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Abstract

These remarks are based on a talk the writer gave at the 11th International
Conference in Fixed Point Theory and Applications, held at Galatasaray University in
Istanbul, Turkey, July 20-24, 2015. They represent selected thoughts on a career in
research, largely devoted to metric fixed point theory, that has spanned over 50 years.

1 Introduction

This is not intended to be a review of ‘metric fixed point theory’ from its inception, but
rather an overview of the emergence of the theory as I experienced it over the past 50
years.

As many know, in 1965 I published a paper that had a clear impact on the development
of ‘metric’ fixed point theory. In these remarks I will discuss how this paper emerged, as
well as the early days of my research and selected topics that I have studied throughout the
years. I was trained as a geometer. However, my very earliest research had a fixed point
theory component. I then ventured into functional analysis, and later became interested
in the logical underpinnings of certain aspects of the theory. Later my research largely
came full circle back to the study of fixed point theory in geodesic spaces.

Throughout this discussion ‘Goebel-Kirk, ‘Khamsi-Kirk, and ‘Kirk-Shahzad’ will refer,
respectively, to the following books:

+ K Goebel, WA Kirk, Topics in metric fixed point theory. Cambridge Studies in

Advanced Mathematics, 28. Cambridge University Press, Cambridge, 1990.
viii+244 pp.

+ MA Khamsi, WA Kirk, An introduction to metric spaces and fixed point theory. Pure

and Applied Mathematics (New York). Wiley-Interscience, New York, 2001.
x+302 pp.

+ WA Kirk, N Shahzad, Fixed point theory in distance spaces. Springer, Cham, 2014.

xii+173 pp.

The present discussion will involve only some aspects of metric fixed point theory as
it has developed over the years. The questions of what has been accomplished is clear;
what remains to be done is less clear. It is perhaps noteworthy that this year (2015) marks
the 25th anniversary of the appearance of the Goebel-Kirk book and the 50th anniversary
of the appearance of my 1965 fixed point theorem on nonexpansive mappings (discussed
below).

I first turn to some of the history of fixed point theory conferences.
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2 Conferences

The Istanbul conference was the 11th in a series of conferences entitled ‘Fixed Point The-
ory and its Applications’ This series is devoted mainly to metric and functional analytic
aspects of the theory. It is noteworthy that the inaugural conference in this series was 26
years ago. Since then, conferences in this series have been held every 2-4 years throughout
the world.

The metric/functional analytic series:

France (Marseille, 1989) [Jean-Bernard Baillon, Michel Théra],

Canada (Halifax, 1991) [S Swaminathan, K-K Tan],

Spain (Seville, 1995) [Universidad de Sevilla, José Maria Ayerbe, et al.],

Poland (Kazimierz Dolny, 1997) [K Goebel, S Prus, T Sekowski, A Stachura],
Israel (Haifa, 2001) [Simeon Reich],

Spain (Valencia, 2003) [Jesus Garcia Falset, Enrique Llorens Fuster],

Mexico (Guanajuato, 2005) [Helga Fetter Nathansky, Berta Gamboa de Buen],
Thailand (Chiang Mai, 2007) [S Dhompongsa, Suthep Suantai, Bancha Panyanak],
Taiwan (Changhua, 2009) [Lai Jiu Lin],

Romania (Cluj-Napoca, 2012) [Adrian Petrusel, et al.],

Turkey (Istanbul, 2015) [Erdal Karapinar].

Fortunately I have been able to attend (and give talks) at each of the above conferences.
As far as I know only two others, Kazimierz Goebel and Brailey Sims, can say this as well.

It will be apparent from the remarks below that in the early days more well established
topologists promoted fixed point theory as an independent discipline and expanded the
scope of their conferences accordingly. My first introduction to a conference devoted ex-
clusively to fixed point theory, in fact probably the very first such conference, was 40 years
ago. This was a seminar on ‘Fixed Point Theory and its Applications’ held in Halifax, Nova
Scotia, June 9-12,1975. This seminar was sponsored jointly by the Canadian Mathematical
Congress and Dalhousie University. Geometrical aspects of fixed point theory were em-
phasized, although some topological and analytical aspects were also discussed. In 1975
there were so few people working in fixed point theory that at that time the theory had
not separated into two branches - ‘metric’ and ‘topological-order theoretic’ It is not clear
to me just how or when this separation occurred, but I think over time so many people
began working fixed point theory a single conference devoted to all aspects of the theory
had become unmanageable.

Throughout the discussion I will mention the names of several mathematicians, some
likely unknown to younger mathematicians today. However in many ways these people
had an impact on development metric fixed point theory.

There were 38 participants in the 1975 Halifax conference, among them:

Felix Browder (Chicago),

Kim-Peu Chew (Malayasia),

MM Day (Illinois),

Michael Edelstein (Dalhousie),
Andrzej Granas (Montreal),

LA Karlovitz (Maryland),

WA Kirk (Iowa),

V Lakshmikantham (Arlington, TX),
Anthony To-Ming Lau (Alberta),
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Heinz-Otto Peitgen (Bonn),

WYV Petryshyn (Rutgers, NJ),

] Reinermann (Aachen, Germany),

R Schoneberg (Aachen, Germany),

S Swaminathan (Dalhousie) (the conference organizer),
Kok Keong Tan (Dalhousie),

Chi Song Wong (Windsor).

