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Abstract

Since 1950, links between intake of saturated fatty acids and heart disease have led to recommendations to limit
consumption of saturated fatty acid-rich foods, including beef. Over this time, changes in food consumption patterns
in several countries including Canada and the USA have not led to improvements in health. Instead, the incidence of
obesity, type II diabetes and associated diseases have reached epidemic proportions owing in part to replacement of
dietary fat with refined carbohydrates. Despite the content of saturated fatty acids in beef, it is also rich in heart healthy
cis-monounsaturated fatty acids, and can be an important source of long-chain omega-3 (n-3) fatty acids in populations
where little or no oily fish is consumed. Beef also contains polyunsaturated fatty acid biohydrogenation products,
including vaccenic and rumenic acids, which have been shown to have anticarcinogenic and hypolipidemic properties
in cell culture and animal models. Beef can be enriched with these beneficial fatty acids through manipulation of beef
cattle diets, which is now more important than ever because of increasing public understanding of the relationships
between diet and health. The present review examines recommendations for beef in human diets, the need to
recognize the complex nature of beef fat, how cattle diets and management can alter the fatty acid composition of
beef, and to what extent content claims are currently possible for beef fatty acids.
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Introduction
Quality and price are key factors considered when con-
sumers purchase beef, and a growing segment of medium-
to high-income informed consumers now consider the
health implications of beef consumption [1, 2]. The
present review will cover recent challenges to long-
standing recommendations for beef consumption, the
content and composition of beef fat, how beef fat compos-
ition can be modified through cattle nutrition and prac-
tical considerations when beef with enhanced fatty acid
profiles reaches consumers’ plates. The overall objective of
the review is to provide some insight into how beef and its
constituent fatty acids may now, and in the future, fit into
the human diet.
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Revisiting recommendations for beef consumption
Diet effects on human health are often related to several
diseases associated with dietary fat, many of which take
years to develop, and often result in changes in quality
of life and lifespan. Many developed countries suffer
from high incidences of obesity, type II diabetes, coron-
ary heart disease (CHD) and cancer. Efforts to examine
associated dietary factors, and make recommendations to
improve health, have at times fallen short. Recommenda-
tions to decrease consumption have been targeted at foods
that contain nutrients singled out as culprits, and changes
in dietary patterns have in some cases led to even more
difficulties. One of the best examples is the recommenda-
tion to substitute foods containing saturated fatty acids
(SFA) with trans fatty acid-rich margarines and refined
carbohydrates [3]. Years of recommendations to reduce
red meat consumption have not been met by dramatic re-
ductions in the incidence of diseases related to dietary fat;
on the contrary, the incidence of obesity and type II
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diabetes has reached epidemic proportions and has been
related to refined carbohydrate consumption [4]. Fatty
acids singled out in the Nurses’ Health Study as being prob-
lematic for CHD are SFA with chain lengths from 14:0 to
18:0, and a stronger association was found when the poly-
unsaturated fatty acid (PUFA) to SFA ratio was reduced [5].
The current recommendations to reduce SFA intake are

based on the findings from studies in mid-20th century that
dietary SFA cause an increase in serum total and LDL-
cholesterol and therefore increase the risk of heart disease
[6]. These earlier studies overlooked other contributing fac-
tors as well as the fact that SFA also increase HDL-
cholesterol, which is protective against heart disease. Later
studies found that the ratio of total serum cholesterol to
HDL-cholesterol is a better indicator of heart disease risk
than total or LDL-cholesterol [7]. More recently, many
studies have started to question the current dietary recom-
mendations against consuming SFA and revealed that SFA
intake is not associated with an increased risk of cardiovas-
cular disease [8–10]. In contrast, substitutions of dietary
SFA with refined carbohydrates have resulted in increased
obesity and worsen blood lipid profiles by increasing serum
triacylglycerol and small, dense LDL particles [11, 12]. Ree-
valuations are required for the existing dietary recommen-
dations which overstate the health risks of SFA and
promote their replacement with alternative nutrients such
as refined carbohydrates.
Recently, the dogma that meat consumption should be

limited in human diets because of its fatty acid composition
has come under close scrutiny [13]. In a recent meta-
analysis reviewing 20 studies with more than 1 million sub-
jects, Micha et al. [14] found that consumption of red
meats was not associated with higher incidence of CHD
and type II diabetes, whereas processed meats were associ-
ated with increased incidence of both diseases. The authors
suggested that other ingredients (e.g., preservatives such as
nitrate) used in processed meats, rather than SFA, contrib-
uted to the negative disease outcomes. In Europe, current
evidence suggests unprocessed lean red meat is safe to con-
sume as a healthy food choice, and recommendations to
limit its consumption in substitution for other protein
sources including white meat are not justified [15]. In con-
trast, in the USA, consumption of both unprocessed and
processed red meat still reveal associations with disease
outcomes, with a greater hazard ratio for unprocessed red
meat [16]. However, not all beef is consumed as unpro-
cessed lean beef. In fact, the most consumed beef product
in the USA is hamburger [17] which typically contains 10
to 30% fat. Consequently, it would be prudent to shift re-
search focus away from what to do about the SFA in beef
towards how beef fat can be used as a vehicle to deliver
health-enhancing fatty acids to consumers.
The Global Burden of Disease Study [18] estimated

