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Abstract
This paper is concerned with a general condition for the solvability of integral
geometry problems along the plane curves of given curvatures. As two important
results, the solvabilities of integral geometry problems along the family of circles with
fixed radius and along the family of circles of varying radius centered on a fixed circle
are given. By using some extension of the class of unknown functions, the proofs are
based on the solvabilities of equivalent inverse problems for transport-like equation.
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1 Introduction
The problems of integral geometry are to determine a function, given (weighted) integrals
of this function over a family of manifolds, and there has been significant progress in the
classical Radon problemwhenmanifolds are hyperplanes and the weight function is unity,
there are interesting results in the plane case when a family of curves is regular or in the
case of a family of straight lines with arbitrary regular attenuation [, Chapter ]. It is
assumed that the basis of the integral geometry problems is the Radon transform []. The
Radon transform R integrates a function f on R

n over hyperplanes. LetH(s,�) = {x ∈R
n :

x · � = s} be the hyperplane perpendicular to � ∈ Sn– (unit sphere) with signed distance
s ∈ R

 from the origin, and the Radon transform (Rf )(s,�) is defined as the integral of f
over H(s,�), i.e.,

(Rf )(s,�) =
∫
H(s,�)

f (x)dx

(see [, Chapter ]).
The problems of integral geometry have important applications in imaging and provide

the mathematical background of tomography, where the main goal is to recover the inte-
rior structure of a nontransparent object using external measurements. The object under
investigation is exposed to radiation at different angles, and the radiation parameters are
measured at the points of observation. The basic problem in computerized tomography is
the reconstruction of a function from its line or plane integrals, and there are many appli-
cations related with computerized tomography: medical imaging, geophysics, diagnostic
radiology, astronomy, seismology, radar and many other fields (see, e.g., []).
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From the applied point of view, the importance of integral geometry problem over a
family of straight lines in the plane is indicated in [], where the problem models X-rays,
and applicable to the problems of radiology and radiotherapy. Because of their many prac-
tical applications, a considerable attention has been devoted to other family of curves in
the plane as well as straight lines. Invertibility of the Radon transforms on some families of
curves in the plane is given with explicit inversion formulas via circular harmonic decom-
position in [] and for the explicit inversion formulas of the attenuated Radon transform,
see, e.g., [, ]. Note that the circle is the simplest non-trivial curve in the plane next to
the straight line, and the representation of a function by its circular Radon transform also
arises in applications. In [], invertibility of the Radon transforms over all translations of a
circle of fixed radius and circles of varying radius centered on a fixed circle is considered,
where the proofs require microlocal analysis of the Radon transforms and a microlocal
Holmgren theorem. In [], some existence and uniqueness results on recovering a func-
tion from its circular Radon transform with partial data are presented and the relations
to applications in medical imaging are described. There are several other ways related to
the selection of a family of curves, such as circles of varying radius centered on a straight
line or a fixed curve, circles passing through a fixed point, along paths that are not on
the zero sets of harmonic polynomials, circular arcs having a chord of fixed length rotat-
ing around its middle point etc., which are meaningful in applications on thermo-acoustic
and photoacoustic tomography, synthetic aperture radar, Compton scattering tomogra-
phy, ultrasound tomography etc. (see, e.g., [–] and the references therein).
In fact, since the seminal work of Radon [], the various integral geometry problemswith

numerous applications have been considered in several important aspects which are not
mentioned here, but for a comprehensive list, see, e.g., [–] and the references therein.
Furthermore, the problems of integral geometry and inverse problems for transport equa-
tions are interrelated and the latter are also of great importance in theory and applications;
see, e.g., [–] and for the derivation and applications of transport equations, see, e.g.,
[–].
In this paper, a general condition for the solvability of integral geometry problems along

plane curves of given curvatures is presented and its relation with some previous results is
indicated. Moreover, as two important results, the solvabilities of integral geometry prob-
lems along the family of circles with fixed radius and along the family of circles of varying
radius centered on a fixed circle are given. Since the curvature of a circle is defined to be
the reciprocal of the radius of the circle, in the former case the curvature is a constant,
while in the latter one the curvature depends on the point and the direction. To inves-
tigate the solvability of the integral geometry problem (IGP) given in Section ., which
is overdetermined since the underlying operator of the IGP is compact and its inverse
operator is unbounded (see Section .), it is reduced to an equivalent overdetermined
inverse problem for a transport-like equation, and then, with the use of a similar method
which was proposed in [] (see also [, Chapter ]), on using some extension of the class
of unknown functions, this inverse problem is replaced by a determined one. Thus, the
solvability of IGP is proved via the solvability of an inverse problem for a transport-like
equation. The above mentioned method on the solvability was also previously utilized in
[–] for IGP along some family of plane curves of given curvatures and straight lines,
in [] for IGP along geodesics and in [] for IGP along the family of curves whose cur-
vatures are given by the Christoffel symbols. Here, the presented general condition for the
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solvability covers those of [–], in the manner indicated by Remark  in Section ..
Moreover, these previous solvability conditions do not hold for IGP along the above given
two families of circles, and this is the main importance and motivation of this study.
In Section , IGP and its reduction to the equivalent inverse problem for a transport-