Among the main speakers at this conference were Felix Browder,® MM Day, A Granas,
and V Lakshmikantham.

My talk at the Halifax conference was entitled: ‘Caristi’s Fixed Point Theorem and the
Theory of Normal Solvability’ One of Felix Browder’s talks at this conference was enti-
tled: ‘On a theorem of Caristi and Kirk! The point of Browder’s talk was to give a proof of
Caristi’s theorem which, in contrast to Caristi’s original proof, ‘avoids the use of transfi-
nite induction completely’ The theory of normal solvability has been long forgotten, but
certainly the study of Caristi’s theorem and its extensions lives on. We discuss Caristi’s
theorem in more detail below. The proceedings of the Dalhousie conference were pub-
lished in:

Fixed point theory and its applications. Proceedings of the seminar held at Dalhousie
University, Halifax, N. S., June 9-12, 1975. Edited by Srinivasa Swaminathan. Academic
Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. xiii+216 pp.

There were two other noteworthy conferences devoted exclusively to fixed point the-
ory prior to the current ‘metric’ series. The first was a Seminar on Fixed Point Theory
held at the Mathematics Research Institute at Oberwolfach, Germany, September, 1977.
Again participants included both people working in functional analysis and topology. The
organizers were topologists: Albrecht Dold and Edward Fadell. Many of the Halifax partic-
ipants were there, as well as many additional participants from Europe. Here is a complete
list of participants, taken from the official ‘Teilnehmer’ of the conference:

] Alexander (College Park),
JC Becker (West Lafayette),
H Bell (Cincinnati),

DG Bourgin (Houston),
RF Brown (Los Angeles),
FR Cohen (De Kalb),

G de Cecco (Lecce),

K Delinic (Heidelberg),

A Dold (Heidelberg),

] Dugundgi (Los Angeles),
W End (Heidelberg),

H Engl (Linz),

D Erle (Dortmund),

E Fadell (Madison),

CC Fenske (Giessen),

M Feshbach (Evanston),

G Fournier (Sherbrooke),
FB Fuller (Pasedena),

H Glover (Columbus),
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K Goebel (Lublin),
DH Gottleib (West Lafayette),
B Halpern (Bloomington),
KA Hardie (Rondebosch),
SY Husseini (Madison),
J Jawoworski (Bloomington),®
RP Jerrard (Coventry),
WA Kirk (Iowa City),
R] Knill (New Orleans),
] Matkowski (Bielsko-Biata),
M Nakaoka (Osaka),
] Pak (Detroit),
H-O Peitgen (Bonn),
WYV Petryshyn (New Brunswick),
C Prieto (Heidelberg),
M Prieto (Heidelberg),
D Puppe (Heidelberg),
] Reinermann (Aachen),
H Schirmer (Ottawa),
R Schoneberg (Aachen),
W Singhof (Kéln),
V Stallbohm (Aachen),
H Steinlein (Miichen),
H Ulrich (Heidelberg),
E Vogt (Heidelberg),
F Wille (Kassel),
TJ Wilmore (Durham).
In his Oberwalfach Abstract, quoted below, Goebel called attention to a surprising
anomaly in the stability of the fixed point property of nonexpansive mappings.

‘Irregular convex sets with the fixed point property for nonexpansive mappings’

Let X be a Banach space and let C C X be a convex closed and bounded set. It is
known that the fixed point property for nonexpansive mappings depends strongly
on some ‘nice’ geometrical properties of the set C (such as, e.g., uniform convexity,
normal structure). The aim of this lecture is to show examples of singularities occur-
ring in this field. The examples of sets having f.p.p. which do not satisfy all known
and commonly used regularity conditions are given. One of the constructions shows
a decreasing sequence C, of closed convex subsets of £' such that Cy,,,1 has and Cy,,
does not have the fixed point property. The intersection of all the C,,’s may or may
not have the fixed point property up to our choice.

These results were subsequently published in the paper:
K Goebel, T Kuczumow, Irregular convex sets with fixed-point property for
nonexpansive mappings. Colloq. Math. 40 (1978/79), no. 2, 259-264.
My Oberwolfach Abstract highlighted a subtle connection between fixed point theory
for nonexpansive mappings and the seemingly unrelated ‘accretive’ mappings.
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‘Fixed point theorems for nonexpansive mappings in Banach spaces’

Let E denote a real Banach space and D C E. A mapping T : D — E is said to be non-
expansive if || Tx — Ty|| < |lx — y|, x,¥ € D. It has been known since 1967 that a firm
link exists between the fixed point theory for nonexpansive mappings and mapping
theory for accretive mappings. (A mapping f : D — E is called accretive if Yu,v € D,
{f(u) = f(v),j) = O for some j € J(u — v) where ] : E — 2E" denotes the normalized
duality mapping defined by j € J(x) < (x,/) = ||x||* = ||jl|?, x € E.) A technique due
to Felix Browder combined with a result of RH Martin, Jr. directly implies the fol-
lowing. Theorem. Suppose E has the property: (i) bounded closed convex subsets of E
have the common fixed point property with respect to commuting families of nonex-
pansive mappings. Then every continuous accretive mapping f : E — E which satisfies
If @) || = oo as ||x|| — oo is surjective. R Schoneberg and the speaker have recently
shown that condition (i) may be weakened to (ii): Closed balls in E have the fixed point
property with respect to nonexpansive self-mappings. Recent results of Karlovitz and
Goebel show that (ii) may hold while (i) fails.

