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Abstract

Recent findings have elucidated that the regulation of messenger RNA (mRNA) levels is due to the synergistic and
antagonist actions of transcription factors (TFs) and microRNAs (miRNAs). Mutual interactions among these molecules
are easily modeled and analyzed using graphs whose nodes are molecules, and directed edges represent the
associations among them. In particular, small subgraphs having three nodes also referred to as feed-forward loops
(FFLs) or regulatory loops play a crucial role in many different diseases, such as cancer. Available technological
platforms enable the investigation of only a single aspect of these mechanisms, e.g., the quantification of levels of
mRNA or miRNA. Consequently, there exist different data sources for investigating some aspects of this problem, e.g.,
miRNA-mRNA or TF-mRNA associations. The comprehensive analysis is made possible only by the integration and the
analysis of these data sources. Currently, the interest of researchers in this area is growing, the number of projects is
increasing, and the number of challenges and issues for computer scientists is considerable. The need for an
introductive survey from a computer science point of view consequently arises. This survey starts by discussing
general concepts related to production of data. Then, main existing approaches of analysis are presented and
discussed. Future improvements and challenges are also discussed.
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Review
Introduction
The development of novel technological platforms in
molecular biology has produced a large amount of data
about different aspects of the omic world [1]. Conse-
quently, the need for the development of novel approaches
and methods to manage, store, and analyze this data arose
[2–4]. In particular, this has caused the rise of a novel dis-
cipline, often referred to as computational systems biology
or network systems biology, in which computer science,
bioinformatics, and mathematical modeling play a syner-
gistic role in the interpretation of large datasets belonging
to different data sources [5, 6]. Network systems biology
aims to discover basic principles ofmutual interactions (or
interplay) among different biological molecules (such as
proteins, genes, or small fragments of non-coding nucleic
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acids) under the assumption that the information gath-
ered from integrated analysis is higher than in the separate
study of any data source [7, 8].
The flow of information in this field starts from tech-

nological platforms that produce different data about
molecular biology as depicted in Fig. 1. Examples of such
platforms are microarray for studying the expression of
messenger RNA (mRNA) [9, 10] and microRNA (miRNA)
[11], genomic microarrays for studying copy number vari-
ations (CNV) or single nucleotide polymorphisms (SNP),
novel microarrays for studying non-coding RNAs (e.g.,
miRNA), genomic arrays for pharmacogenomics studies
[12, 13], and novel next-generation sequencing (NGS)
techniques. Classical approaches of analysis have pro-
duced a lot of information about the role of single class
of molecules, but there is a lack of introduction of novel
techniques aiming to analyze the interplay of molecules by
integrating these data sources into a single comprehensive
one [14, 15].
Here we focus on the study of complex mechanisms

of the regulation of gene expression. Recent results have
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Fig. 1 Flow of data. The figure depicts the flow of data in this field. The user may use different samples and different technological platforms to
produce his/her own data. In parallel, previous wet lab experiments or computational experiments (e.g., prediction algorithms) have produced the
availability of different knowledge banks. The network-based integrated analysis takes as input both user experimental data and knowledge banks
and produces biologically meaningful knowledge using appropriate theoretical models

confirmed that the transcription of mRNA into proteins
is a multi-step process in which different molecules play a
synergistic role [16]. In particular, miRNAs and transcrip-
tion factors (TFs) play a direct role in the regulation of
gene expression that results in variable levels of gene tran-
scripts and proteins. Since there is not a direct techno-
logical platform to investigate these complex interactions,
the integration of different datasets will become increas-
ingly important as elucidated in the work by Muniategui
et al. [17]. The integration of these datasets may be easily
made by using models from graph theory. Consequently,
it is possible to build comprehensive graphs in which
nodes are miRNAs, mRNAs, and TFs, and directed edges
connecting them represent the action of the molecules
as depicted in Fig. 2. Edges are subdivided into (i) acti-
vation edges which represent a molecule whose action
results in an increasing of the level of another one, and (ii)
inhibition edges which connect a molecule whose action

