∫ s
 gε(x, t) dt.

(g) s 	→ gε (x,s)
s is a nondecreasing function for s >  and nonincreasing for s < , for all

x ∈ R
N .

In a first moment, the concern will be with the penalized problem

–ε�u + V (x)u = gε(x, u) in R
N . (.)

Taking vε(x) = uε(εx), we relate each solution uε of (.) with a solution vε of

–�v + V (εx)v = gε(εx, u) in R
N . (.)

In order to obtain solutions of (.) with a partial symmetry, let us consider the following
subspace of H(RN ):

H̃ :=
{

v ∈ H(
R

N)
;
∫ (|∇v| + V (εx)v) < +∞ and v

(
x′, x′′) = v

(
x′,

∣∣x′′∣∣)},

which is a Hilbert space when endowed with the inner product

〈u, v〉ε =
(∫ (∇u∇v + V (εx)uv

))
,

which gives rise to the following norm:

‖v‖ε =
(∫ (|∇v| + V (εx)v)) 


.

Since the approach is variational, let us consider the energy functional Iε : H̃ →R, whose
Euler-Lagrange equation is (.), given by

Iε(v) =



∫ (|∇v| + V (εx)v) –
∫

Gε(εx, v).

By standard arguments, one can prove that Iε ∈ C(H̃ ,R).

Remark . In this section and throughout the rest of the paper, we omit the dx in all
the integrals and, when the domain over which the integral is calculated is RN , we write∫

rather than
∫
RN .
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3 Existence results
Let us consider the Nehari manifold associated to (.), which is well defined by (g) and
given by

Nε =
{

v ∈ H̃\{}; I ′
ε(v)v = 

}
.

Since we are looking for nodal solutions, let us consider the so-called nodal Nehari set

N±
ε =

{
v ∈ H̃ ; v± �=  and I ′

ε(v)v± = 
}

.

Although N±
ε is not a manifold since u 	→ u+ in H(RN ) lacks differentiability, it is a set

which contains all nodal solutions of (.).
In the next result we try to infer information of Iε with respect to N±

ε in the same way
that one is used to do with Nε .

Lemma . Let v ∈ H̃ such that v± �= . Then there exist t, s >  such that tv+ + sv– ∈N±
ε .

Proof First of all, let us prove that, for all v ∈ H̃\{}, there exists t >  such that tv ∈ Nε .
Indeed, if � = (supp v ∩ �ε) ∪ {x ∈ R

N ; |v(x)| ≤ 
ε

τ
ν– }, where �ε = ε–� and |�| denotes

the N-dimensional Lebesgue measure of �, note that |�| >  (since v ∈ H(RN )) and then

Iε(tv) =
t


‖v‖

ε –
∫

�

F(tv) –
∫
Rn\�

G(εx, v)

≤ t


‖v‖

ε – tθ

∫
�

|v|θ –
tτ



∫
Rn\�

|v|

→ –∞,

as t → ∞. Then, if v ∈ H̃ is such that v± �= , there exist t, s >  such that

I ′
ε

(
tv+)

tv+ =  and I ′
ε

(
sv–)

sv– = .

Then it is clear that

I ′
ε

(
tv+ + sv–)(

tv+ + sv–)
= I ′

ε

(
tv+)

tv+ + I ′
ε

(
sv–)

sv– = . �

For a fixed v ∈ H̃ , let us consider ψv : [, +∞) × [, +∞) →R given by

ψv(t, s) = Iε
(
tv+ + sv–)

,

and note that by the smoothness of g , ψv ∈ C(R,R).

Lemma . Let v ∈N±
ε , then (t, s) = (, ) is a strict global maximum point of ψv.

Proof First of all let us note that if v ∈N±
ε , by (g),

lim
|(t,s)|→∞

ψv(t, s) = –∞.



Figueiredo and Pimenta Boundary Value Problems  (2015) 2015:168 Page 8 of 19

Then there exists R >  such that

ψv(t, s) <  if
∣∣(t, s)

∣∣ ≥ R. (.)