A paper based on my abstract subsequently appeared in:

WA Kirk, R Schoneberg, Zeros of m-accretive operators in Banach spaces. Israel J.
Math. 35 (1980), no. 1-2, 1-8.

Another conference that had an important impact on metric fixed point theory was one
entitled ‘Fixed Point Theory and held in Sherbrooke, Quebec, Canada, June 2-21, 1980.
This conference was organized by the topologists Edward Fadell and Gilles Fournier, and
the following were among the listed participants (this is only a partial list). As before, note
the mixture of people specializing in functional analysis and in topology. However, the
increase in the number of participants working in functional analysis is apparent. Unfor-
tunately, several of the people listed here (and elsewhere) are now deceased:

JC Alexander,

Felix Browder,
Robert F Brown,
Edward Fadell,
Gilles Fournier,
Lech Gorniewicz,
Jean Pierre Gossez,
Benjamin Halpern,
George Isac,

Jan Jaworowski,
WA Kirk,

Enrique Lami Dozo,
Mario Martelli,
Silvio Massa,

Roger D Nussbaum,?
Heinz-Otto Peitgen,
Walter Petryshyn,
William O Ray,

BE Rhoades,

Helga Schirmer,



Kirk Fixed Point Theory and Applications (2015) 2015:215 Page 6 of 17

Robert Sine,
Sankatha P Singh,
Heinrich Steinlein.

The proceedings of the Sherbrooke conference were published in:

Fixed point theory. Proceedings of a Conference held at the Université de Sherbrooke,
Sherbrooke, Que., June 2-21, 1980. Edited by Edward Fadell and Gilles Fournier.
Lecture Notes in Mathematics, 886. Springer, Berlin, 1981. xii+511 pp.

There have been a number of conferences over the years which, although not devoted ex-
clusively to fixed point theory, have had significant fixed point theory components. I men-
tion five that I attended. The first of these was the 31st Summer Research Institute of the
American Mathematical Society held at the University of California, Berkeley from July 11
to July 29, 1983. The scope of this symposium, chaired by Felix Browder, was very broad,
but many talks were devoted to fixed point theory. The proceedings were published in the
two volumes of the AMS Proceedings of Symposia in Pure Mathematics (vol. 45, parts 1
and 2),1986. The second was the NATO Advanced Study on Nonlinear Analysis and Fixed
Point Theory, in Maratea, Italy, April 1985, organized by Sankatha P Singh (1937-2013) of
Memorial University of Newfoundland. This was a major conference and, as in the past,
fixed point theory was a generic term encompassing both the topological and functional
analytic aspects of the theory. The main speakers were: ] Alexander, H Berestycki, Felix
Browder, Edward Fadell, K Geba, ] Ize, JM Lasry, JM Mawhin, CA Stewart, and ] Toland.
The proceedings of the Maratea conference appear in:

Nonlinear functional analysis and its applications. Proceedings of the NATO
Advanced Study Institute held in Maratea, April 22-May 3, 1985. Edited by SP Singh.
NATO Advanced Science Institutes Series C: Mathematical and Physical Sciences,
173. D Reidel Publishing Co., Dordrecht, 1986. xii+418 pp.

Later I attended conferences sponsored by the International Federation of Nonlinear
Analysts, an organization founded by V Lakshmikantham.® All of these conferences had
sessions devoted exclusively to fixed point theory. The IFNA conferences that I attended
were: The Second World Congress, Athens, Greece, July 1996; The Third World Congress,
Catania, Italy, July 2000; The Fourth World Congress, Orlando, Florida, July 2004.

3 Early work - geodesic geometry
I received my PhD degree at the University of Missouri in 1962 under the supervision of
Leonard M Blumenthal.f As a result I turned to geometry as I began my research career.
Soon after accepting my first appointment at UC Riverside I became fascinated by a class
of geodesic spaces introduced by the geometer Herbert Busemann.8

A G-space R in the sense of Busemann (The Geometry of Geodesics, Academic Press,
New York, 1955) is a metric space which is (i) finitely compact (or proper, i.e., bounded
closed sets are compact), (ii) metrically convex, and for which (iii) prolongation is locally
possible and unique.

Precisely, (iii) means that to every point p € R there corresponds a number p, > 0 such
that if x, y € U(p; p,) (the open ball) with x # y there exists a point z € R, z # y, for which

d(x,y) +d(y,z) = d(x,2),

and moreover, if d(x,y) + d(y,z1) = d(x,z1) and d(x,y) + d(y,z3) = d(x,z,), then d(y,z;) =
Ay, z0) = z1 = 2.
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A mapping ¢ of a G-space R onto itself is called a local isometry if for every p € R there
exists a number 7, > 0 such that ¢ maps the open ball U(p; n,,) isometrically onto the ball
U(p(p); np). The following fact is almost immediate.

A locally isometric mapping of a G-space onto itself is a motion (surjective isometry) if
and only if it is one-to-one (bijective).

This led Busemann to pose the following problem (see p.405, (27) of Busemann’s book).

Problem Find conditions, in particular conditions applying to an ordinary cylinder, under
which a non-compact G-space has the property that every locally isometric mapping of the
space onto itself is a motion.