results in a decreasing of the levels of another one. Usu-
ally, edges connect a miRNA to a mRNA or a TF, or a TF
to a gene [18]. Starting from this formalism, it is possible
to extract small connected subgraphs with three differ-
ent classes of nodes, representing feedback loops and
feed-forward loops (FFLs) in which miRNAs participate
together with transcription factors as depicted in
Fig. 2.
The efforts of the scientific community have produced

a set of projects regarding integrated data analysis based
on graph theory. Because in recent years much work
has been made in the study of TF and miRNA co-
regulation, we think that there is a need to present in
a systematic catalogue all the available methods. In this
review, we summarize the types of regulatory networks.
Future challenges and perspectives on TF-miRNA co-
regulation are also discussed. Moreover, as a specific con-
tribution of the presented work, we extended the work of

Fig. 2 Example of a feed-forward loop. The figure depicts a simple graph modeling the interactions among miRNA (green node), mRNA (yellow
node), and TF (red node) through two different kinds of edges. In particular, the figure depicts a miRNA that negatively regulates (repression) TF and
mRNA and a TF that positively regulates (activation) a mRNA
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[19] by discussing some recent approaches and by using a
computer science perspective.

Background
mRNA,miRNA, and transcription factor interactions
As stated in the central dogma of molecular biology, genes
guide protein synthesis through mRNA molecules. Since
the information contained in genes cannot be directly
translated into proteins, information is at first transcribed
into mRNA molecules. Each molecule of mRNA encodes
the information for one protein. The mRNA molecules
migrate through the nuclear envelope to the cytoplasm,
where they are translated by the rRNA of ribosomes.
Finally, each mRNA is translated into a polymer of amino
acids: a protein. In an ideal case, the quantity of mRNA
molecules should be directly related to the quantity of
the related protein. In such a way, the investigation
of the quantity of mRNA through microarray technol-
ogy should enable the investigation of the quantity of
produced proteins. Unfortunately, as suggested by exper-
imental evidences, this process is made complex by the
presence of regulatory mechanisms that directly influence
the production of proteins. In particular, recent findings
have elucidated the role of two main classes of molecules
that influence positively and negatively the protein syn-
thesis: miRNA and TF [20].
miRNA refers to a set of small RNA molecules com-

posed of 21–23 nucleotides that do not encode any protein
but participate as regulators in protein formation [21].
Recent studies demonstrated that miRNAs play an essen-
tial role in carcinogenesis because the disgregation of
their activity may cause the development of tumor inva-
sion and migration [22]. miRNAs also act as a possible
new target for molecular target therapy of various cancers
[23, 24]. Thus, there is an increasing interest for miRNA
studies in clinical applications such as in serological diag-
nosis and molecular-targeted therapeutics [25]. TFs are
modular proteins that regulate gene transcription through
binding to the promoter region of target genes by their
DNA-binding domains. In such a way, TFs may increase
the gene expression levels and the consequent level of
produced proteins.
Interaction databases
The interaction databases used by the works here sur-
veyed fall into three main classes:

• Databases storing associations among miRNA and
genes, i.e., storing which genes are targeted by
miRNAs

• Databases storing the associations among TF and
genes, i.e., storing which genes are targeted by TFs

• Databases storing the associations among TF and
miRNA, i.e., storing which TFs are targeted by
miRNAs

All of these databases may store both confirmed asso-
ciations, i.e., associations supported by experimental evi-
dences, and predicted associations, i.e., associations that
are predicted by computational methods. The current sce-
nario presents some main characteristics: (i) the number
of confirmed associations is in general less than that of
predicted ones, (ii) the number of false positives (i.e.,
not real associations) is considerable, and (iii) the level
of overlap among databases is low. Consequently, all the
approaches consider different data sources and integrate
them in order to enhance the quality of considered associ-
ations.
The association among miRNAs and their target genes,

i.e., genes up- or downregulated, is currently an increas-
ing research area. Currently, there exist different predic-
tion softwares, i.e., softwares that can predict possible
genes regulated by a miRNA through machine learning
approaches, and different technological platforms that are
able to confirm these results in wet lab experiment [26].
As a result of the joint effort (both in silico and wet lab
experiments), several databases that store the association
among miRNAs and mRNAs are now available. Examples
of these databases are Microcosm [27], microrna.org [28],
DIANA-microT [29], miRDB [30], PicTar [31], PITA [32],
RNA22 [33], and TargetScan [34].
Similar to miRNAs, the complete enumeration of all