like equation, themethod to overcome the difficulty on investigating the solvability arising
from overdeterminacy of these problems are presented and some definitions and nota-
tions which will be used throughout the paper are introduced. Section  is devoted to the
statements of main results, and finally in Section , proofs of the results are given.
The investigation of approximate solutions of the concerned integral geometry prob-

lems is beyond the scope of this paper, but similar procedures as in [] can be carried out
by using the Galerkin method or the finite difference method.

2 Statement of the problem and overdeterminacy
2.1 Statement of the problem
Let D be a bounded domain in R

. It is assumed that in D, a family of regular curves is
given by curvature K(x,ϕ) which is the curvature of the curve passing from the point x =
(x,x) ∈D in the direction ν = (cosϕ, sinϕ), and there exists a unique sufficiently smooth
curve of this family which is passing from any point x ∈ D in the arbitrary direction ν ,
with the endpoints on the boundary of D. Suppose that the lengths of these curves in D
are bounded above by the same constant. Let us denote the family of these curves by {�}.
IGP is stated below.

IGP Determine a function λ(x) in the domain D from the integrals of λ along the curves of
a given family of curves {�}.

Suppose that λ(x) ∈ C(R) vanishes outsideD, and let us introduce an auxiliary function

u(x,ϕ) =
∫

γ (x,ϕ)
λdσ , ()

where γ (x,ϕ) is a part of the curve that belongs to {�}, with one end of it being the point x
and the other one on ∂D, and dσ is the arc length element along γ (x,ϕ).
Investigating the uniqueness of a solution of a problem of integral geometry by reducing

it to the equivalent inverse problem for a differential equation was first carried out in [].
Similar reduction is demonstrated for IGP formulated below.
Differentiating () in the direction ν at x, we obtain the following transport-like equation:

Lu≡ ux cosϕ + ux sinϕ +K(x,ϕ)uϕ = λ(x). ()

From (), u is π-periodic with respect to ϕ, and since the integrals of λ along the curves
of {�} are known, u is known on ∂D× (, π ), i.e.,

u|∂D×(,π ) = u(x,ϕ), u(x,ϕ) = u(x,ϕ + π ) ()

(see [] and [, p.]). So, we have the following inverse problem.

Problem  Determine a pair of functions (u,λ) from the transport-like equation () pro-
vided that the function K is known and u satisfies conditions ().

http://www.boundaryvalueproblems.com/content/2013/1/202


Ustaoglu Boundary Value Problems 2013, 2013:202 Page 4 of 16
http://www.boundaryvalueproblems.com/content/2013/1/202

2.2 Overdeterminacy
Generally, in the theory of integral geometry, reconstruction of a function of n variables
from a function of m > n variables is said to be an overdetermined problem of integral
geometry (see, e.g., [, Chapter ]), and in the theory of inverse problems, overdetermi-
nation usually means that the numberm of independent variables in the data exceeds the
number n of independent variables in the unknown target function (see, e.g., [, Sec-
tion .]). However, since the data u given on the two-dimensional surface ∂D× (, π )
and λ(x) is a function of two variables, these are not the cases for IGP or Problem . Here,
since the operator given in () (for γ (x,ϕ), where (x,ϕ) ∈ ∂D× (, π )) is compact, its in-
verse is unbounded, and therefore it is not possible to prove a general existence result.
So, IGP and Problem  are called overdetermined in this sense. Hence, because of the
overdeterminacy, the initial data for these problems should not be arbitrary and satisfy
some ‘solvability conditions’ (see [, p.] and [, p., Theorem .]) which are diffi-
cult to establish. It should be noted that the set of functions u for which IGP is solv-
able is not everywhere dense in any of the spaces L(∂D× (, π )), Cm(∂D× (, π )) and
Hm(∂D × (, π )). Moreover, the data in problems of integral geometry are of quasiana-
lytic character, i.e., their values specified in a domain of the Lebesgue measure can be as
small as desired, determine their values in an essentially larger domain (see [, Chapter ,
Section ] and [, Chapter , Section ]). In particular, this implies that it is impossible
to avoid overdeterminacy of the problem by specifying the data on a part of the boundary
rather than on the whole boundary. Even if it were possible to find the solvability condi-
tions for the mentioned overdetermined problems, since the real data usually have some
errors in practice, and thus fall out of the data class for which the existence of a solution
is established, it appears that these conditions would not always be satisfactory in appli-
cations. Therefore, to prove the existence results, such special conditions on the data u
have to be posed.
Let us propose the procedure for establishing the solvability of IGP. Assume that the