I soon discovered a solution to Busemann’s problem which led to my very first published
paper:
WA Kirk, On locally isometric mappings of a G-space on itself, Proc. Amer. Math.
Soc. 15 (1964), 584-586.
In this paper I first proved the following ‘fixed point’ result.

Theorem 1 A locally isometric mapping of a G-space onto itself which has a fixed point is
a motion.

The group of motions of a G-space is said to be tranusitive if given any two points of the
space there is a motion of the space that maps one into the other. Busemann had noted
that among two-dimensional G-spaces, it is known that the cylinder (and torus) with a
Minkowskian metric has a transitive group of motions.

Therefore the following simple application of Theorem 1 provides an affirmative answer

to Busemann’s problem.

Theorem 2 If a G-space R has a transitive group of motions then every locally isometric
mapping of R onto itself is a motion.

Proof Let ¢ be alocally isometric mapping of R onto itself, let p € R, and let 4/ be a motion
of R such that ¥ o ¢(p) = p. Then by Theorem 1 ¥ o ¢ is a motion and hence one-to-one.
This trivially implies ¢ is one-to-one; hence a motion. O

The proceedings paper was submitted in March, 1963 and it appeared in print in August,
1964. (At that time such a lapse between submission and publication was typical.)

4 Nonexpansive mappings in Banach spaces

A closed convex subset K of a Banach space is said to have normal structure [1] if, given
any convex subset H of K consisting of more than one point, there exists a nondiametral
point in H, that is, there exist a point p € H and a positive number r < diam(H) such that

H C B(p;r).
A mapping T : K — K is said to be nonexpansive if for each x,y € K, |[T(x) — T(y)|| <

llx = yll.
Here is a statement of my 1965 fixed point result.



Kirk Fixed Point Theory and Applications (2015) 2015:215 Page 8 of 17

Theorem 3 Let K be a bounded closed convex subset of a reflexive Banach space, and
suppose that K has normal structure. Then every nonexpansive mapping T : K — K has
at least one fixed point.

There is a little history associated with this theorem. While at UC Riverside (where I
proved Theorem 3) a colleague of mine, Hajimu Ogawa, with whom I had discussed my
theorem, attended a lecture given by Felix Browder at UC Berkeley. When Ogawa returned
he told me that Browder had announced a theorem that sounded very similar to the one I
had told him about. I sent Browder a preprint of my paper and he immediately replied that
we had indeed hit upon the same idea. He said he would refer to my paper in a footnote to
his paper (which he did), and that his paper was scheduled to appear soon in the Proceed-
ings of the National Academy of Sciences. Browder’s theorem was the same as mine except
that he assumed that the space was uniformly convex and therefore he was able to drop
the normal structure assumption.

My paper had already been accepted by the American Mathematical Monthly, but it
had languished for some time awaiting publication. I showed Browder’s letter to my De-
partment Chair, F Burton Jones." Later I found out that Jones called the Managing Editor
of the Monthly (FA Ficken) and that Ficken apparently had arranged to expedite publi-
cation of my paper. It turned out that my paper and Browder’s appeared simultaneously
in 1965 avoiding any question of priority. Subsequently, Browder and I discovered that
Dietrich Gohde of Leipzig (East Germany at that time) had also proved that uniformly con-
vex Banach spaces have the fixed point property for nonexpansive mappings. Remarkably,
Gohde’s paper also appeared in 1965. Regarding the three proofs, my proof and Browder’s
were quite similar, both relying on an application of Zorn’s lemma, while G6hde’s was
somewhat more constructive.

The relevant papers are:

FE Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad.
Sci. U.S.A. 54 (1965), 1040-1044.

D Gohde, Zum Prinzip der kontraktiven Abbildung. (German) Math. Nachr. 30
(1965), 251-258.

WA Kirk, A fixed point theorem for mappings which do not increase distances. Amer.
Math. Monthly 72 (1965), 1004-1006.

I have been more adept at identifying open problems than solving them. In the early days
interest in metric fixed point theory was tied exclusively to the theory of Banach spaces.
More abstract theories had yet to emerge.

The first problem I identified involved the necessity of ‘normal structure’ in the fun-
damental existence theorem for nonexpansive mappings in weakly compact sets. It was
shown early on that the answer is negative. A second problem that arose early (see [2])
was whether a commutative family of nonexpansive mappings under the assumption of
Theorem 3 always has a common fixed point. This was answered in the affirmative a few
years later, independently, by Teck-Cheong Lim' and RE Brucki [3, 4].

5 The 1995 Seville workshop

In my talk at the Seville conference [5], the third in the present metric series, I mentioned
a number of open problems in Banach space fixed point theory, many of which remain
open to this day.
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It is gratifying to see that some people are still working on these problems despite the
somewhat understandable tendency of people to shy away from such problems out of con-
cern that they might be too difficult. However, over the years there has been progress, some
of which I summarize below. We say that a Banach space satisfies FPP (resp. weak FPP)
if every bounded closed convex (resp. weakly compact convex) subset of X has the fixed
point property for nonexpansive self-mappings. We only mention progress on problems

discussed in [5] subsequent to the survey of Goebel-Kirk [6].
Question (IV) Can either ¢; or ¢y be renormed so that the resulting space has the FPP?

Question (VI) Does either of the following implications for a Banach space X hold?

X isreflexive < X hasan equivalent norm

relative to which X has the FPP.

In [7] T Dominguez Benavides proved that any reflexive space can be so renormed. (See
also [8].)