the interactions among TF and genes is far to be com-
plete. Thus, information stored into databases is quite
incomplete. Main experiments used for discovering TF-
gene relations are immunoprecipitations (ChIP) followed
by sequencing (ChIP-seq) or by microarray hybridiza-
tion (ChIP-chip) [35]. Both techniques enable a high-
throughput discovery of relations, but usually, they also
generate a large number of false positives [36]. In parallel
to these techniques, we should recall main computational
approaches for predicting TF and for retrieving resulting
information from databases.
For instance, the TRANSFAC database [37] is one of

the main resources of experimentally verified TF tar-
gets from publications or databases. Similarly, CHEA [38]
stores ChIP-seq and ChIP-chip data related to TF tar-
gets generated by different projects. The availability of
different data sources with different reliabilities causes
the need of integration of several of these methods and
data to obtain comprehensive and accurate TF targets
[18].
The thirdmain knowledge source used by the works dis-

cussed in this survey is represented by databases storing
information related to the regulation of miRNAs by TFs.
The number of TF-miRNA regulation databases is lower
than the number of the other two kinds of databases,
because this approach is the youngest area of research.
Examples of databases are TransmiR [39], TransFac [40],
TargetScan [34], and PicTar [31].
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Network-based approaches for integrated analysis
A general model for integratingmiRNA,mRNA, and TF data
All the approaches here discussed present some main
characteristics. They have an internal knowledge base
of associations extracted from literature and databases.
The knowledge base is a comprehensive graph of associ-
ations. Nodes of these graphs fall into three classes rep-
resenting respectively miRNAs, mRNAs, and TFs. Edges
fall into two classes: activation and inhibition edges. A
directed activation/inhibition edge connects a molecule
that increases/decreases the level of another one. Main
differences among the approaches are represented by the
association databases that are used. This internal knowl-
edge base is used for guiding the analysis of experimental
data. Usually, experimental data are both miRNA and
mRNA expression data taken from a pool of samples
extracted from patients in case-control or time series
experiments. For each patient, both mRNA and miRNA
data are produced. Consequently, those experiments pro-
duced two expression vectors from each mRNA mi and
each miRNA mij. Then, the expression vectors are corre-
lated using some relatedness measures, such as Pearson
correlation ρ(mi,mij) for each mRNA-miRNA pair.
Then, data of knowledge bases are used to build the

association graph from experimental data. This associ-
ation graph is then mined to find small graphs repre-
senting FFL. The rest of the section presents some main
approaches currently available for academic users. We
should note that the literature also reports an approach
of integration available for Ingenuity Pathway Analysis

software that we do not report here since it is not freely
available [41].

dChip-GemiNi (Gene andmiRNANetwork-based Integration)
dChip-GemiNi (Gene and miRNA Network-based Inte-
gration) [42] is a web server freely available for aca-
demic users which is able to integrate and analyze paired
miRNA-mRNA expression data. The server side is writ-
ten using the R programming language. Users may also
download the source code for running it in a local envi-
ronment. The ability of dChip-GemiNi has been tested
by using some paired miRNA-mRNA datasets of solid
cancers (liver, kidney, prostate, lung, and germ cell), and
results are discussed in [42].
The workflow of analysis that has been used to build

dChip-GemiNi contains four steps:

1. Initially, publicly available databases (e.g., TargetScan
[34] for miRNA-mRNA association and data from
TRANSFAC [40] for TF binding sites) have been
used to construct TF-miRNA-gene networks, i.e.,
networks in which nodes are miRNA, genes, and TF,
and edges represent the regulates relationship among
them (e.g., a miRNA is connected to the target genes
and a TF is connected to the target genes).

2. Then, experimental data (i.e., gene and miRNA
expression profiles) are collected from publicly
databases (e.g., GEO [43]).