the contribution of risk factors to disease and disability
and identified, among other things, that a low intake of
omega-3 (n-3) fatty acids is a concern. The high ratio
of omega-6 (n-6) to n-3 fatty acids promotes many dis-
eases from cardiovascular disease and arthritis to can-
cer, whereas lower ratios have suppressive effects [19].
The n-6 to n-3 ratio of diets during human evolution
was estimated to be close to 1:1, whereas current
Western diets have ratios close to 15:1 [19]. The great
amounts n-6 PUFA in the diet promotes the production
of eicosanoids (i.e., prostaglandins, thromboxanes, leu-
kotrienes) formed from arachidonic acid (AA) at the
expense of those formed from n-3 fatty acids, specific-
ally eicosapentaenoic acid (EPA) [20]. The dispropor-
tionate increase in eicosanoids from AA could result in
allergic and inflammatory responses such as increase in
platelet aggregation, blood viscosity, vasospasm and
vasoconstriction as well as reduced bleeding time [21].
Furthermore, an increased n-6 to n-3 ratio could pro-
mote or exacerbate atherogenesis [10]. The balance of
n-6 to n-3 fatty acids is therefore an important deter-
minant in reducing the risk of inflammatory and
autoimmune disorders such as diabetes, CHD, hyper-
tension, diabetes and arthritis.
In China, the n-6 to n-3 fatty acid ratios of red meat

were recently found to range from 6/1 to 23/1 [22]. Un-
less protected from rumen biohydrogenation, beef
naturally contains a low content of n-3 fatty acids in-
cluding α-linolenic acid (ALA; 18:3n-3) and its long-
chain (LC) elongation and desaturation products EPA,
docoasapentaenenoic acid (DPA) and docosahexaenoic
acid (DHA) [23]. The health benefits ascribed to n-3
fatty acids are mostly related to the LC n-3 s typically
found at higher concentrations in fish oil (i.e., EPA and
DHA), and efforts have been made to establish dietary
reference intakes for these [24]. In contrast, the most
common LC n-3 fatty acid in beef is DPA, but it can be
readily converted to EPA and DHA [25], and should
thus be included when calculating LC n-3 s. Conse-
quently, in populations where little or no oily fish is
consumed, beef can still be an important source of LC
n-3 fatty acids, particularly when DPA is included [26].
The fact that beef fat can be a source of LC n-3 fatty
acids is positive, but again when considering health im-
plications of beef fat, it is important not to narrow the
scope of consideration to a few individual or related
groups of fatty acids. The complexity of beef fat, and
that its effects on human health stems both from indi-
vidual fatty acids and their combined effects, is under
appreciated. Consequently beef producers wanting to
improve the health profile of beef require information
on which fatty acids would be of interest, and how
these can be practically and profitably manipulated by
diet to reach levels required to be of benefit to
consumers.



Table 1 Rank order of fatty acids in Canadian retail strip loin steak (longissiums lumborum)1