Question (XIV) Suppose X is a Banach space which has the property that a closed convex
subset K of X has the fixed point property for nonexpansive mappings < K is bounded.
Is X a Hilbert space?

This question has been answered. In [9] it is shown that every unbounded closed convex
subset of ¢y fails to satisfy the FPP. Earlier it had been shown [10] that a bounded closed
convex subset K of ¢y has the FPP < K is weakly compact. The fact that ¢y has the weak
FPP is of course a very deep and fundamental result of B Maurey [11].

However, as far as I know, the following question remains open to this day.

Question (XV) Does there exist an unbounded closed convex subset of a Banach space

which has the fixed point property for nonexpansive mappings?
Other fundamental questions about fixed point theory for nonexpansive mappings were

also discussed in [5]. Let X and Y be two Banach spaces and p € [1,00]. Let X @, Y denote
the product space X @ Y equipped with the norm:

| @) = (I1l? + Iy17) " if p € [0, 00);

| Ge, )] := max{ilxll, Iyll}  if p = oo.
Question (XVI) If both X and Y have the FPP, does X @, Y have the FPP?

Question (XVIII) When is the fixed point set of a nonexpansive mapping in X @, Y a

nonexpansive retract of X @, ¥?

The origin of these questions go back to 1968 [12]. Since then there have been a number

of partial results, but the basic problems seem to remain open. For more recent discussions
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of these questions, including their fundamental differences and some positive results, we
refer to [13] and [14].

6 Logical foundations

My interest in foundations, and specifically the Axiom of Choice, was stimulated by two
events. One was the fact that B Fuchssteiner [15] had recently proved that my 1965 the-
orem on fixed points of nonexpansive mappings, which made explicit use of the Axiom
of Choice via Zorn’s lemma, did in fact have a proof wholly within the basic axioms of
Zermelo-Fraenkel. The other was a brief conversation I had with the Polish mathemati-
cian Roman Marika. This conversation involved the relationship between a well-known
variational principle due to Ivar Ekeland and Caristi’s theorem. In the discussion below
R denotes the set of real numbers and R* = (0, 00). Recall that if X is a metric space, a
mapping ¢ : X — R" is said to be (sequentially) lower semicontinuous (1.s.c.) if given any

sequence {x,} in X, the conditions x,, — x and ¢(x,) — r imply p(x) <r.

Theorem 4 (E) (Ekeland, 1974 [16]) Let (X,d) be a complete metric space and ¢ : X — R*

l.s.c. Define a partial order < on X as follows:
¥<y & dxy) <ex)-90(), xyeX )
Then (X, <) has a maximal element.

Theorem 5 (C) (Caristi, 1976 [17]) Let X and ¢ be as above. Suppose f : X — X satisfies

d(xf() < o) - p(f)), xeX. o)
Then f has a fixed point.

It is easy to see that (E) < (C) in the usual sense. (See Kirk-Shahzad, Chapter 9, for the
details.) However, these two results are not logically equivalent. In particular the implica-
tion (C) = (E) invokes the Axiom of Choice (AC). In fact, N Brunner [18] has shown that
any proof of (E) requires at least the basic axioms of Zermelo-Fraenkel (ZF) plus a form of
the Axiom of Choice called the Axiom of Dependent Choices (DC), whereas R Marika has
shown in [19] that (C) holds wholly within (ZF). So from a purely logical point of view the
two theorems are not equivalent. (DC) is strictly weaker than (AC) but somewhat stronger
than the Axiom of Countable Choice. The Axiom of Dependent Choices (DC), sometimes
called the ‘Axiom of inductive definition of sequences,* appears to be essential for the de-
velopment of the foundations of functional analysis at least in the separable case (see, for
example, the discussions in [20, 21]).

In [22] Hiam Brézis and Felix Browder derived Ekeland’s theorem from an order princi-
ple which requires only ZFDC. They then obtained Caristi’s theorem as in the implication
(E) = (C) described in Kirk-Shahzad. Hence Choice is invoked at this step. However, in
Goebel-Kirk it is shown that Caristi’s theorem can be derived directly from the order prin-

ciple of Brézis and Browder without recourse to Ekeland’s theorem.
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In the chart below we list the authors of some of the very early proofs of Caristi’s theorem,
the methods, and the axioms used. For explicit citations, see Kirk-Shahzad.

Author Axioms
Caristi (1976) ZFAC
CS Wong (1976) ZFAC
Kirk (1976) ZEAC
Brgndsted (1976) ZFAC
Browder(1976) ZFDC
Brézis-Browder (1976) ZFDC
Penot (1976) ZFDC
Siegel (1977) ZFDC
Pasicki (1978) ZFAC
Marika (1988) ZF

Goebel-Kirk (1990) ZFDC

It is interesting that to this day Caristi’s theorem continues to be ‘extended and/or gen-
eralized’ Indeed, according to MathSciNet, Caristi’s name appears in the titles of over 100
papers. For a very recent extension, see Du [23]. Also it would be a huge undertaking to
see how many of the literally dozens of generalizations and/or extensions of Caristi’s the-
orem can be obtained without at least assuming (DC). At the same time many ‘extensions’
of Caristi’s theorem turn out to be rather immediate consequences of Caristi’s theorem.!
There is another fact that is of some interest. It has been known from the outset that the
validity of Caristi’s theorem characterizes metric completeness (see [24]). The same is not
true of Banach’s contraction mapping theorem. For an elaborate exposition on this topic,
see [25].