3. Resulting networks (obtained in steps 1 and 2) are
mined to extract significant motifs referred to as FFL
motifs, i.e., small connected graphs in which there

Fig. 3Workflow of analysis through dChip-GemiNi web server. The figure depicts the workflow of analysis of the dChip-GemiNi web server. Initially,
the user has to upload datasets (both miRNA and mRNA) into the web server and to select the number of permutations (needed for the statistical
evaluation of results). After the computation, results are presented to the user in a graphical way
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exist three different nodes (TF, miRNA, and mRNA)
(see Fig. 2 for an example of FFL motifs).

4. Data of step 1 are used to further validate the
statistical relevance of results through an ad hoc
defined network motif score (NMS). The NMS is a
function of multiple scores, including TF and miRNA
binding scores to their target sequences, differential
expression P values of the FFL components between
normal and cancer tissues, and TF and miRNA’s
target enrichment in differentially expressed genes
and miRNAs.

As depicted in Fig. 3, when the user has to analyze
experimental data, he/she has to start from two vectors
of expression levels (one for mRNA and one for miRNA)
obtained from experiments analyzing two conditions, e.g.,
normal and cancer. Data may be paired (i.e., for each sam-
ple, there exist both mRNA and miRNA) or non-paired
(i.e., data belong to the same class but not to the same
samples). Then, the user has to upload them into the web
server and he/she receives as output a list of significant
FFLs that are altered with respect to those used as the
null model. dChip-GemiNi is also able to individuate FFLs
consisting of TFs (i.e., genes that are able to regulate the
expression of other genes), miRNAs, and their common

target genes. In such a way, it can discover knowledge that
cannot be discovered by the classical analysis. Experimen-
tal data are compared with respect to known associations
among miRNAs, mRNAs, and TFs obtained from the lit-
erature and stored into the web server. TFs derived from
literature are used as a null model to statistically rank
predicted FFLs from the experimental data.

MAGIA2 web server
MAGIA2 [44] is the evolution of the MAGIA web tool
for the integrated analysis of both genes and microRNA.
MAGIA2 is deployed as a freely available web server. To
build association networks, MAGIA2 uses eight differ-
ent databases of miRNA/mRNA associations: Microcosm
[27], microrna.org [28], DIANA-microT [29], miRDB [30],
PicTar [31], PITA [32], RNA22 [33], and TargetScan [34].
Such predictors are used to build the null models, i.e.,
associations that are known by literature. Regarding TFs,
MAGIA2 uses experimentally validated TF-miRNA inter-
actions reported in mirGen2.0 [45] and TransmiR [39],
whereas TF-gene interactions are obtained from ECRbase
database [46].
The analysis through the MAGIA2 web server starts

by uploading data into the web server, usually a matrix
for gene/transcripts and one for miRNA expression data.

Fig. 4Workflow of analysis through MAGIA2 web server. The figure depicts the workflow of analysis of the MAGIA2 web server. Initially, the user has
to upload datasets into the web server. Datasets must contain information of expression of mRNA and miRNA and may be paired (i.e., generated
from time series experiments) or unpaired (i.e., generated from two-class experiments, e.g., healthy vs diseased). Then, the user has to select an
appropriate measure of correlation among miRNA and mRNA (theoretical model) and the target prediction algorithms (knowledge banks). Finally,
results are presented to the user in a graphical way
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Data may belong to time series experiments in which for
each sample there exists a pair miRNA/mRNA experi-
ment (referred to as matched data), or a two-class exper-
iment (referred to as un-matched data). Then, users
have to select an association measure among mRNA and
miRNA, i.e., a measure of relatedness among expres-
sion values. For matched experiments, MAGIA2 offers
the following measures: Pearson linear correlation, Spear-
man rank-based correlation, and an association mea-
sure based on information theory for time series experi-
ments (referred to as matched). Diversely, for un-matched
design, only a meta-analysis is possible.
The choice among measures is strictly dependent on

the characteristics of data: for non-normally distributed
data and/or small sample size experiments (e.g., 3–5),
it is suggested to use Spearman correlation, which is
a non-parametric rank-based linear measure, whereas
for normally distributed data and medium-large sam-
ple size (more than 5 samples), authors suggest the
use of the Pearson linear correlation measure; finally,
for large sample size (more than 20 samples), it is
suggested to use mutual information that is an infor-
mation measure quantifying the mutual dependence of
variables.