Rank Group2 Common Name3 Fatty Acid4 Weight, % SD5

1 MUFA Oleic c9-18:1 38.08 2.699

2 SFA Palmitic 16:0 23.95 1.381

3 SFA Stearic 18:0 12.03 1.667

4 MUFA Palmitoleic c9-16:1 3.592 0.709

5 PUFA Linoleic 18:2n-6 2.708 0.786

6 SFA Myrsitic 14:0 2.289 0.392

7 MUFA Asclepic c11-18:1 1.847 0.213

8 SFA Margaric 17:0 1.309 0.298

9 MUFA Margarolic c9-17:1 1.302 0.298

10 MUFA t10-18:1 1.100 0.688

11 DMA 16:0DMA 1.017 0.422

12 PUFA Arachidonic 20:4n-6 0.809 0.349

13 MUFA Myristoleic c9-14:1 0.589 0.202

14 DMA 18:0DMA 0.557 0.222

15 BCFA/SFA anteiso17:0 0.504 0.084

16 MUFA Vaccenic t11-18:1 0.470 0.164

17 MUFA c13-18:1 0.452 0.121

18 SFA 15:0 0.448 0.103

19 BCFA/SFA iso17:0 0.325 0.053

20 PUFA ALA 18:3n-3 0.277 0.090

21 PUFA DPA 22:5n-3 0.274 0.099

22 CLA/PUFA Rumenic c9,t11-18:2 0.273 0.134

23 MUFA t13-t14-/c6-c8-18:1 0.263 0.111

24 PUFA 20:3n-6 0.252 0.082

25 MUFA Elaidic t9-18:1 0.230 0.069

26 MUFA t15-18:1 0.208 0.051

27 MUFA Gondoic c11-20:1 0.208 0.061

28 MUFA c11-16:1 0.189 0.060

29 PUFA c9t13-/t8c12-18:2 0.179 0.039

30 PUFA c9c15-18:2 0.167 0.034

31 MUFA c7-16:1 0.156 0.020

32 MUFA t6-t8-18:1 0.156 0.078

33 MUFA c15-18:1 0.154 0.055

34 BCFA iso16:0 0.136 0.035

35 MUFA c12-18:1 0.122 0.052

36 BCFA/SFA anteiso15:0 0.121 0.036

37 MUFA t12-18:1 0.118 0.045

38 PUFA Adrenic 22:4n-6 0.114 0.024

39 BCFA/SFA iso18:0 0.113 0.047

40 PUFA EPA 20:5n-3 0.110 0.063

41 PUFA t11c15-18:2 0.101 0.052

42 PUFA t8c13-18:2 0.092 0.021
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Table 1 Rank order of fatty acids in Canadian retail strip loin steak (longissiums lumborum)1 (Continued)

43 MUFA t16-18:1 0.088 0.033

44 SFA 11-cyclohexyl-17:0 0.088 0.027

45 MUFA c13-16:1 0.085 0.024

46 MUFA Gondoleic c9-20:1 0.084 0.018

47 BCFA/SFA iso15:0 0.084 0.028

48 SFA Arachidic 20:0 0.080 0.021

49 SFA 19:0 0.077 0.030

50 MUFA c9-15:1 0.076 0.026

51 PUFA+MUFA c9t12-18:2/c16-18:1 0.062 0.016

52 SFA Behenic 22:0 0.062 0.018

53 CLA/PUFA Yurawic t7,c9-18:2 0.061 0.027

54 PUFA 20:2n-6 0.051 0.013

55 PUFA Rumelenic c9t11c15-18:3 0.049 0.021

56 DMA 18:1DMA 0.047 0.021

57 MUFA c11-17:1 0.043 0.016

58 DMA 16:1DMA 0.043 0.015

59 MUFA t11/t12-16:1 0.043 0.008

60 CLA/PUFA t9c11-18:2 0.041 0.016

61 CLA/PUFA Linelaidic t9t12-18:2 0.040 0.019

62 MUFA c10-16:1 0.039 0.011

63 PUFA/MUFA 20:3n-3/c13-22:1 0.037 0.020

64 MUFA c14-18:1 0.037 0.011

65 MUFA c5-17:1 0.035 0.009

66 MUFA c7-17:1 0.034 0.009

67 PUFA t9c12-18:2 0.032 0.014

68 PUFA GLA 18:3n-6 0.032 0.013

69 SFA Lauric 12:0 0.032 0.011

70 PUFA DHA 22:6n-3 0.031 0.018

71 SFA Lignoceric 24:0 0.030 0.014

72 MUFA t5-18:1 0.027 0.016

73 MUFA c12-16:1 0.026 0.008

74 SFA 21:0 0.023 0.006

75 CLA/PUFA t10,c12-18:2 0.011 0.006

76 CLA/PUFA c9,c11-18:2 0.011 0.003

77 CLA/PUFA t8,c10-18:2 0.011 0.003

78 CLA/PUFA c11,t13-18:2 0.009 0.003

79 CLA/PUFA Mangold's t9,t11-18:2 0.009 0.003

80 CLA/PUFA t11,c13-18:2 0.008 0.006

81 CLA/PUFA t11,t13-18:2 0.005 0.002

82 CLA/PUFA Mikusch's t10,t12-18:2 0.004 0.002

83 CLA/PUFA c12,t14-18:2 0.004 0.002

84 CLA/PUFA t12,c14-18:2 0.004 0.003

85 CLA/PUFA t7,t9-18:2 0.003 0.001
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Table 1 Rank order of fatty acids in Canadian retail strip loin steak (longissiums lumborum)1 (Continued)