Some interest in foundations continues. For example, in Ackerman [26] one finds the
statement:

In this paper we will work in a fixed background model of Zermelo-Fraenkel set the-
ory. In general we will not use the axiom of choice unless necessary. If a result does
use the axiom of choice we will mark it by (x).

On the other hand, nonstandard approaches are extremely powerful and are frequently
employed to this day. See for example, the recent paper of Avigad and Iovino [27].

The general Axiom of Choice: Suppose F = {A,}qc; is a collection of sets with no re-
striction placed on the index set I. Thus I may be very large, especially uncountable. The
Axiom of Choice states that there is a function f : F — | J,; A« such that f(4,) € A, for
each o € I. Such a function f is called a choice function. Knowing that such a function ex-
wer Ao to be the collection of all
such choice functions. (For a more detailed discussion, see Appendix A3 in Khamsi-Kirk;
also Moore [28].)

The recent paper of Gregoriades [29] is also of interest in this regard. Versions of some of

ists, it is now possible to define the Cartesian product [

the ideas found in [29] can also be found in a paper I published with my student Tekamiil
Biiber™ over 20 years ago.

Several minimization principles are proved in Biiber-Kirk [30] that do not require the
full Axiom of Choice. In particular, Lemma 1 of [30] implies the following minimization
principle, called the Brouwer Reduction Theorem. (This is stated as Corollary 2 in [30].)
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Theorem 6 Let X be a topological space which has a countable base, let T be a family
of nonempty closed subsets of X, and suppose every descending sequence in T is bounded
below by a member of T'. Then T" has a minimal element.

The central purpose of [30] was to prove that a fundamental theorem of MA Khamsi [31]
about commutative families of nonexpansive mappings requires (in the separable case)
only (DC) rather than the full Axiom of Choice. However, another consequence of the
above theorem might be of independent interest. To this aim, we need some more defini-
tions. If (M, d) is a metric space, a family of closed subsets X of M which contains ¥ and
M and is closed under intersections is called a convexity structure. A convexity structure
is said to be countably compact if every countable family in ¥ has nonempty intersection
when each of its finite subfamilies has that property.

Forx e M and D € ¥, denote

dist(x, D) = inf{d(x,y) : y € D}
and let
P(x,D) = {z e€D:dx,z) = dist(x,D)}.

The sets {P(x,D) : x € M and D € X} are called the proximinal sets in X.
The following is an application of Theorem 6.

Theorem 7 Suppose (M, d) is a bounded metric space which possesses a countably compact
convexity structure ¥ which contains the closed balls of M, and suppose the proximinal
sets in X relative to some fixed point p € M are separable. Let T" be any family of nonempty
subsets of X which is closed under nonempty intersections. Then I has a minimal element.

7 Some bizarre thoughts - transfinite iterations

Despite the constructive approach of the preceding section, non-construcive approaches
can also be quite interesting - yielding even bizarre results. For a survey of early results in
this direction we refer to Kirk [32].

We begin with the notion of an ultranet (or universal net). The definition is simple. A net
{x,} inaset S is an ultranet if given any subset G of S, either {x,} is eventually in G or even-
tually in S\ G. Two facts are of paramount importance regarding ultranets. (1) An ultranet
in a compact topological space always converges, and (2) every net has a subnet that is an
ultranet. We refer to Kirk-Shahzad, Section 9.5 for further discussion and citations.

The following transfinite iteration process is described in [33]; see also [34]. Let I' be the
set of all countable ordinals. Think of I" as a collection of nets. It is possible to associate
with each limit ordinal @ = {y € T': y < «a} a fixed subnet {8,,q) : u(ar) € My} of o which is
an ultranet.

Specifically, M, is a directed set with

o: My, —>{Bel:B<a}

isotone and cofinal. (Denote ¢, (tty) = Bu().) Nowlet K be a weakly compact convex subset
of a Banach space and T': K — K. Fix x € K and make the inductive assumption {xg =
T#(x) : B <} has been defined. Now define T%(x) as follows:
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(@) Ifa =B +1set T%x) = TP (x) = T o TP (x).

(b) If « is a limit ordinal define T%(x) = weak-lim T% (x). (Observe that {T% (x)} is an
ultranet in X. Define T : ¢ — X by defining T'(og) = T (x). It follows that {7 (x)}
is also an ultranet.)

There is curious anomaly related to the transfinite iteration procedure described above.

This result is described in [34]; also see [33].

Theorem 8 Suppose K is a weakly compact subset of a Banach space and suppose T :
K — K is contractive in the sense that |T(x) - T(Y)|| < llx—y| if x,y e K, x #y. Fora € T
define the mappings T* as in (a) and (b). Then there exists z € K such that for each x € K,
TV (%) = z.

Since the norm in X is lower semicontinuous relative to the weak topology, if x,y € K
and if @ € T is a limit ordinal,

| 7() - T*W)|| < llx =yl

Thus the chain {||7%(x) — T%(y)||} is nonincreasing and, if T%(x) # T*(y), then || T%(x) —
T*(y)|l < llx—y|l. Since I' is uncountable, it follows that 7% (x) = T*(y) for all  sufficiently
large, from which the conclusion follows.

The following remark appears to be of particular interest.