Diversely, for un-matched experiments, i.e., experi-
ments in which samples are subdivided into two classes,
the web server offers the meta-analysis approach that
is based on the combination of P values of differential
expression, separately for genes and miRNAs across sam-
ple classes. The user may also choose which databases are
used to extract associations from those explained so far.
In case of choice of multiple databases, search results may
contain their union or intersection. Finally, experimentally
derived associations are compared to those contained in
the databases, and two kinds of networks are derived as
depicted in Fig. 4.

mirConnX
mirConnX [47] is based on a broader perspective with
respect to the previous approaches since it uses a genome-
wide approach. Unfortunately, it enables only the analysis
of data of two organisms: human and mouse. The work-
flow of analysis is based on the comparison of two
networks of associations among genes, TFs, and mRNAs,
as depicted in Fig. 5.
The first network, used as a null model, is derived from

the analysis of databases and literature. In this network,
nodes are miRNAs, TFs, and genes, and an edge connects

Fig. 5 Analysis through mirConnX web server. The figure depicts the workflow of analysis on the mirConnX web server. Prior to the upload of user
data, curators of the web server have produced a network of association among miRNAs, mRNAs, and TFs on a genome-wide scale for human and
mouse. The user may upload his/her own data (miRNA and mRNA expression), and the web server builds the association network. Then, two
networks are compared and FFLs are evidenced. Finally, results are presented to the user
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Fig. 6Workflow of analysis in IntegraMiR. IntegraMiR receives as input two lists of miRNA and mRNA expression data grouped into two classes (e.g.,
healthy vs diseased). Initially, the web server identifies significant differentially expressed (SDE) miRNAs and mRNAs. Then, prior knowledge is used
to derive associations among miRNA, mRNA, and TF considering only those extracted in the previous steps. Then, FFLs whose members are
differentially expressed are determined. These FFLs are then organized considering the kind of deregulation and ranked by using a statistical
approach and visualized to the user

two nodes when an association has been found. Examples
of associations are (i) a miRNA that regulates a gene or a
TF, or (ii) a TF that regulates a gene. Edges are weighted,
and the weight reflects the strength of the association.
miRNA targets are derived by integrating results stored in
PITA [32], miRANDA [48], TargetScan 5.0 [34], RNAhy-
brid [49], Pictar [31], TarBase [50], and miRecords [51]
databases. Similarly, associations among TF and genes are
derived by integrating predictions stored in JASPAR [52]
and TRANSFAC [37]. The integration step is based on a
mathematical model which is able to derive a value of con-
fidence for each prediction that is used as a weight for the
resulting edge.
The network built from experimental data uploaded

by the user is obtained by analyzing all the possible
pairwise interactions between TFs, miRNAs, and genes
across the samples/replicates. The user may choose dif-
ferent measures of associations, both parametric and
non-parametric (e.g., Pearson, Spearman, and Kendall).

Finally, the software integrates the two networks via
a simple weighted sum function (S) producing a novel
network in which edges, which are found in both net-
works, have a greater weight. Results are finally visual-
ized by using a Cytoscape-based interface [53] and all
feed-forward loops, and their neighbors are evidenced. In
addition, other simple analyses can be executed (e.g., an
ontology-based analysis).

IntegraMiR
IntegraMiR [54] is a novel approach of integration of data
that is based on the workflow depicted in Fig. 6. It receives
as input mRNA and miRNA expression data, obtained
from samples that are subdivided into two classes (e.g.,
controls vs. cases). It starts by searching for differentially
expressed genes and mRNAs between two conditions by
using the Bioconductor package LIMMA [55]. This step
produces two lists, one for differentially expressed genes
and one for differentially expressed miRNAs. Moreover,

Table 1 Comparison of network-based analysis approaches considering availability and input data

Tool Implementation Input data Input data grouping Format of input data

dChip-GemiNi [42] Web server - R
script

mRNA-miRNA expression data
grouped into two classes

Two-class data. Paired and
not paired

Textual matrices

MAGIA2 [44] Web server mRNA-miRNA expression data.
Time series and two-class data

Two-class and time series
data

Textual matrices

mirConnX [47] Web server mRNA-miRNA expression data Two-class data Textual matrices. Only
human andmouse