86 CLA/PUFA t12,t14-18:2 0.003 0.001

87 CLA/PUFA t8,t10-18:2 0.002 0.001
130 steaks collected in summer and 30 in winter [29]
2SFA saturated fatty acids, MUFA monounsaturated fatty acids, BCFA branched-chain fatty acids, PUFA polyunsaturated fatty acids, DMA dimethyl acetal, CLA
conjugated linoleic acid
3ALA α-linolenic acid, DPA docosapentaenoic acid, EPA eicosapentaenoic acid, GLA γ-linolenic acid, DHA docosahexaenoic acid
4c cis, t trans. Co-eluting fatty acids on gas chromatogram are separated by a slash (/)
5SD standard deviation
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Beef fat content and composition
Beef and meat from other ruminant species are noted
for having complex fatty acid profiles compared to meat
from monogastric species. Paradoxically, using diet to
modify meat composition is much easier in monogastric
than ruminant species. Rumen microbes are responsible
for both the complexity of beef fatty acid composition
and for its lack of resemblance to dietary fatty acid pro-
files [27]. Rumen microbes produce branched- and odd-
chain fatty acids and their precursors, resulting in their
deposition in beef lipids. In addition, rumen microbes
produce several PUFA biohydrogenation products
(PUFA-BHP) including conjugated trienes, conjugated
dienes, non-conjugated dienes and monounsaturated
fatty acids (MUFA) with a vast array of double bond lo-
cations and cis/trans configurations. Cattle diets typically
contain 1-4% lipids, which mainly consist of PUFA in-
cluding linoleic acid (LA, 18:2n-6) and ALA. When cat-
tle consume feed, dietary lipids are acted upon by
microbial lipases in the rumen, releasing mainly free
PUFA, which are toxic to rumen microbes [28]. To cope,
rumen microbes biohydrogenate PUFA to less toxic
SFA, particularly to 18:0, and this process is typically
very efficient. Residual PUFA-BHP bypassing the rumen
can then be absorbed from the lower gut and incorpo-
rated into beef. In a survey of Canadian retail beef
(longissimus lumborum from strip loin steaks) conducted
by Aldai et al. [29], the three most concentrated fatty
acids were cis9-18:1, 16:0 and 18:0 with concentrations
of 38%, 24% and 12%, respectively, constituting 74% of
total fatty acids (Table 1). The next eight most concen-
trated fatty acids (1 to 5% of total fatty acids) accounted
for 15.2% of total fatty acids. The next 16 most concen-
trated fatty acids (0.2 to 1% of total fatty acids) contrib-
uted 6.4% to total fatty acids, and the final 60 fatty acids
(0.0–0.1% of total fatty acids) accounted for 4.4% of total
fatty acids with the majority being PUFA-BHP. Beef ana-
lyzed in this survey was collected at retail, and in all like-
lihood would have been from cattle fed barley grain-
based diets (75–90% of dry matter).
Modifying the fat content and composition of beef has

been the subject of several reviews, and, in summary,
the amount of fat in beef and its composition can be
modified primarily by diet and to a lesser extent by gen-
der and genetics [30–34]. Feeding high-grain diets to
cattle leads to fatter carcasses and deposition of intra-
muscular fat (i.e., marbling), a valued attribute in several
markets including Japan, the USA and Canada. In con-
trast to high-grain diets, reducing dietary energy con-
tent, through feeding high-forage diets, reduces carcass
fatness, decreases intramuscular fat and increases the
proportion of PUFA rich phospholipids relative to SFA
rich neutral lipids [35]. Feeding high-forage diets can
also lead to what is perceived to be a more healthful beef
fatty acid profile, but the trade-off with lower energy di-
ets is increased time to market, and the need to be able
to source pasture or conserved forage. In addition, in-
creased proportions of forage in the diet can lead to
changes in beef palatability [36] such as decreased ten-
derness because of increased age at finished weights,
and the beef may not be as marketable to consumers
that value marbling. In countries like Canada and the
USA where feedlot finishing on high-grain diets is the
norm, finishing on forage-based diets is limited to a
small but growing segment of the market [36]. Future
expansion of this market will likely depend on whether
fatty acid-associated impacts on human health can be
scientifically substantiated.
The quantity and composition of PUFA-BHP in beef is

very much dependent on the supply of PUFA in the diet,
and associated dietary and animal factors (e.g., feeding
behavior and rumen conditions) which influence the de-
gree of biohydrogenation [37]. In general, pathways used
for biohydrogenation of LA and ALA, the major fatty
acids in typical cattle diet, are influenced by the forage
to concentrate ratio [38]. The most highly characterized
pathways for LA and ALA biohydrogenation were elu-
cidated when greater proportions of forage versus con-
centrate were fed (Fig. 1). Pathways for both LA and
ALA are characterized by initial isomerization of the cis
double bond at carbon 12 to a trans double bond at
carbon 11 resulting in the production of RA and cis9,-
trans11,cis15-18:3, respectively [39, 28]. In contrast,
when feeding diets with increased amounts of readily
fermentable carbohydrate (i.e., high-grain diets), isom-
erization of the cis 9 double bond for LA shifts towards
a trans double bond at carbon 10 [28], while isomeriza-
tion of the cis 12 double bond of ALA shifts towards a
trans double bond at carbon 13, resulting in the pro-
duction of trans10, cis12-18:2 and cis9, trans13, cis15-