Since

∇ψv(t, s) =
(
I ′
ε

(
tv+)

v+, I ′
ε

(
sv–)

v–)
,

standard calculations about the behavior of t 	→ Iε(tv+) and s 	→ Iε(sv–) and the fact that
v ∈N±

ε imply that ψv has just one critical point given by (t, s) = (, ).
As we prove in Lemma . (which is totally independent of this one), ψv(, ) = Iε(v) ≥

ρ > . By (.), in order to get the result, it is enough to prove that (, ) is a local maximum
point of ψv. Note that

Dψv(t, s) =

(
I ′′
ε (tv+)(v+, v+) 

 I ′′
ε (sv–)(v–, v–)

)
,

and then

det
(
Dψv(, )

)
= I ′′

ε

(
v+)(

v+, v+) · I ′′
ε

(
v–)(

v–, v–)
=

(∫ (
gε

(
εx, v+)

v+ – g ′
ε

(
εx, v+)

v+))

·
(∫ (

gε

(
εx, v–)

v– – g ′
ε

(
εx, v–)

v–)).

By definition of gε and (g), the last integral is greater or equal to

(∫
(supp(v+)∩�ε )∪{|v+|≤ 

 ε
τ

ν– }

(
f
(
v+)

v+ – f ′(v+)
v+))

·
(∫

supp(v–)∩(�ε∪{|v–|< 
 ε

τ
ν– })

(
f
(
v–)

v– – f ′(x, v–)
v–))

> .

In the last inequality we have used that by (f),

f (s)s – f ′(s)s <  for all s �= 

and as v± ∈ H̃ , | supp(v+) ∩ (�ε ∪ {|v+| < a})| >  and | supp(v–) ∩ (�ε ∪ {|v–| < a})| > ,
where �ε := ε–�.

Since Dψv(, ) is a positive definite form, we just have to verify that ∂ψv
∂t =

I ′′
ε (tv+)v+ < . But this follows since  is a maximum point of t 	→ Iε(tv+). �

Still, as a consequence of the arguments employed in the construction of the Nehari
manifold as in [], we have the following result.
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Lemma . Let v ∈ H̃ such that v± �=  and

I ′
ε(v)v± ≤ ,

then there exist t, s ∈ (, ] such that

tv+ + sv– ∈N±
ε .

Proof In fact, let t ∈R such that I ′
ε(tv+)tv+ = . Suppose by contradiction that t > , then

∥∥v+∥∥ =
∫ gε(εx, tv+)v+

t
=

∫
v+>

gε(εx, tv+)v+

tv+

=
∫

supp(v+)∩(�ε∪{|tv+|< 
 ε

τ
ν– })

f (tv+)tv+

v+

+
∫

supp(v+)∩(�ε∪{|tv+|≥ 
 ε

τ
ν– })

gε(εx, tv+)v+

tv+

>
∫

supp(v+)∩(�ε∪{|tv+|< 
 ε

τ
ν– })

f
(
v+)

v+

+
∫

supp(v+)∩(�ε∪{|v+|≥ 
 ε

τ
ν– })

gε(εx, v+)v+

v+

=
∫

gε

(
εx, v+)

v+,

which implies that I ′
ε(v)v+ > , contradicting the hypothesis. The same argument applies

to v– and s. �

Let us define

dε := inf
N±

ε

Iε ,

and note that if there exists a solution of (.) in the energy level dε , then it is the solution
with least energy among all nodal ones.

Now we are going to state and prove the main result of this section.

Theorem . For sufficiently small ε > , there exists a nodal solution of (.), vε ∈ H̃ such
that Iε(vε) = dε .

Before proceeding with the proof of Theorem ., let us state some technical result about
N±

ε .

Lemma . It holds that
(i) There exists ρ >  such that ‖v‖ε ≥ ρ for all v ∈Nε .

(ii) There exists a constant C >  such that, for all v ∈Nε , Iε(v) ≥ C‖v‖
ε .
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Proof The proof of (i) follows by standard arguments. Let us prove just (ii), which in fact
also follows by very well known arguments. Note that if v ∈Nε , by (g),

Iε(v) = Iε(v) –

θ

I ′
ε(v)v =

(



–

θ

)
‖v‖

ε +

θ

∫
RN

(
g(x, v)v – θG(x, v)

)
dx

≥
(




–

θ

)
‖v‖

ε +

θ

∫
�c

ε

(
g(εx, vn)v – θG(εx, v)

)
dx

≥
(




–

θ

)
‖v‖

ε +
( – θ )

θ

∫
�c

ε

G(x, un) dx

≥
(




–

θ

)
‖v‖

ε +
( – θ )

θ

∫
�c

ε

ετ v dx

=
(

θ – 
θ

)∫
RN

(|∇v| +
(
V (εx) – ετ

)
v)dx

=
(

θ – 
θ

)∫
RN

(|∇v| +
(
V – ετ

)
v)dx

≥ C‖v‖
ε ,

where C >  for ε >  sufficiently small. �

Proof of Theorem . The proof will be carried out in two steps. In the first one we prove
that dε is attained by a function uε ∈ H̃ .