unknown function λ in IGP depends not only upon the space variables x, but also upon the
direction ϕ in some special manner, i.e., consider λ(x,ϕ), where this dependence upon ϕ is
impossible to be arbitrary, for in the opposite case the problemwould be underdetermined
and the examples on the nonuniqueness of a solution can be easily constructed. Herein
the special dependence of λ(x,ϕ) upon the direction means that λ(x,ϕ) satisfies a certain
differential equation (L̂λ = , where the expression of L̂ is given in Section .) with the
following properties:
() The IGP or Problem  with the function λ(x,ϕ) becomes a determined one.
() The sufficiently smooth functions λ depending only on x satisfy this equation.
Suppose that a differential equation for λ(x,ϕ) satisfying properties () and () has been

found and that a priori the function ue, which represents the exact data of IGP related to
a function λ depending only on x, is known. Then, utilizing ue, a solution λ̃ to IGP can be
constructed. By uniqueness of a solution, λ̃ and λ(x) coincide. At the same time, knowing
the approximate data ua with ‖ue – ua‖H(∂D×(,π )) ≤ ε, an approximate solution λa(x,ϕ)
can be constructed such that ‖λ – λa‖L(�) ≤ εC. Recall that if λ depends only on x and
ua does not satisfy the ‘solvability conditions’, the solution λa depending only x does not
exist. Here the data are specified on ∂D × (, π ) and C >  is independent of ue and ua.
In other words, a regularizing procedure is constructed for the IGP.

http://www.boundaryvalueproblems.com/content/2013/1/202
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In general, the equation with the properties () and () for the same problem is not
uniquely defined. Hence, the class of unknown functions λ extends so that IGP for this
class becomes a determined problem and all sufficiently smooth functions in x belong
to it. On using some extension of the class of functions λ, the overdetermined Problem 
is replaced by a determined one (Problem  in Section .).
The above method of solvability of the IGP or Problem  leads to the Dirichlet-type

problem with conditions () for the third-order equation of the form Au ≡ L̂Lu = F . In
investigating and proving the solvability of IGP over any regular family {�} of curves with
curvature K , since the quadratic form J(∇u) in () is required to be positive definite, the
construction of L̂ is important and to be able to this, in Theorem  condition () is given.

2.3 Definitions and notations
In this section, some notations are given based on []. Let D ⊂ R

 with the boundary
∂D ∈ C,� = {(x,ϕ) : x ∈ D,ϕ ∈ (, π )} and �̄ be the closure of�. By (u, v)L(�) we denote
a scalar product of functions u and v in L(�) and byC∞

 (�) the set of all functions defined
in � which have continuous partial derivatives of order up to all k < ∞, whose supports
are compact subsets of �. For a differential expression A, by A∗ we denote the conjugate
of A in the sense of Lagrange. For x = (x,x),

∂xiu =
∂u
∂xi

= uxi (i = , ), ∂ϕu =
∂u
∂ϕ

= uϕ ,

|∇xu| = ux + ux and |∇x,ϕu| = |∇xu| + uϕ .

Let C
π (�) denote the set of real-valued functions u ∈ C(�) that are π-periodic with

respect to ϕ in the domain �, i.e., ∂α
x ∂

α
x ∂α

ϕ u(x, ) = ∂
α
x ∂

α
x ∂α

ϕ u(x, π ), where αi are non-
negative integers such that  ≤ α + α + α ≤ .
The proof of Theorem  involves energy-like estimates and the Galerkin method (see,

e.g., [, Chapter , Section .], [, Chapter ]), and therefore some class of functions
are introduced below. In C

π (�), let us introduce the scalar product

(u, v), =
∫

�

(
uv +

∑
i=

(uxivxi + uxiϕvxiϕ) + uϕvϕ + uϕϕvϕϕ

)
d�,

where d� = dx dx dϕ and set ‖u‖, = [(u,u),]/. Let Hπ
,(�) and Hπ

m(�) be the com-
pletions of C

π (�) with respect to the norms ‖ · ‖, and ‖ · ‖Hm(�) (m = , , ), respectively
(for the space Hm, see, e.g., [, ]).
Let C

π = {w : w|∂D×(,π ) = ,w ∈ C
π (�)}, and H̊π

,(�) and H̊π
m(�) be the completions

of C
π with respect to the norms ‖ · ‖, and ‖ · ‖Hm(�) (m = , , ). Let us take a set