Fig. 1 Major pathways for the biohydrogenation of linoleic and α-linolenic acids in the rumen showing isomerization and hydrogenation.
Adapted from Harfoot and Hazlewood [39]
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18:3, respectively [40]. Following this are rounds of hy-
drogenation and isomerization leading to trans 18:1
isomers (e.g., VA and trans13-18:1) and eventually
complete hydrogenation to 18:0. However, pathways for
the formation of many BHP found in Table 1 have not
been established. In addition, new BHP continue to be
found. For example, recently trans10, cis15-18:2 was
found to be a BHP of ALA [41], adding one more piece
to the puzzle of ALA biohydrogenation pathways. In
addition, a great number of BHP of longer chain more
highly unsaturated PUFA (e.g., DHA) have also been re-
cently characterized [42].
The fatty acid composition of beef is complex, but con-

centrations of many fatty acids can be extremely low. Inter-
estingly, the fatty acids in low concentration including
many PUFA-BHP have become of interest because of the
finding that some can have potent biological activity. The
BHP that have been studied the most are VA and RA,
which have been shown to have anticarcinogenic and hypo-
lipidemic properties in cell culture and animal models
[43–46]. Still, the effects of many PUFA-BHP have not been
studied and finding ways to consistently and meaningfully
influence their concentrations is of considerable interest.

Fatty acids of interest and their manipulation by diet
As the effects of fat on ill-health have in part been asso-
ciated with SFA, logically fat with increased contents of
unsaturated fatty acids (UFA), at the expense of SFA,
may be more healthful for people to consume. Interest-
ingly, feeding ruminants diets rich in grain are not al-
ways associated with greater contents of SFA in meat. In
fact, the longer cattle are finished on grain, the greater
the delta-9 desaturase activity and conversion of 18:0 to
cis9-18:1 in beef [47]. Feeding grain-based diets is, how-
ever, also associated with increased trans10-18:1 depos-
ition [48, 49], and consuming trans10-18:1 enriched fats
may result in undesirable shifts in plasma cholesterol
profiles [50, 51]. Consequently, it would be of import-
ance to determine if the health value of beef enriched
withcis9-18:1 is still maintained when different propor-
tions of trans10-18:1 are present.
Cattle feeding practices most frequently associated

with increased proportions of PUFA in beef, particularly
n-3 fatty acids, are grazing or feeding preserved forages
[36, 52]. From a human nutrition perspective, grazing or
feeding cattle forages compared to concentrate is appeal-
ing as it reduces the fat content of beef and provides
several potential improvements in beef fatty acid com-
position. Forage finishing can increase the percentage of
n-3 fatty acids [53], reduce the n-6 to n-3 ratio, reduce
the SFA/PUFA ratio, and increase the percentages of
specific PUFA-BHP such as VA and RA [23]. These
changes in fatty acid composition may exert protective
effects against a number of diseases ranging from cancer
to cardiovascular disease [33, 37, 45]. It is thus import-
ant to consider if improvements in beef fatty acid com-
position when including more forage in cattle diets, has
any human health benefits over and above those related
to reductions in total fat content. In addition, it should
be determined if human health benefits are consistent
when consuming steak (<10% fat) versus ground beef
(10–30% fat). Humans consuming red meat (beef and
lamb) from grass or concentrate finished animals were
found to have no differences in serum lipids, lipoproteins,
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triacylglycerols or blood pressure [54]. Interestingly, grass
fed beef and lamb were able to increase consumer plasma
and platelet LC n-3 PUFA status, leading authors to con-
clude red meat from grass-fed animals may contribute to
dietary intakes of LC n-3 PUFA in populations where red
meat is habitually consumed. On the other hand, Wagyu
steers finished for an extended period on corn grain versus
pasture yielded hamburgers enriched with MUFA and
SFA, respectively. Consuming SFA-rich hamburgers de-
creased serum high-density lipoprotein cholesterol (HDL
or “good cholesterol”) in mildly hypercholesterolaemic
men [55]. Consuming SFA-rich hamburgers did not, how-
ever, change serum low-density lipoprotein (LDL) choles-
terol, but did reduce LDL particle diameter, and increased
triacylglycerols. Consequently, in the future, it will be im-
portant to place these and other results into context when
considering which beef or beef products to consume, as
these may have differing effects on human health, even
when coming from the same animal. For example, as it
can be interpreted from studies cited above, lean beef
from grass-fed cattle may have a fatty acid profile associ-
ated with positive effects on human health, but regular
hamburger produced from the same beef may be less fa-
vorable in terms of the MUFA/SFA ratio.
Beyond strategies to increase amounts of UFA in beef