Let (wn) be a minimizing sequence for Iε in N±
ε , i.e., a sequence (wn) ⊂N±

ε such that

lim
n→∞ Iε(wn) = dε . (.)

Note that, by (.) and Lemma ., (wn) is a bounded sequence in H̃ . Then there exists
wε such that wn ⇀ wε in H̃ up to a subsequence. In the same way as in Lemma . in [],
it is possible to show that v 	→ v± is a continuous function of H̃ into itself, from which it
follows that w±

n ⇀ w±
ε in H̃ . As a consequence, up to a subsequence

w±
n → w±

ε a.e. in R
N , (.)

and

w±
n → w±

ε in Lr(�ε) for  ≤ r <
N

N – 
, (.)

where w±
ε �=  by the same arguments as in Lemma . in [].

Since w±
ε �= , let tε , sε >  be such that tεw+

ε + sεw–
ε ∈N±

ε . By weak lower-semicontinuity
of ‖ · ‖ and by Sobolev embeddings, it follows that

∥∥tεw+
ε + sεw–

ε

∥∥
ε
≤ lim inf

n→∞
∥∥tεw+

n + sεw–
n
∥∥

ε
(.)

and
∫

�ε

F
(
tεw+

ε + sεw–
ε

)
= lim inf

n→∞

∫
�ε

F
(
tεw+

n + sεw–
n
)
. (.)
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Now the real essence of the modification of penalization really comes up. Note that for
ε >  sufficiently small,

Iε,RN \�ε
(v) :=




∫
RN \�ε

(|∇v| + V (εx)v) –
∫
RN \�ε

F̃ε(v)

is a strictly convex functional in H̃(Rn\�ε) = {v ∈ H(RN\�ε),
∫
RN \�ε

(|∇v| + V (εx)v) <
∞}. In fact, for v, h ∈ H̃(RN\�ε), h �= , by (.) and Sobolev embeddings,

I ′′
ε,RN \�ε

(v)(h, h) = ‖h‖
ε,RN \�ε

–
∫
Rn\�ε

f̃ ′
ε (v)h

≥ ‖h‖
ε,RN \�ε

(
 – ετ

)
> 

for ε >  sufficiently small. Then by convex analysis it follows that Iε,RN \�ε
is weakly lower

semicontinuous. Then (.), (.) and this fact imply that

Iε
(
tεw+

ε + sεw–
ε

) ≤ lim inf
n→∞ Iε

(
tεw+

ε + sεw–
ε

)
≤ lim inf

n→∞
(
Iε

(
tεw+

ε

)
+ Iε

(
sεw–

ε

))
≤ lim inf

n→∞
(
Iε

(
w+

ε

)
+ Iε

(
w–

ε

))
= bε .

Hence Iε(tεw+
ε + sεw–

ε ) = bε .
The second step is proving that vε ∈ H̃ , which minimizes Iε on N±

ε is a critical point of
Iε in H̃ . This can be done by employing the same arguments as those of Section  in [].
For the sake of completeness, we include all the details of this proof.

Supposing by contradiction that I ′
ε(vε) �= , there exist δ,λ >  such that

∥∥I ′
ε(v)

∥∥∗ ≥ λ for all v ∈ Bδ(vε) ⊂ H̃ . (.)

Let us consider the function (t, s) 	→ tv+
ε + sv–

ε defined on D = ( 
 , 

 ), and note that by
Lemma .

δε := max
(t,s)∈∂D

Iε
(
tv+

ε + sv–
ε

)
< Iε(vε) = dε . (.)

Taking ρ = min{ dε–δε
 , λδ

 } and S = Bδ/(vε), Lemma . in [] yields a deformation η such
that

(i) η(, v) = v for all v /∈ I–
ε ([dε – ρ, dε + ρ]),

(ii) η(, Idε+ρ
ε ∩ S) ⊂ Idε–ρ

ε ,
(iii) Iε(η(, v)) ≤ Iε(v) for all u ∈ H̃ .