Remark 9 The above result does not assert that z is the fixed point of 7. Indeed, it remain
an open question to this day whether a contractive mapping of a weakly compact convex
subset of a Banach space has a fixed point. However, if T does have a fixed point, then it
must be the point z whose existence is assured by Theorem 8.

There is a comment on the Kirk-Massa paper in a 1996 paper by A Melentsov [35]. I have
not read Melentsov’s paper (it is in Russian) but I quote from the Mathematical Reviews
summary. This seems to suggest that Melentsov may have identified conditions that imply
the existence of fixed points for contractive mappings.

Let K be a subset of a Banach space X. An operator 7:K — K is said to be weakly
contractive, if for every point x € K there is a number C(x) and for any sequence {x,}
with lim,,_, o X, = x there exists a number N such that || T(x) — T'(x,,)|| < C(x)]|x — x|
for all n > N. Every contractive operator is weakly contractive. The investigation of
transfinite iteration processes leads to the study of the sequence space Z(X) with
Tikhonov’s topology, to the study of fundamental and uniformly fundamental nets
in the space X(X). In Theorem 2, by using regular operators summing divergent se-
quences, necessary and sufficient conditions for the existence of a fixed point of a
weakly contractive operator are given. In particular, if T is a contractive operator,
then by a theorem of WA Kirk and S Massa [34] T(x) = z for all x € K, and by The-
orem 2, T(z) = z.

8 Two problems

There are many open problems in metric fixed point theory, but two have frustrated me
over the years because of their simplicity and yet seeming intractability. The first is sug-
gested by Remark 9 in the preceding section.
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Problem 10 Does a weakly compact convex subset K of a Banach space have the fixed
point property for strictly contractive mappings (that is, mappings T : K — K for which
ITG) =TI < llx=yll, %y € K, x#y)?

Another problem involves approximate fixed point sequences. It is well known that if
K is a bounded convex subset of an arbitrary Banach space (or normed space) and if T :
K — K is nonexpansive, then there is a sequence {x,} in K for which |x, — T(x,)|| = 0
as 1 — oo. This can be seen by simply uniformly approximating T with a sequence of
contraction mapping having Lipschitz constants approaching 1. Thus for each ¢ > 0,

F.(T):= {x eK: ||x— T(x)” < 8} Z0.

Problem 11 IfK isa bounded (closed) convex subset of a Banach space and if T, G : K — K
are commuting nonexpansive mappings, is it the case that for each ¢ > 0,

F.(T)NF.(G)#??
For a discussion of some of these and related problems, see [36, 37].

9 Further reflections

Throughout most of my career my research has been primarily focused on metric fixed
point theory in a functional analytic setting. However, I have always had a lingering inter-
est in geodesic spaces, and in 2003-2004 I published two articles [38, 39] on fixed point
theory in the so-called CAT(0) spaces. These papers, along with my early collaboration
with R Espinola, appear to have stimulated a large amount of on-going research in this
setting. Some of this research merely takes advantage of the ‘Hilbert space’ geometry one
finds in CAT(0) space thus leads to the adaptation of known Hilbert space arguments with
little change. However, one of the primary obstacles in branching out to CAT(0) spaces is
the absence of a well-understood ‘weak’ topology in such spaces. This has been at least
partially remedied by the introduction of the notion of A-convergence in [40]. In fact, it
appears that A-convergence may be sufficient to carry out the transfinite iteration process
of Theorem 8 (see [41]). A summary of this aspect of my research is found in Kirk-Shahzad,
Chapter 9.

In reflecting on my overall career, I must call attention to my long collaboration with
Kazimierz Goebel. My first encounter with Kaz was during the academic year 1971-72,
when he visited the University of lowa under the aegis of a Ko$ciuszko Foundation fellow-
ship. During this visit we introduced the often cited concept of an asymptotically nonex-
pansive mapping to the literature. Later, on a subsequent visit by Goebel to Iowa in 1989,
we completed the manuscript for our signature book: Topics in Metric Fixed Point Theory.

Over the years I have made several visits to UMCS in Lublin, Poland, and one of the
singular highlights of my career occurred during such a visit in June, 2001. Kaz Goebel ar-
ranged for me and our Australian friend, Brailey Sims, to travel with him and his colleague,
Yuri Kozitsky, to the historic city Lwéw (now Lviv, in Ukraine) where Stefan Banach spent
most of his life. While in Lwéw we had an opportunity to visit Banach’s grave, and the
building that housed the famous ‘Scottish Cafe’ Brailey subsequently described this jour-
ney in an eloquent article he published in the Australian Mathematical Gazette (see [42]).
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Endnotes
3 Felix Browder is regarded as the founder of a branch of analysis called ‘Nonlinear Functional Analysis. In his book
Nonlinear operators and nonlinear equations of evolution in Banach spaces (Nonlinear functional analysis (Proc.
Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Il 1968), pp. 1-308. Amer. Math. Soc., Providence, R. I, 1976) he singles
out the monotone, nonexpansive, and accretive mappings for special study.

Browder was born in 1928 in Moscow. He received his PhD degree from Princeton University at the age of 20
under the supervision of Solomon Lefschetz. He spent many years at the University of Chicago, serving as
Department Chair from 1971 to 1976 and again from 1979 to 1985 before moving to Rutgers University in 1986 as
vice president for research. Two of his Chicago PhD students, Ronald E Bruck and Roger D Nussbbaum, are
mentioned elsewhere in this article.