{w,w, . . .} ⊂ C
π which is complete and orthonormal in L(�), then we may assume that

the linear span of this set is everywhere dense in H̊π
,(�). Since H̊π

,(�)∩ H̊(�) is separa-
ble, there exists a countable set {ϕi}∞i= ⊂ C

π which is everywhere dense in this space and
this set up can be extended to a set which is everywhere dense in L(�). Orthonormaliz-
ing the latter in L(�), we obtain {w,w, . . .}. We denote by Pn the orthogonal projector
of L(�) ontoMn which is the linear span of {w,w, . . . ,wn}.

http://www.boundaryvalueproblems.com/content/2013/1/202
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Let

L̂u =
∂

∂l

(
∂

∂ϕ
u
)
,

∂

∂l
= (sinϕ)

∂

∂x
– (cosϕ)

∂

∂x
+ g

∂

∂ϕ
+ gϕ ,

where g(x,ϕ) ∈ C
π (�) and it can be easily verified that

(
∂

∂l

)∗
= –(sinϕ)

∂

∂x
+ (cosϕ)

∂

∂x
– g

∂

∂ϕ
.

The existence of the function g in the expression of
∂

∂l
leads to a generalization on con-

ditions for the solvability of integral geometry problems. In Theorem , it is shown that if
there exists a function g satisfying condition () which depends on the curvature K and
the domain D, the solvability holds.
Let Au ≡ L̂Lu and �′′(A) be the set of all functions u ∈ L(�) such that for any u ∈

�′′(A) there exists y ∈ L(�) such that Au = y in the generalized functions sense, i.e.,
(u,A∗η)L(�) = (y,η)L(�) holds for every η ∈ C∞

 (�). Take a subset �(A) ⊂ �′′(A) such that
for any u ∈ �(A) there exists a sequence {uk} ⊂ C

π such that uk → u weakly in L(�) and
(Auk ,uk)L(�) → (Au,u)L(�) as k → ∞. If we denote the closure of C

π with respect to the
norm ‖u‖�(A) = ‖u‖L(�) + ‖Au‖L(�) by �′(A), then we have �′(A) ⊂ �(A) ⊂ �′′(A) and it
can be shown that the inclusions H̊π

 (�)⊂ �′′(A)∩ H̊π
,(�) ⊂ �(A) ⊂ L(�) hold.

3 Statements of results
3.1 Solvability of IGP along plane curves
Since Problem  is overdetermined, as indicated in Section ., we consider the following
determined problem.

Problem  Determine a pair of functions (u,λ) defined in � that satisfies

Lu = λ(x,ϕ) ()

provided that L̂λ = , u is π-periodic with respect to ϕ, u|∂D×(,π ) = u and K are known.

In (), it is assumed that the unknown function λ depends also on ϕ and the condition
L̂λ =  holds in the generalized functions sense.
If u ∈ C(∂D × (, π )) and ∂D ∈ C, then there exists a function G ∈ C

π (�̄) (see [,
p., Theorem ]) such that G|∂D×(,π ) = u, and we can consider the new unknown
function ū = u–G. Hence from () we obtain the equation Lū = λ+F , where F = –LG and
ū|∂D×(,π ) = . Let us denote ū again by u for simplicity, then Problem  can be reduced to
Problem  given below (see [, p.]) and the solvability of the former follows from that
of the latter and does not depend on the choice of G.

Problem  Determine a pair of functions (u,λ) defined in � that satisfies

Lu = λ(x,ϕ) + F , ()

http://www.boundaryvalueproblems.com/content/2013/1/202
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provided that L̂λ = , u is π-periodic with respect to ϕ, u|∂D×(,π ) = , K and F are
known.

The existence, uniqueness and the stability of the solution of Problem  are given by the
following theorem.

Theorem  If F ∈Hπ
 (�) and a function g(x,ϕ) ∈ C

π (�) exists such that

gx cosϕ + gx sinϕ + gϕK –Kx sinϕ +Kx cosϕ –Kϕg > K + g, ()

for all (x,ϕ) ∈ D̄× (, π ), then Problem  has a unique solution (u,λ) such that u ∈ �(A)∩
H̊π

 (�), λ ∈ L(�) and

‖u‖H̊π
 (�) + ‖λ‖L(�) ≤ C

(‖F‖L(�) + ‖Fϕ‖L(�)
)

()

holds, where C >  depends on K and the Lebesgue measure of D.

Remark  In fact, without being aware of (), the function g , with the appropriate choices
of it, was used previously in [, , ]. The convenience of () with those of previous
solvability results is indicated below.

(i) In [], when the curvature K is sufficiently smooth and π -periodic, the condition
for the solvability is –(sinϕ) ∂K

∂x
+ (cosϕ) ∂K

∂x
> Kfor all (x,ϕ) ∈ D̄× (, π ), where

this condition holds for g =  in ().
(ii) In [], when K(x,ϕ) = f(x) cosϕ – f(x) sinϕ, where f(x) and f(x) are sufficiently

smooth functions, the condition for the solvability is ∂f
∂x

+ ∂f
∂x

>  for all x ∈ D̄,
which holds for g(x,ϕ) = f(x) cosϕ + f(x) sinϕ in ().