Claim.

max
(t,s)∈D

Iε
(
η
(
, tv+

ε + sv–
ε

))
< dε .

In fact, if (t, s) �= (, ), then by Lemma .,

Iε
(
η
(
, tv+

ε + sv–
ε

)) ≤ Iε
(
tv+

ε + sv–
ε

)
< dε .
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On the other hand, by (ii),

Iε
(
η(, vε)

)
< dε – ρ,

which proves the claim.
Now, let us prove that there exists (t, s) ∈ D such that η(, tv+

ε +sv–
ε ) ∈N±

ε , which together
with the claim contradicts the definition of dε .

Define h(t, s) = η(, tv+
ε + sv–

ε ) and �,� : R → R
 by

�(t, s) =
(
I ′
ε

(
tv+

ε

)
v+
ε , I ′

ε

(
sv–

ε

)
v–
ε

)
,

and

�(t, s) =
(


t

I ′
ε

(
h(t, s)+)

h(t, s)+,

s

I ′
ε

(
h(t, s)–)

h(t, s)–
)

.

By results of Brouwer degree theory, deg(�, D, (, )) = . On the other hand, note that
by (.), (t, s) 	→ tv+

ε + sv–
ε coincides with h on ∂D. Hence � = � on ∂D, and then

deg(�, D, (, )) = deg(�, D, (, )) = . Therefore there exists (t, s) ∈ D such that �(t, s) =
(, ) and, consequently,

η
(
, tv+

ε + sv–
ε

)
= h(t, s) ∈N±

ε .

Finally, this contradiction proves the theorem. �

4 Concentration results
Let us introduce a sequence εn →  as n → ∞ and, for each n ∈N, let us denote by vn the
solution vεn given by Theorem . and consider dn := dεn , ‖ · ‖n := ‖ · ‖εn and In := Iεn .

The following result provides an upper estimate for the sequence of values dn. Its proof
is inspired by the arguments of Alves and Soares in [].

Lemma .

lim sup
n→∞

εk
ndn ≤ ωk inf

�
M

and

εk
n‖vn‖

n ≤ C,

where ωk denotes the volume of the unitary k-dimensional ball on R
N .

Proof Let z = (x, y) ∈ � be such that M(z) = infx∈� M(x). Since � is an open set,
there exists R >  such that BR(z) ⊂ �. Let us choose points z, z ∈ ∂BR(z) such that,
if zi = (Q′

i, Q′′
i ), then |Q′′

 – Q′′
| = R. Note that BR(zi) ⊂ � for i = , . In the rest of this

proof, i ∈ {, }. Let us choose smooth cut-off functions ψi : RN–k →R such that ψi =  in
B
RN–k ((Q′

i, |Q′′
i |), R/) and ψi =  in R

N–k\B
RN–k ((Q′

i, |Q′′
i |), R/).
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Let wi ∈ H(RN–k) be a ground-state solution of

–�u + V (zi)u = f (u) in R
N–k

and wn,zi : RN →R be given by

wn,zi

(
x′, x′′) = ψi

(
εnx′, εn

∣∣x′′∣∣)wi

(
x′ –

Q′
i

εn
,
∣∣x′′∣∣ –

|Q′′
i |

εn

)
.

We associate for each wn,zi (x) its k-dimensional counterpart w̃n,zi (x′, r) = wn,zi (x′, x′′), where
|x′′| = r ∈R. The existence of tin >  such that tin wn,zi ∈Nεn is well known. By the construc-
tion we have made so far, it is straightforward to see that

wn := tn wn,z – tn wn,z ∈N±
εn .

Using the fact that In is even, we have

dn ≤ In(wn) = In(tn wn,z ) + In(tn wn,z ). (.)