For an interesting brief biography of Felix Browder’s personal life, go to: http://www-history.mcs.st-and.ac.uk/
Biographies/Browder_Felix.html.

Benjamin Halpern is well known in metric fixed point theory for introducing the Halpern iteration scheme. This
scheme was alluded to numerous times in talks at the 11th ICFPTA. Also he and George Bergman introduced the
notion of ‘inward” mappings to the theory. It was this very concept that led to the discovery of Caristi's theorem.

Jan Jawoworski (1928-2013) received his PhD in 1955 from the Polish Academy of Sciences under the supervision of
Karol Borsuk. (Borsuk's other students include Samuel Eilenberg and Andrzej Granas.) One of Jawoworski's students,
Sehie Park, is also well known in fixed point theory.

I call attention to a recent book: Bas Lemmens, Roger Nussbaum, Nonlinear Perron-Frobenius theory. Cambridge
Tracts in Mathematics, 189. Cambridge University Press, Cambridge, 2012. xii+323 pp. This book contains many
applications of fixed point theory for nonexpansive mappings, especially in finite dimensional vector spaces.

V Lakshmikantham (1924-2012) has made many contributions to fixed point theory as well as to many other
branches of nonlinear analysis. Among other things, he was Founding Editor of the journal Nonlinear Analysis - TMA
in 1976, and he established the International Federation of Nonlinear Analysts (IFNA) in 1991. For a brief biography
of his early life and career, see R Agarwal, S Leela, A brief biography and survey of collected works of
V Lakshmikantham, Nonlinear Anal. 40 (2000), 1-19.
Leonard M Blumenthal (1901-1984) received his PhD in 1927 from the Johns Hopkins University under the
supervision of the geometer Frank Morley (1860-1937). Morley received his BA from Cambridge in 1884 and was
AMS President, 1919-1920. (Some trivia: One of Frank Morley’s sons was the celebrated American novelist and
essayist, Christopher Morley (1890-1957). Another son, Frank Vigor Morley was also a mathematician and a student
of GH Hardy. For more information, see http://www-history.mcs.st-andrews.ac.uk/Biographies/Morley.html.)
Blumenthal’s interest in abstract metrics was aroused by lectures that Karl Menger gave at the Rice University in
1931. Subsequently, this interest was further stimulated and developed during a year he spent with Professor
Menger at the University of Vienna. Blumenthal came to the University of Missouri in 1936.

9 Herbert Busemann (1905-1994) was born in Berlin, and he studied at universities Munich, Paris, and Rome. He
defended his dissertation in University of Gottingen in 1931, where his advisor was Richard Courant. He remained in
Gottingen as an assistant until 1933, when he escaped Nazi Germany to Copenhagen. He worked at the University
of Copenhagen until 1936, when he left for the United States. He held temporary positions at the Institute of
Advanced Studies, the Johns Hopkins University, lllinois Institute of Technology, Smith College, and eventually he
became a professor in 1947 at University of Southern California. He advanced to a distinguished professorship in
1964, and continued working at USC until his retirement in 1970.

Floyd Burton Jones (1910-1999) was a 1935 PhD student of the topologist RL Moore at the University of Texas.
Moore had introduced what is now called the ‘Moore method’ of teaching which entailed, roughly speaking, having
the students discover for themselves the mainstream of the subject based only on primitive axioms. For a detailed
discussion, see FB Jones, The Moore method, Amer. Math. Monthly 84 (1977), no. 4, 273-278. Moore had 50 PhD
students, many of whom have had a lasting impact on mathematical research. Among them (listed
chronologically): Raymond Wilder, Gordon Whyburn, RH Bing, Gail Yourg, Jr, Edwin Moise, Richard Anderson, Mary
Ellen Rudin, and Eldon Dyer. On the negative side, it is rumored that Moore refused to teach black students.

I'have recently learned that Teck-Cheong (TC) Lim passed away the evening of Monday, October 20, 2014, at the
age of 64, near his Burke, VA home. He was an LE Dickson Instructor at the University of Chicago, before joining the
faculty of George Mason University. For more information, go to: http://www.fairfaxmemorialfuneralhome.com/
obituary/Teck-Cheong-Lim/Burke-VA/1444328.

J' Ronald Bruck received his PhD in 1969 at the University of Chicago, under the supervision of Felix Browder. He spent
most of his career at the University of Southern California, and was Department Chair there from 1985-90.

The Axiom of Dependent Choices (DC) may be formulated precisely as follows. (See, e.g., p.19 of H Rubin and
JE Rubin, Equivalents of the Axiom of Choice Il, North-Holland, Amsterdam-New York-Oxford, 1985.) (DC) If R# @ is a
relation on a set such that Range(R) € Domain(R) then there is a function f with domain w such that forall n € w,
(f(n),f(n+1)) €R.
There is perhaps a lesson here. The name Caristi is surely one of the most well known in all of metric fixed point
theory. Yet Caristi published only four related papers in mathematics. This serves as evidence that numbers of
papers alone do not necessarily lead to fame.

James Caristi received his PhD from the University of lowa in 1975 and taught for many years in the Mathematics
Department at Valparaiso University in Valparaiso, Indiana. He is currently Professor and Chair of the newly formed
Department of Computer and Information Sciences at Valparaiso University.
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