by feeding forage, a more direct possibility can be through
supplementing diets with PUFA rich oils or oilseeds.
Nevertheless, this dietary strategy is not without difficulty
because of the high efficiency of microbial biohydrogena-
tion of PUFA in the rumen, and the influence of diet on
routes of biohydrogenation. Supplementing PUFA in cat-
tle diets has, therefore, frequently led to only minor
changes in the PUFA or PUFA-BHP content of beef. For
example, Gonzalez et al. [56] found very limited accumu-
lation of PUFA or PUFA-BHP in beef when adding 4.5%
sunflower, linseed or soybean oil to a concentrate-based
diet, and concluded finding ways to protect PUFA from
ruminal biohydrogenation would be an important step to
increase the PUFA content of beef. Trying to protect
PUFA through feed processing [57] or by chemical treat-
ment (e.g., feeding calcium salts or amides of fatty acid)
have met with limited success [58, 59]. Significant ruminal
bypass of PUFA has been achieved by Scott and co-
workers in Australia when using formaldehyde-treated ca-
sein to encapsulate oils [60], and more recently this has
been extended to include long-chain n-3 fatty acids [61].
The higher content of PUFA can, however, lead to changes
in beef sensory characteristics [62], but oxidative stability
has been in part offset by vitamin E supplementation [61].
Encapsulating oils has been noted to be expensive, but the
process has also been applied to oilseeds to reduce costs
[60]. Encapsulation is certainly an area that could benefit
from additional investigation, particularly for n-3 fatty acid
rich oilseeds such as flaxseed.
Feeding PUFA rich oils or oilseeds in combination
with forage versus concentrate-based diets can also have
differing effects on the fatty acid composition of beef.
Labrune et al. [63] found increased contents of ALA in
beef when feeding flaxseed together with corn, which
may have been related to effects of low pH on ruminal
lipolysis, the first committed step leading to biohydro-
genation [64]. In contrast, when Aldai et al. [65, 66] fed
3% soybean oil in a barley grain-based diet with barley
straw as the forage source, there was a preferential accu-
mulation of trans10-18:1 in beef at the expense of VA
and RA. Supplementing grazing heifers with concentrate
fortified with vegetable oils (sunflower or linseed oil) led to
remarkable increases in VA and RA in lean beef and adi-
pose tissue [67], but no appreciable increases in VA or RA
were found by Kronberg et al. [68] when supplementing
steers with flaxseed on pasture. Feeding flaxseed or sun-
flower seed with either grass-hay or red clover silage-based
diets did, however, result in accumulations of VA and RA
[69]. In addition, feeding flaxseed supplemented diets re-
sulted in accumulation of BHP specific to ALA, notably
trans 13/14-18:1, trans11,cis15-18:2, trans11,cis13-18:2 and
cis9,trans11,cis15-18:3. Accumulations of BHP specific to
ALA were reduced when feeding flaxseed together with
barley silage compared to grass hay [70].
The quantity and type of forage in cattle diets can be

keys to increasing BHP with potential influences on hu-
man health. Forage-based diets can promote rumen con-
ditions conducive to VA and RA synthesis. Furthermore,
they appear to influence the final step in PUFA biohy-
drogenation to 18:0, resulting in a differences in BHP
outflow from the rumen. In addition to adding forage to
the diet, there are some indications that the final step in
PUFA biohydrogenation to 18:0 can also be influenced
by other means. Long-chain n-3 fatty acids found in fish
oil or marine microalgae can inhibit the final step in
PUFA hydrogenation to 18:0 [71], but the effects may be
variable depending on the composition of the basal diet
[72, 73]. In addition, some plant secondary metabolites
such as tannins [74], saponins [75] and polyphenol oxi-
dase products [76, 77] have potential to interfere with
the final step of ruminal biohydrogenation. In the future,
there may also be opportunities to influence ruminal
biohydrogenation using direct fed microbials, as several
bacterial species with biohydrogenation activity have
been indentified [78] and several others have recently
been associated with deposition of high and low levels of
VA in adipose tissue when feeding steers either flaxseed
or sunflower seed [79].

Genetic and metabolic influences on beef fatty acid
composition
As previously mentioned, the amount of intramuscular
fat influences the fatty acid composition of beef because
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of increases in SFA deposition as total fat increases [35].
Beyond this, fatty acid composition has been noted to
have low to moderate heritability [47, 80, 81, 30], but ef-
forts to use genetic selection to improve beef fatty acid
composition have been limited for a number of reasons
[30]. First, fatty acid composition is not a single trait and
it is not clear at present the type or number of fatty
acids or their derived parameters that should be in-
cluded as criteria in a breeding program. Second, if the
PUFA/SFA ratio is one criterion for selection, the favor-
able correlation with reduced fatness suggests that an
improved PUFA/SFA ratio can probably be more easily
obtained by selecting for lower fatness versus direct se-
lection for individual fatty acids. Third, measuring fatty
acid composition on a large number of animals for
breeding value estimation would be expensive using con-
ventional techniques (i.e., gas chromatography). Beyond
conventional breeding strategies, however, recent devel-
opments in genomic technologies have provided oppor-
tunities for marker-assisted selection. Single nucleotide
polymorphisms (SNPs) have been found for a number of
candidate genes involved in fatty acid metabolism
[82–85]. A 54 k single nucleotide polymorphism (SNP)
chip has also now been used to investigate possibilities
for marker-assisted selection of multiple traits from
basic meat quality to nutritional composition including
mineral and fatty acid composition [86]. Greater ad-
vances in the area may thus be on offer with >54 k chips,
and with this, the potential for finding quantitative trait
loci (QTL) and identify specific genes associated with
variation in fatty acid composition. Rapid and low cost
fatty acid analysis is, however, needed to match the pace
of development in genomic technologies (higher speed
genotyping at lower and lower costs). Along this line,
the use of newer non-destructive technologies, such as
near infra-red spectroscopy (NIRS), to measure beef
fatty acid composition have shown promise [87–89],
with the ability to predict the content of a number of
fatty acids in beef fat related to human health. Further
study of fatty acid synthesis and metabolism in beef cat-
tle at the fundamental biochemical and molecular levels
is also required to help explain breed, inter-animal and
tissue (e.g., adipose vs. muscle) differences. Understand-
ing these differences would then allow opportunities to
identify physiological and nutritional factors that influ-
ence gene expression and enzyme activity, providing
additional avenues to improve beef fatty acid compos-
ition [90].