By a change of variable, let us note that for i ∈ {, }, In(tnwn,zi ) is equal to

t
in


∫
RN

(|∇wn,zi | + V (εnx)w
n,zi

)
dx –

∫
RN

Gn(εnx, tin wn,zi ) dx

= ωk

[ t
in


∫
RN–k–

∫ +∞


rk(∣∣∇w̃n,zi

(
x′, r

)∣∣ + V
(
εnx′, εnr

)
w̃n,zi

(
x′, r

))dr dx′

–
∫
RN–k–

∫ +∞


rkGn

(
εnx, εnr, tin w̃n,zi

(
x′, r

))
dr dx′

]

= ωk

[ t
in


∫
RN–k–

∫ +∞
–|Q′′

i |
εn

(
σ +

|Q′′
i |

εn

)k∣∣∇(
ψi

(
εnx′ + Q′

i, εnσ+
∣∣Q′′

i
∣∣)wi

(
x′,σ

))∣∣

+ V
(
εnx′ + εnQ′

i, εnσ +
∣∣Q′′

i
∣∣)(ψi

(
εnx′ + εnQ′

i, εnσ +
∣∣Q′′

i
∣∣)wi

(
x′,σ

))dσ dx′

–
∫ +∞

–|Q′′
i |

εn

(
σ +

|Q′′
i |

εn

)k

Gn
(
εnx′ + εnQ′

i, εnσ +
∣∣Q′′

i
∣∣,

tinψi
(
εnx′ + εnQ′

i, εnσ +
∣∣Q′′

i
∣∣)wi

(
x′,σ

))
dσ dx′

]

= ε–k
n ωk|Qi|kIV (zi)(tin wi) + o() ≤ ε–k

n ωk|Qi|kE
(
V (zi)

)
= ε–k

n ωkM(zi) + o().

By the last inequality and (.), we have

εk
ndn ≤ ωk

(
M(z) + M(z)

)
+ o() (.)

and making R → , the continuity of V and M implies the result.
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Now, in order to see that

εk
n‖vn‖

n ≤ C,

just observe that vn ∈Nεn and use (ii) of Lemma .. �

The next lemma implies that solutions found in Theorem . do not vanish when
n → ∞.

Lemma . Let P
n, P

n be local maximum and minimum points of vn, respectively. Then
Pi

n ∈ �εn := ε–
n �,

vn
(
P

n
) ≥ a and vn

(
P

n
) ≤ –a,

where a >  is such that f (a)/a = V/.

Proof First of all let us prove that Pi
n ∈ �εn . Suppose by contradiction that P

n /∈ �εn . Since
P

n is a local maximum point, it follows that �vn(P
n) ≤ . By definition of gn, we have

Vvn
(
P

n
) ≤ –�vn

(
P

n
)

+ V
(
εnP

n
)
vn

(
P

n
)

= f̃εn

(
vn

(
P

n
)) ≤ ετ

n vn
(
P

n
)
,

which is impossible for ε >  sufficiently small. A similar argument applies to P
n.

Since P
n ∈ �εn and vn(P

n) > , from the definition of gn we have

 ≥ �vn
(
P

n
)

=
(

V
(
εnP

n
)

–
f (vn(P

n))
vn(P

n)

)
vn

(
P

n
)
.

Supposing by contradiction that vn(P
n) < a. By the choice of a >  and (f) it follows that

V ≤ V
(
εnP

n
) ≤ f (vn(P

n))
vn(P

n)
≤ f (a)

a
=

V


, (.)

which is a contradiction. Analogously we prove that vn(P
n) ≤ –a. �

By the last result, there exist P, P ∈ � such that along a subsequence

lim
n→∞ εnPi

n = Pi, i ∈ {, }. (.)

The same argument of [] with short modifications can be used to prove the following
result.

Lemma . Using the same notation as that in the last result, it follows that

lim
n→∞

∣∣P
n – P

n
∣∣ = +∞. (.)

Lemma . Let yn = (y′
n, y′′

n) ⊂ R
N be a sequence such that εnyn → (ȳ′, ȳ′′) ∈ � as n → ∞.

Denoting ṽn(x′, r) := vn(x′, x′′), where |x′′| = r, let us define w̃n : RN–k– × [–|yn|, +∞) → R
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by

w̃n
(
x′, r

)
:= ṽn

(
x′, r +

∣∣y′′
n
∣∣).

Then there exists w̃ ∈ H(RN–k) such that w̃n → w̃ in C
loc(RN–k) and w̃ satisfies the limit

problem

–�w̃ + V
(
ȳ′,

∣∣ȳ′′∣∣)w̃ = g̃n
(
x′, r, w̃

)
in R

N–k , (.)

where g̃n(x′, r, s) := χ (x′, r)f (s) + ( – χ (x′, r))f̃εn (s) and χ (x′, r) = limn→∞ χ�(εnx′ + εny′
n,

εnr + εn|y′′
n|).