(iii) In [], when K(x,ϕ) = f(x,ϕ) cosϕ + f(x,ϕ) sinϕ, where f(x,ϕ) and f(x,ϕ) are
sufficiently smooth π -periodic functions, the condition for the solvability is
∂f
∂x

– ∂f
∂x

+ f
∂f
∂ϕ

– f
∂f
∂ϕ

>  for all (x,ϕ) ∈ D̄× (, π ), and this condition holds for

g(x,ϕ) = f(x,ϕ) sinϕ – f(x,ϕ) cosϕ in ().

Note that in none of the above cases, the solvability conditions hold for the IGP along
the family of circles of varying radius centered on a fixed circle and the family of curves
of constant curvatures, i.e., the family of circles with fixed radius where the curvature is
a nonzero constant or the family of straight lines where the curvature is zero. The former
cases are investigated in Section . below and the latter case is considered in [], where
the term Kuϕ in the expression of Lu will not be present since K =  and the proof of
solvability is given for g = . In fact, the strict inequality in () can be written as a non-
strict inequality, with the equality only for K = g = .

3.2 Solvability of IGP along the family of circles
Since Theorem  was given for IGP along a regular family of plane curves for the general
case, in this section the given results on the solvabilities of IGP along the family of circles
depend on finding an appropriate function g satisfying () for the given curvature K and
the domain D under the assumptions of Theorem .

http://www.boundaryvalueproblems.com/content/2013/1/202
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.. Solvability of IGP along the family of circles with fixed radius
LetD ⊂R

 andM = sup(x,x)∈D(x

 +x). Let us take the family of curves in IGP as the fam-

ily of circular arcs (the segments of circles inside D with the endpoints on ∂D) with fixed
radius r, passing from the point (x,x) ∈ D in the direction ν = (cosϕ, sinϕ) and denote
this family of circles by {�r}. Since the curvature of a circle is defined to be the reciprocal
of the radius of this circle, the curvature of the elements of the family {�r} becomes K = 

r .
The solvability of IGP along the curves of {�r} follows from the following lemma.

Lemma  Let us define g on D× (, π ) as

g(x,x,ϕ) =


M
(x cosϕ + x sinϕ). ()

If r > 
√
M, then () holds for K = 

r .

Remark  The above choice of g is not unique, and since the curvature K = 
r is constant,

and hence Kx = Kx = Kϕ = , condition () reduces to

gx cosϕ + gx sinϕ + gϕ


r
>


r

+ g, ()

for all (x,ϕ) ∈ D̄× (, π ), which depends on r and the domain D.

.. Solvability of IGP along the family of circles of varying radius centered on a fixed
circle

LetD ⊂R
 andM = sup(x,x)∈D(x


 +x). LetDR be a fixed disk of radius R >  and, without

any loss of generality, centered at the origin such thatR >
√
M, and take the family of curves

in IGP as the family of circular arcs (the segments of circles inside D with the endpoints
on ∂D) of varying radius r(x,x,ϕ) centered on ∂DR, passing from the point (x,x) ∈ D
in the direction ν = (cosϕ, sinϕ) and denote this family of circular arcs by {�R}. It can be
shown that the radius of the circles of the family {�R} is defined by the function

r(x,x,ϕ) = x sinϕ – x cosϕ +
(
R – (x cosϕ + x sinϕ)

)/, ()

and hence the curvature of the elements of the family {�R} is defined by

K(x,x,ϕ) =
(
x sinϕ – x cosϕ +

(
R – (x cosϕ + x sinϕ)

)/)– ()

on D × (, π ). Note that since R >
√
M, we have r(x,x,ϕ) >  and K(x,x,ϕ) >  on

D× (, π ).
The solvability of IGP along the curves of {�R} follows from Lemma  given below.

Lemma  If the function g is defined on D× (, π ) as

g(x,x,ϕ) =


M
(x cosϕ + x sinϕ), ()

then () holds for K defined in ().

http://www.boundaryvalueproblems.com/content/2013/1/202
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4 Proof of results

Proof of Theorem  First, we will prove the uniqueness of the solution (u,λ) of Problem 
under the assumptions of the theorem. To this end, it is sufficient to show that the corre-
sponding homogeneous problem has only a trivial solution. Then, by taking into account
that L̂λ =  and F = , from () we obtain L̂Lu = Au = .
Since u ∈ �(A), there exists a sequence {uk} ⊂ C

π such that uk → u weakly in L(�)
and (Auk ,uk)L(�) → (Au,u)L(�) =  as k → ∞. Now we want to decompose the product
(Auk)uk into the sum of a positive definite quadratic form and a divergence form. For this
purpose, we have the following identities:

(Auk)uk = (L̂Luk)uk

=
(

∂

∂l

(
∂

∂ϕ
Luk

))
uk

=
∂

∂ϕ
Luk

(
∂

∂l

)∗
uk +

∂

∂x

(
uk

(
∂

∂ϕ
Luk

)
sinϕ

)

–
∂

∂x

(
uk

(
∂

∂ϕ
Luk

)
cosϕ

)
+

∂

∂ϕ

(
uk

(
∂

∂ϕ
Luk

)
g
)

()

and


∂

∂ϕ
Luk

(
∂

∂l

)∗
uk = (ukxϕ cosϕ – ukx sinϕ + ukxϕ sinϕ + ukx cosϕ

+Kϕukϕ +Kukϕϕ)(–ukx sinϕ + ukx cosϕ – gukϕ)

= ukx + ukx + Kukϕ(ukx cosϕ + ukx sinϕ)

+ gukϕ(ukx sinϕ – ukx cosϕ) + (gx cosϕ + gx sinϕ

+ gϕK –Kx sinϕ +Kx cosϕ – gKϕ)ukϕ

+
∂

∂x

(
ukxukϕ +Kukϕ sinϕ – gukϕ cosϕ

)

–
∂

∂x

(
ukxukϕ +Kukϕ cosϕ + gukϕ sinϕ

)

+
∂

∂ϕ

(
–ukx sinϕ cosϕ + ukx sinϕ cosϕ + ukxukx cosϕ

– Kukxukϕ sinϕ + Kukxukϕ cosϕ – gKukϕ
)
.

If () holds, then the quadratic form J(∇uk) in ukx , ukx , ukϕ is positive definite, where

J(∇uk) = ukx + ukx + Kukϕ(ukx cosϕ + ukx sinϕ)

+ gukϕ(ukx sinϕ – ukx cosϕ) + (gx cosϕ + gx sinϕ

+ gϕK –Kx sinϕ +Kx cosϕ – gKϕ)ukϕ

= ukx + ukx + ukϕukx (K cosϕ + g sinϕ)

+ ukϕukx (K sinϕ – g cosϕ) + (gx cosϕ + gx sinϕ

+ gϕK –Kx sinϕ +Kx cosϕ – gKϕ)ukϕ . ()
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Indeed, we can estimate the terms ukϕukx (K cosϕ+g sinϕ) and ukϕukx (K sinϕ–g cosϕ)
as follows:

ukϕukx (K cosϕ + g sinϕ) ≥ –εukx – ε–(K cosϕ + g sinϕ)ukϕ ,

ukϕukx (K sinϕ – g cosϕ)≥ –εukx – ε–(K sinϕ – g cosϕ)ukϕ ,

where  < ε < , and we obtain

J(∇uk) ≥ ukx + ukx – εukx – εukx – ε–(K cosϕ + g sinϕ)ukϕ

– ε–(K sinϕ – g cosϕ)ukϕ + (gx cosϕ + gx sinϕ

+ gϕK –Kx sinϕ +Kx cosϕ – gKϕ)ukϕ

= ( – ε)
(
ukx + ukx

)
+

(
gx cosϕ + gx sinϕ + gϕK

–Kx sinϕ +Kx cosϕ – gKϕ – ε–
(
K + g

))
ukϕ .

Moreover, whenever () holds, for sufficiently close value of ε to , there exists an α ∈ R

such that gx cosϕ + gx sinϕ + gϕK –Kx sinϕ +Kx cosϕ –Kϕg – ε–(K + g) ≥ α >  in �,
and we obtain

J(∇uk)≥ ( – ε)|∇xuk| + αukϕ ≥ β|∇x,ϕuk|,

where β =min{( – ε),α}.
Since the domain D is bounded, uk =  on ∂D × (, π ) and J(∇uk) is positive definite,

we have

‖uk‖L(�) ≤ C

∫
�

|∇xuk| d� ≤ C
∫

�

J(∇uk)d�,

where C = Cβ
– and C >  depends on the Lebesgue measure of D and does not depend

on k.
Thus, since uk ∈ C

π, K and g are π-periodic with respect to ϕ, after integrating ()
over �, the divergent terms disappear and we obtain

(Auk ,uk)L(�) =
∫

�

J(∇uk)d�. ()

Since u ∈ �(A), from () we have

‖u‖L(�) ≤ lim
k→∞

‖uk‖L(�)

≤ C lim
k→∞

∫
�

J(∇uk)d� = C lim
k→∞

(Auk ,uk)L(�) = , ()

which implies that u = , and since F = , from () we get λ = . So, the uniqueness part
of the proof is completed.
Now we will prove that there exists a solution (u,λ) of Problem  in (�(A) ∩ H̊π