Regulations, recommendations and delivery of PUFA and
PUFA-BHP in beef
In the past 10–15 years, manipulating the PUFA and
PUFA-BHP content of beef has been intensively investi-
gated. However, to be of practical importance for the
industry (1) the profiles and concentrations needed for
health benefits must be defined (2) requirements estab-
lished and (3) source and health claims generated [37].
More importantly, consumers should be informed about
potential health benefits of consuming beef products
enriched with PUFA or PUFA-BHP. How nutrient
source and health claims are handled vary from country
to country, and in some countries basic nutritional label-
ling of foods is not even required [91]. Some countries
have an agency that regulates the use of health claims
(for example, Health Canada in Canada, the Food and
Drug Administration in the USA, The Ministry of
Health, Labour, and Welfare in Japan, the Korean Food
and Drug Administration, the State Food and Drug
Administration in China, the Food Control Department
in Singapore and the Department of Health in South
Africa). Historically, some governments permitted health
claims but left it up to private interests to regulate their
use (United Kingdom and Sweden). Other countries
have decided to cooperatively develop regulations to-
gether on health and nutrition claims (e.g., the European
Union, Australia and New Zealand). Given the between
country differences, the present review focuses on fatty
acid claims permitted in Canada, USA and the European
Union as examples of what similarities and differences
exsist between countries even when claims are permitted.
Currently, for fatty acids of greatest interest (i.e.,n-3

and certain PUFA-BHP), source claims can only be
made for n-3 fatty acids in Canada, the USA and the
European Union. In Canada, a source of n-3 fatty acids
has to have at least 300 mg of total n-3 fatty acids per
100 g serving [92]. In the USA, foods with ≥ 160 mg or ≥
320 mg ALA can be referred to as a “source” or “rich” in
ALA, and no claims can be made for EPA or DHA [93].
In the European Union, foods with 300 mg ALA or
40 mg combined EPA and DHA per 100 g can be labeled
as a source of n-3 fatty acids, and foods with 600 mg
ALA or 80 mg combined EPA and DHA per 100 g can
be labeled as rich in n-3 fatty acids [94]. Meeting the
label requirements for different markets thus require dif-
ferent production strategies.
Irrespective of requirements for each country, it has

been difficult to achieve target amounts of n-3 fatty
acids in lean beef [95]. LaBrune et al. [63] reached a
high of 2.1% ALA in lean beef when feeding flaxseed in
a corn-based diet. Estimating 4–6% fat in lean beef, a
yield of 84–126 mg ALA per 100 g serving would have
been achieved. In pork chops from pigs fed flaxseed,
inclusion of some level of external trim fat is required
to meet labeling requirements for an n-3 source claim
in Canada [96]. Consequently, with slightly more marb-
ling fat or inclusion of a small amount of external trim
fat in a serving, the beef from LaBrune et al. [63] may
have been able to reach a source claim in the USA (i.e.,
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160 mg of ALA per serving). Although most studies
have not been able to exceed 2% ALA in lean beef fatty
acids even when feeding supplemental flaxseed
[97–102, 69, 70, 103], there may still be potential to
achieve claims in ground beef and further processed
beef products. For example, Nassu et al. [70] estimated
regular (30% fat) ground beef from flaxseed fed cows
would have contained as much as 339 mg of total n-3
fatty acids per 4 oz (114 g) serving. On the other hand,
in Europe, meeting a source claim for combined EPA
and DHA would be very difficult without feeding some
form of protected long-chain n-3 fatty acids [61, 23], al-
though some success has been achieved when feeding fish
meal as opposed to fish oil [104]. Again, there would be
some potential for a source claim in the EU for ground
beef when feeding flaxseed, but only if DPA could be in-
cluded with EPA and DHA as a long-chain n-3 fatty acid,
as is the case in Australia and New Zealand [105], and
South Africa [106]. For example, Nassu et al. [70] esti-
mated regular (30% fat) ground beef from flaxseed fed
cows would contain as much as 39.4 mg EPA +DPA +
DHA per 4 oz (114 g) serving. Consequently, there are
definite possibilities to produce beef capable of entering
the n-3 fatty acid-enriched market. However, the eco-
nomic feasibility will depend on balancing the consumer’s
willingness to pay for the enhanced nutritional attributes
versus the cost of production [107, 108]. Hence research
geared to reliably and cost effectively enhance fatty acid
composition is of relevance.
Beyond n-3 fatty acids, the greatest potential for