Proof The proof is analogous to [][Lemma .], but we sketch it here for the sake of
completeness.

Note that w̃n satisfies the following problem:

– �w̃n –
k

(r + |y′′
n|)

w̃n

∂r
+ V

(
εnx′ + εny′

n, εnr + εn
∣∣y′′

n
∣∣)w̃n

= gn
(
εnx′ + εny′

n, εnr + εn
∣∣y′′

n
∣∣, w̃n

)
, (.)

in R
N–k– × [–|yn|, +∞).

By Lemma . it follows that

∫
RN–k–

∫ +∞

–|y′′
n|

(|∇w̃n| + V
(
εnx′ + εny′

n, εnr + εn
∣∣y′′

n
∣∣)w̃

n
)

dr dx′ ≤ C (.)

uniformly in n and then, for some w̃ ∈ H(RN–k),

w̃n ⇀ w̃ in H(
R

N–k). (.)

By choosing a sequence Rn → ∞ such that εnRn →  and considering a smooth cut-
off function in R

N–k , ηR such that  ≤ ηR ≤ , ηR(z) =  if |z| ≤ R
 and ηR(z) =  if |z| > R,

and ‖∇ηR‖∞ ≤ C
R , it can be proved using (.) that wn(z) := ηRn (z)w̃n(z) is bounded in

H(RN–k), uniformly in n.
Since wn satisfies (.) in B(, Rn), it follows by classical elliptic estimates that

‖wn‖W ,q(B(,R)) ≤ C (.)

for sufficiently large n ∈N, where R >  is fixed.
By (.) and (.) it follows that w̃n → w̃ in C

loc(RN–k) and that w̃ satisfies (.). �

Since the concentration set is expected to be a sphere in R
N , it is natural to introduce

the distance between two k-dimensional spheres in R
N , which gives rise to neighborhoods

in which we want to estimate the mass of solutions. Let us recall that for x = (x′, x′′), y =
(y′, y′′) ∈ R

N ,

dk(x, y) =
√(

x′ – y′) +
(∣∣x′′∣∣ –

∣∣y′′∣∣),
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denotes the distance between k-dimensional spheres centered at the origin, parallel to H⊥

and of radius |x′′| and |y′′|, respectively. According to this distance, the balls are given by

Bk(x, r) =
{

y ∈ R
N ; dk(x, y) < r

}
.

From now on, for � ⊂R
N , we denote

In,�(v) =



∫
�

(|∇v| + V (εnx)v)dx –
∫

�

Gn(εnx, v) dx.

The following is the main step in proving the concentration result.

Proposition . Suppose that all the assumptions of Theorem . hold. Then
(i) limn→∞ εk

ndn = ωk inf� M;
(ii) limn→∞ M(εnPi

n) = inf� M, i ∈ {, }.

Proof Let us get started with (i). By Lemma . it follows that

lim sup
n→∞

εk
ndn ≤ ωk inf

�
M. (.)

In order to prove that

lim inf
n→∞ εk

ndn ≥ ωk inf
�
M, (.)

we use some ideas of [][Lemma .].
By Lemmas . and . it follows that w̃i

n(x′, r) := ṽn(x′, r + Pi
n) → w̃i in C

loc(RN–k), where
w̃i �=  and satisfies (.) with (ȳ′, ȳ′′) = Pi.

For each R >  and up to a subsequence in n, Lemma . with calculations similar to
those which have resulted in (.) implies that

εk
nIn,Bk (Pi

n ,R)(vn) = ωk
∣∣Pi′′∣∣k

(



∫
BR()

(|∇w̃i| + V
(
Pi)w̃

i
)

dz

–
∫

BR()
G̃(r, w̃i) dz

)
+ on()

≥ ωk
∣∣Pi′′∣∣k

(



∫
BR()

(|∇w̃i| + V
(
Pi)w̃

i
)

dz –
∫

BR()
F(w̃i) dz

)
+ on().

Since w̃i ∈ H(RN–k), it follows that for a given η >  there exists R >  such that

lim inf
n→∞ εk

nIn,Bk (Pi
n ,R)(vn) ≥ ωkM

(
Pi) – η.