IntegraMiR [54] R script mRNA-miRNA expression data
grouped into two classes

Two-class data Textual matrices
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Table 2 Comparison of network-based analysis approaches considering algorithmic approach and parameters of analysis

Tool Algorithmic approach Parameters

dChip-GemiNi [42] Identification of SDE genes. Building and analysis
of experimental network

Permutations

MAGIA2 [44] Building and analysis of experimental network Relatedness measure. Target databases

mirConnX [47] Comparison of networks Association measure for experimental data.
Weight of networks

IntegraMiR [54] Building and analysis of experimental network

IntegraMiR uses LIMMA package to perform gene set
enrichment analysis (GSEA), taking into account known
biological knowledge about these transcripts to derive
biological significance of both changed and unchanged
transcripts. Then, associations amongmRNA andmiRNA
are derived considering their individual expression levels
(i.e., considering pairs of mRNA-miRNA whose regu-
lation is inversely correlated) or through their target
interactions—via functional analysis through literature
and databases. Once this step is finished, IntegraMiR
uses the TRANSFAC database [37] to derive associa-
tions among TFs and mRNAs and the TransmiR database
[39] to derive associations among TFs and miRNAs.
In particular, it focuses only on differentially expressed
miRNA and mRNA. Thus, it can reconstruct FFLs whose
members are differentially expressed. These FFLs are
then organized considering the kind of deregulation and
ranked by using a statistical approach and visualized to
the user (see the original publication for a complete list of
results). The software is available for download at (see the
original publication for a complete list of results [54]).

Further analysis approaches
The current state of the art of research includes some
other approaches of analysis that have been developed
in different moments. Some of these approaches are not
implemented in a single tool although they present a
fully reproducible way to analyzemiRNA-TF relationships
[56].
For instance, Henriksen et al. [57] applied an integrated

approach of analysis to identify miRNA-mRNA regula-
tory networks that are involved in glioma, a primary

brain tumor. They identified miRNA functional targets
during glioma malignant progression by combining the
paired expression profiles of miRNAs and mRNAs of
patients.
Nazarov et al. [58] developed an integrated analysis

approach based on the use of different tools, both
academic and commercials. The workflow of analy-
sis is structured into different steps. They start from
paired miRNA and mRNA data obtained from microar-
ray experiments. In the first step, they pre-process miRNA
and mRNA data using the Partek GS® platform in order to
filter out non-relevant or out-of-quality data. Then, they
use the LIMMA package of Bioconductor [59] to identify
significant differentially expressed miRNA and mRNA.
Then, they use Ingenuity Pathway Analysis (IPA)® to build
regulatory networks of miRNA, mRNA, and transcription
factors. In particular, they identify upstream regulators by
using IPA. The IPA platform enables the reconstruction
of causal networks constructed from individual relation-
ships by providing a set of tools for inferring and scoring
upstream regulators of gene expression data [41].

Discussion
We here compare the so far discussed approaches by
considering the following parameters:

• Input and implementation: We consider (i) the
format of input (e.g., textual files or raw data), (ii) the
experimental platforms (miRNA or mRNA), (iii) the
design of the experiments (e.g., two-class
experiments or time series), and (iv) the availability as
a web server or as a stand-alone tool.

Table 3 Comparison of network-based analysis approaches considering internal knowledge bases

Tool miRNA-mRNA TF-genes miRNA-TF

dChip-GemiNi [42] TargetScan and PicTar TRANSFAC matrices v7.0 miRBase - TRANSFAC

MAGIA2 [44] Microcosm, microrna.org,
DIANA-microT, miRDB, PicTar,
PITA, RNA22, and TargetScan

ECRbase mirGen2.0 and TransmiR

mirConnX [47] PITA, miRANDA, TargetScan
5.0, RNAhybrid, and PicTar

JASPAR and TRANSFAC CoreBoost_HM

IntegraMiR [54] mSigDB, mirTarBase,
miRecords

TRANSFAC TransMiR
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Table 4 Comparison of network-based analysis approaches considering output information

Tool Kind Format Link to external knowledge bases

dChip-GemiNi [42] Statistics of association. Visualiza-
tion of network

Static Not available

MAGIA2 [44] Statistics of association. Visualiza-
tion of network

Dynamic and exportable in
Cytoscape

Available

mirConnX [47] Statistics of association. Visualiza-
tion of network

Dynamic Available

IntegraMiR [54] Lists of associated mRNA-miRNA
and TF

Static Not available

• Analysis: We consider the algorithmic approach (i.e.,
main characteristics of the analysis) and the main
parameters customizable by the users.