 (�)) ×
L(�) by means of the following auxiliary problem.

http://www.boundaryvalueproblems.com/content/2013/1/202
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Determine u defined in � that satisfies

Au =F , ()

u|∂D×(,π ) = , u(x, ) = u(x, π ), ()

where F = L̂F .
The solution u of problem ()-() will be approximated by

uN =
N∑
i=

αNiwi(x,ϕ); αN = (αN ,αN , . . . ,αNN ) ∈R
N ,

construction of which is based on finding the vector αN from the system of linear algebraic
equations

(AuN ,wj)L(�) = (F ,wj)L(�), j = , , . . . ,N , ()

where the system of functions {wj} is taken as indicated in Section . and uN =  on
∂D× (, π ).
We must show that the solution of system () exists and is unique for any F ∈ Hπ

 (�).
To demonstrate this, let us assume that the homogeneous version of (), i.e., the system

(AuN ,wj)L(�) = , j = , , . . . ,N ,

has a nonzero solution ᾱN = (ᾱN , ᾱN , . . . , ᾱNN ). Substituting ᾱN for αN , multiplying the jth
equation of the above homogenous system by ᾱNj and summing with respect to j from 
to N , we obtain

(AūN , ūN )L(�) = , ()

where ūN =
∑N

i= ᾱNiwi. So, from () and () we obtain

(AūN , ūN )L(�) =
∫

�

J(∇ūN )d� = ,

and since the quadratic form J(∇ūN ) defined in () is positive definite and ūN =  on
∂D × (, π ), we have ūN =  in �. But {wi} is linearly independent and this implies that
ᾱNi = , i = , , . . . ,N , which contradicts with the assumption ᾱN �= . So, it is shown that
system () has a unique solution αN for any F ∈ Hπ

 (�).
Now we estimate the solution uN of system () in terms of F . For this purpose, we

multiply both sides of the jth equation of () by αNj and sum the obtained equations
with respect to j from  to N to obtain

(AuN ,uN )L(�) = (F ,uN )L(�) = (L̂F ,uN )L(�). ()

Since uN ∈ C
π, applying integration by parts, the right-hand side of () can be estimated

as


∣∣(L̂F ,uN )L(�)

∣∣ ≤ γ

∫
�

F
ϕ d� + γ –

∫
�

((
∂

∂l

)∗
uN

)

d�,

http://www.boundaryvalueproblems.com/content/2013/1/202
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for γ > , and from () and () we have

∫
�

J(∇uN )d� ≤ γ

∫
�

F
ϕ d� + γ –

∫
�

((
∂

∂l

)∗
uN

)

d�. ()

It can be verified that for sufficiently large γ > , from () we obtain

‖uN‖H̊π
 (�) ≤ C‖Fϕ‖L(�), ()

where the constant C is independent of N . This implies that {uN }∞N= is bounded in L(�)
and H̊π

 (�), and since L(�) and H̊π
 (�) are Hilbert spaces, it is weakly compact in L(�)

and H̊π
 (�). Therefore, there exists a subsequence, which we again denote by {uN }, such

that uN → u weakly in L(�) and H̊π
 (�) as N → ∞ and

‖u‖H̊π
 (�) ≤ C‖Fϕ‖L(�)

holds. Since uN |∂D×(,π ) =  and uN → u weakly in H̊π
 (�), we have u|∂D×(,π ) = .

From () we have also that {uNx}∞N=, {uNx}∞N= and {uNϕ}∞N= are bounded and there
exists a subsequence of {uN }, which is again denoted by {uN }, such that uNx , uNx and
uNϕ converge weakly in L(�) to ux , ux and uϕ , respectively. Taking into account that
uN ,wj ∈ C

π, F ∈Hπ
 (�) and applying integration by parts in (), for N ≥ j, we obtain

(
LuN – F , (L̂)∗wj

)
L(�) = .

Since the linear span of {wj} is dense on the space H̊π
,(�), passing to the limit as N → ∞,

we get

(
Lu – F , (L̂)∗η

)
L(�) =  ()

for every η ∈ H̊π
,(�). If we set λ = Lu–F , sinceC∞

 (�) ⊂ H̊π
,(�), from ()we have L̂λ = 

in the generalized functions sense. Moreover,

‖λ‖L(�) ≤ C‖u‖H̊π
 (�) + ‖F‖L(�)

holds and, by using ‖u‖H̊π
 (�) ≤ C‖Fϕ‖L(�), it can be seen that () holds. In the above

expressions, by C we denote generic constants which depend only on the given functions
and Lebesgue measure of the domain D.
Now it remains to show that u ∈ �(A). Since u ∈ L(�) and F ∈ Hπ

 (�), for F = L̂F ∈
L(�), from () we have

(
u,A∗η

)
L(�) =

(
u,L∗(L̂)∗η

)
L(�) =

(
Lu, (L̂)∗η

)
L(�) =

(
F , (L̂)∗η

)
L(�) = (F ,η)L(�)

for any η ∈ C∞
 (�), which implies that F = Au in the generalized functions sense, i.e.,

u ∈ �′′(A).
Moreover, from () we have PNAuN = PNF , where PN is the orthogonal projector.