Taking into account Lemma ., it follows that for n large enough Bk(P
n, R) and Bk(P

n, R)
are disjoint, and then

εk
nIn(vn) = εk

nIn,Bk (P
n ,R)(vn) + εk

nIn,Bk (P
n ,R)(vn) + In,RN \Bn,R (vn),

where Bn,R := Bk(P
n, R) ∪ Bk(P

n, R).



Figueiredo and Pimenta Boundary Value Problems  (2015) 2015:168 Page 17 of 19

Now, a similar calculation to (.) in [] implies that

lim inf
n→∞ In,RN \Bn,R (vn) ≥ –η

for R >  sufficiently large, and then

lim inf
n→∞ εk

nIn(vn) ≥ ωk
(
M

(
P) + M

(
P)) – η

≥ ωk inf
�
M – η.

Since the last inequality holds for all η > , (.) is proved.
To prove (ii), let us suppose by contradiction that

M
(
Pi) > inf

�
M, i ∈ {, },

where Pi is given by (.). Just by arguing as in the first item, one can see that

lim inf
n→∞ εk

nIn(vn) ≥ ωk
(
M

(
P) + M

(
P)) > ωk inf

�
M,

which contradicts the statement of Lemma .. This contradiction proves the proposi-
tion. �

Remark . Note that by (ii) of the last result it follows that Pi ∈ �. In fact, if Pi ∈ ∂�, by
(M), M(Pi) > inf� M, which together with the continuity of M (see Lemma . in [])
leads to a contradiction.

5 Proof of Theorem 1.1
Let vn be as at the beginning of Section  and un(x) := vn(ε–

n x).

Proposition .

lim
n→∞‖vn‖L∞(�n\(Bk (P

n ,R)∪Bk (P
n ,R))) = .

Proof The proof follows by contradiction. Let us suppose that there exist η >  and se-
quences Rn → ∞ and (yn) ⊂ �n\(Bk(P

n, Rn) ∪ Bk(P
n, Rn)) such that

∣∣vn(yn)
∣∣ ≥ η.

Since εnyn ∈ �, it follows that εnyn → ȳ ∈ � up to a subsequence.
Then, following the arguments in Proposition ., it is possible to show that

εk
ndn = In(vn) ≥ ωk inf

�
M,

which contradicts Lemma .. �

By standard elliptic regularity theory, it is possible to show that vn ∈ C(RN ). Then, by
continuity, Proposition . implies that

‖vn‖L∞(∂(Bk (P
n ,Rn)∪Bk (P

n ,Rn))) = on(). (.)
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In order to prove the exponential decay with respect to εn of the functions uε , let us take
as a comparison function

W (x) = C
(
e–βdk (x,P

n) + e–βdk (x,P
n)),

defined in R
N\(Bk(P

n, R) ∪ Bk(P
n, R)), where C >  is to be chosen. For sufficiently small

β >  (independent of εn), it follows that

(
–� + V (εnx) –

gn(εx, vn)
vn

)
(W ± vn) ≥  in R

N\(Bk
(
P

n, R
) ∪ Bk

(
P

n, R
))

.

Then, by (.), for x ∈ ∂(Bk(P
n, R) ∪ Bk(P

n, R))

W (x) ± vn(x) = Ce–βR ± vn ≥ 

for a sufficiently large constant C >  which does not depend on n. Hence the maximum
principle applies and

|vn| ≤ W (x) on R
N\(Bk

(
P

n, R
) ∪ Bk

(
P

n, R
))

.

Then there exists a sufficiently large constant C >  such that

∣∣vn(x)
∣∣ ≤ C

(
e–βdk (x,P

n) + e–βdk (x,P
n))

for x ∈R
N\(Bk(P

n, R) ∪ Bk(P
n, R)), which implies that

∣∣un(x)
∣∣ ≤ C

(
e– β

εn dk (x,εnP
n) + e– β

εn dk (x,εnP
n)) (.)

for x ∈R
N\(Bk(εnP

n, εnR)∪Bk(εnP
n, εnR)). Since P, P ∈ �, it follows that for large enough

n, εnPi
n ∈ � for i = , . In particular, by (.) it holds that

‖un‖L∞(RN \�) ≤ Ce
–β
εn ,

which implies that un satisfies the original problem for n large enough. The proof of (.)
follows by (.) and item (ii) of Proposition .. Therefore the proof of Theorem . fol-
lows.
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