enriching beef with healthful fatty acids is likely with
PUFA-BHP, specifically VA and CLA. In 2005, Dhiman
et al. [109] estimated a serving (100 g) of beef steak
enriched with CLA would provide about 41 mg of CLA,
and taken together with other foods (mainly whole milk
and cheese) would exceed the 300 mg of CLA per day
calculated to be required to reduce the incidence of can-
cer in humans [110]. The major isomer of CLA is RA
with its precursor, VA, having a 19% conversion effi-
ciency in humans [111]. Based on RA equivalents (RA +
0.19*VA), Sofi et al. [112] found humans consuming
cheese providing 203 mg RA equivalents per day elicited
favorable changes in atherosclerotic markers. Consump-
tion of between 200 and 300 mg RA equivalents, there-
fore, seems to be a reasonable estimate for the amount
of RA needed to elicit positive effects on human health.
Consumption of 200–300 mg RA is considerably less
than the 3.4 g per day thought to be required to induce
a reduction in body fat [113]. Recent results indicate
enriched beef may be able to provide substantially more
than the 41 mg CLA per day as estimated by Dhiman
et al. [109]. Noci et al. [67] supplemented pastured
heifers with sunflower oil yielding ~127 mg RA equiva-
lents per 100 g serving of lean beef. Mapiye et al. [69]
feeding rolled flaxseed together with red clover silage
also produced lean beef with 173 mg RA equivalents per
100 g serving. Using a similar feeding strategy in a follow
up study Mapiye et al. [102] only produced 29 mg RA
equivalents in lean beef, but from the same experiment,
Turner et al. [114] produced hamburgers made with
20% perirenal fat that contained 319 mg RA equivalents
per 100 g serving. In addition, these hamburgers con-
tained 49 mg of cis9,trans11,cis15-18:3 and 224 mg of its
precursor trans11,cis15-18:2. Such alterations in fatty
acid profile could add further value to the hamburgers if
the health effects of these fatty acids are similar to plant-
derived conjugated linolenic acid isomers [115, 116].
However, for any of the PUFA-BHP, their health value in
beef still needs to be recognized by regulatory author-
ities, and recommended intakes need to be defined
before requirements for enrichment levels can be estab-
lished. Subsequent to this, studies would still be neces-
sary to define/refine cost effective production strategies
to produce beef with required and consistent enrich-
ments of various PUFA-BHP.
Conclusions
1) Early investigations linking SFA intake with diet-
related diseases in humans led to recommendations
that consumption of red meat, including beef, should
be reduced. Changes in dietary patterns that ensued did
not lead to improvements in health, but instead led to
increases in prevalence of obesity and type II diabetes.
2) Recommendations to reduce red meat intake still
persist, but some recent evidence indicates this may
not always be justified. 3) Beef can be an important
source of LC n-3 fatty acids, and the potential to in-
crease these should be a research priority. Research
should be at the feeding level, but also at the funda-
mental level in understanding and potentially capitaliz-
ing on differences in pathways for LC n-3 fatty acid
synthesis. In addition, recent evidence suggests the rec-
ognition of DPA, as well as EPA and DHA, as a dietary
source of LC n-3 fatty acids, may be justified. 4) The
complexity of beef fat composition may also have un-
tapped potential in the form of PUFA-BHP. Although,
the concentration of many PUFA-BHP can be quite
low, methods to selectively increase or decrease these
fatty acids have not been thoroughly investigated. 5) All
told, given the complexity and differences in fatty acid
composition within beef carcass fat depots (e.g.,
intramuscular fat versus subcutaneous fat) and the
differences in beef product fat content and source, rec-
ommendations for beef consumption should not be
generalized. Rather these recommendations need to
evolve as our knowledge of individual and combined
health effects of beef fatty acids develop.
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The health effects of some fatty acids (e.g., n-3) are
known, and recommended intakes have been defined,
leading to opportunities to make enrichment claims in
beef. For other fatty acids (e.g., PUFA-BHP), the need
for these in the human diet still needs to be accepted by
regulatory authorities and source claims developed.
Once source claims are possible, production of PUFA-
BHP enriched beef could move from proof of concept
towards development/refinement of economically feas-
ible production strategies.
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