Since the system {w,w, . . .} is orthogonal and complete in L(�), PNF → F strongly,

http://www.boundaryvalueproblems.com/content/2013/1/202
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i.e., PNAuN →F = Au strongly in L(�) as N → ∞. Then, since uN → u weakly in L(�)
asN → ∞, we have (PNAuN ,uN )L(�) → (Au,u)L(�) asN → ∞. On the other hand, since
the projection operator PN is self-adjoint in L(�),

(PNAuN ,uN )L(�) =
(
AuN ,P∗

NuN
)
L(�) = (AuN ,PNuN )L(�) = (AuN ,uN )L(�),

thus (AuN ,uN )L(�) → (Au,u)L(�) as N → ∞, and so u ∈ �(A). The proof of Theorem  is
complete. �

Proof of Lemma  Since K = 
r is constant, and hence

Kx = Kx = Kϕ = ,

to prove that condition () holds, we only need to show that g satisfies

gx cosϕ + gx sinϕ + gϕ


r
>


r

+ g.

By taking into account thatM = sup(x,x)∈D(x

 + x) and r > 

√
M, for the function

g(x,x,ϕ) =


M
(x cosϕ + x sinϕ)

given in () defined on D× (, π ), we obtain

gx cosϕ + gx sinϕ + gϕ


r
–


r

– g

=


M

(
 +


r
(–x sinϕ + x cosϕ)

)

–

r

–


M (x cosϕ + x sinϕ)

≥ 
M

(
 –


r
√
M

)
–


r

–


M

>


M

(
 –




)
–


M

= ,

and the proof is complete. �

Proof of Lemma  For

K(x,x,ϕ) =
(
x sinϕ – x cosϕ +

(
R – (x cosϕ + x sinϕ)

)/)–
=
(R – (x cosϕ + x sinϕ))/ – x sinϕ + x cosϕ

R – x – x
,

http://www.boundaryvalueproblems.com/content/2013/1/202
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we have

Kx =


(R – x – x)

((
–(x cosϕ + x sinϕ) cosϕ

(R – (x cosϕ + x sinϕ))/
– sinϕ

)(
R – x – x

)

+ x
((
R – (x cosϕ + x sinϕ)

)/ – x sinϕ + x cosϕ
))

,

Kx =


(R – x – x)

((
–(x cosϕ + x sinϕ) sinϕ

(R – (x cosϕ + x sinϕ))/
+ cosϕ

)(
R – x – x

)

+ x
((
R – (x cosϕ + x sinϕ)

)/ – x sinϕ + x cosϕ
))

,

Kϕ =
–(x cosϕ + x sinϕ)

(R – x – x)

(
(–x sinϕ + x cosϕ)

(R – (x cosϕ + x sinϕ))/
+ 

)

and

–Kx sinϕ +Kx cosϕ

=


(R – x – x)
(
R – (x cosϕ + x sinϕ) + (x sinϕ – x cosϕ)

– (x sinϕ – x cosϕ)
(
R – (x cosϕ + x sinϕ)

)/)
= K.

SinceM = sup(x,x)∈D(x

 + x) and R >

√
M, for

g(x,x,ϕ) =


M
(x cosϕ + x sinϕ)

given in () defined on D× (, π ), we have

–Kϕg =
(x cosϕ + x sinϕ)

(R – x – x)

(
(–x sinϕ + x cosϕ)

(R – (x cosϕ + x sinϕ))/
+ 

)

× 
M

(x cosϕ + x sinϕ)

=
(x cosϕ + x sinϕ)(–x sinϕ + x cosϕ + (R – (x cosϕ + x sinϕ))/)

M(R – x – x)(R – (x cosϕ + x sinϕ))/

≥ .

Hence, to prove that condition () holds, we only need to show that

gx cosϕ + gx sinϕ + gϕK > g

holds. If we take into account again that M = sup(x,x)∈D(x

 + x) and R >

√
M, then we

obtain

gx cosϕ + gx sinϕ + gϕK – g

=


M

(
 +

–x sinϕ + x cosϕ
x sinϕ – x cosϕ + (R – (x cosϕ + x sinϕ))/

)

http://www.boundaryvalueproblems.com/content/2013/1/202
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–


M (x cosϕ + x sinϕ)

≥ 
M

(R – (x cosϕ + x sinϕ))/

x sinϕ – x cosϕ + (R – (x cosϕ + x sinϕ))/
–


M

> .

The proof is complete. �
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