• Knowledge bases: We consider which data sources
have been used to derive associations among
molecules, i.e., (i) miRNA-mRNA associations, (ii)
TF-genes associations, and (iii) miRNA-TF
associations.

• Output : We consider the characteristics of the
output, its format (i.e., graphic or textual), as well as
the possibility to link results to external knowledge
bases (i.e., ontologies or semantic analysis [60]).

Considering Table 1, we should note at first that soft-
ware available as web server (dChip-GemiNi, MAGIA2,
and mirConnX) are more user-friendly from a biological
corner since the installation and running of R scripts is
not easy without a bioinformatics support. Moreover, the
MAGIA2 web server enables the use of both two class
and time series data, enhancing the possibility of analysis.
All the softwares enable the use of different identifiers for
genes, and some of them (e.g., dChip-GemiNi) have the
possibility to use ad hoc identifiers. mirConnX has a main
limitation on the input species since it may analyze only
human and mouse data.

Fig. 7 Integrated analysis of data. The figure shows typical workflow of integrated analysis of miRNA and mRNA data. The analysis starts by selecting
samples. Users may choose to perform novel wet lab experiments or to download data from existing databases (e.g., Gene Expression Omnibus
[61]). Data may belong to two main categories, e.g., matched and un-matched samples. In the first category, for each mRNA sample, there exists a
corresponding miRNA sample and data are usually organized as time series. In the second category, data are grouped into classes. Currently, only
the MAGIA2 web server accepts as input both kinds of data. Considering the analysis of matched samples, the user may benefit from peculiarities of
each software. For instance, MAGIA2 offers the possibility to choose some functions suited for few samples. mirConnX enables the comparison of
two conditions (e.g., healthy or diseases). IntegraMiR is particularly suited for expression data grouped into two classes (e.g., healthy vs diseased).
dChip-Gemini is a general purpose software
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Considering Table 2, we report that the MAGIA2 web
server is more flexible than the others since it gives to the
user the possibility to choose different correlation mea-
sures and several target databases. Moreover, the user may
intersect different databases. All the approaches compare
experimental data with respect to knowledge bases, and
in particular, mirConnX enables to weigh the influence of
knowledge bases.
Considering Table 3, we report that the MAGIA2 web

server used the largest number of association databases.
In particular, we note that the most popular databases are
TargetScan and Pictar (used by dChip-GemiNi, MAGIA2,
and mirConnX) for miRNA-mRNA associations and
TRANSFAC for TF-gene association (used by dChip-
GemiNi, mirConnX, and IntegraMiR).
Finally, considering the presentation of results, we note

that the best performances are in generally achieved by
using external visualizers (e.g., the Cytoscape web inter-
face used by mirConnX or MAGIA2). Moreover, mir-
ConnX provides the possibility to link results to exter-
nal databases (e.g., for enrichment analysis or search)
(Table 4).
Figure 7 reports some short examples of typical case

studies by discussing main options and choices that are
available to researchers.

Conclusions
As evidenced before, the TF-miRNA-mRNA association
represents undoubtedly a main resource for elucidating
gene expression regulation at a systems level. The com-
plete determination of miRNA and TF targets will enable
a more powerful and reliable analysis. Consequently, from
a technological point of view, the miRNA and TF target
prediction and validation is still an urgent issue. In par-
allel, from a computational point of view, the integration
of more data sources may improve the quality of analy-
sis, since computational TF-miRNA regulatory networks
are available for some genomes and diseases. Moreover,
integrating TF-miRNA regulatory networks with other
networks, such as functional networks (e.g., signaling
pathways, metabolic pathways, protein-protein interac-
tion networks) or semantic networks, will be an important
improvement. This integration will aid in explaining how
these networks regulate the biological processes and dis-
eases at the systems level.
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