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1 Introduction and preliminaries
Let E be a real Banach space and let E∗ be the dual space of E. Let R+ be the set of nonneg-
ative real numbers. Given a continuous strictly increasing function: h : R+ → R+, where R+

denotes the set of nonnegative real numbers, such that limr→∞ h(r) = ∞ and h() = , we
associate with it a (possibly multivalued) generalized duality map Jϕ : E → E∗ , defined as

Jϕ(x) :=
{

x∗ ∈ E∗ : x∗(x) = h
(‖x‖)‖x‖, h

(‖x‖) =
∥∥x∗∥∥}

, ∀x ∈ E.

In this paper, we use the generalized duality map associated with the gauge function h(t) =
tq– for q > ,

Jq(x) :=
{

x∗ ∈ E∗ :
〈
x∗, x

〉
= ‖x‖q,

∥∥x∗∥∥ = ‖x‖q–}, ∀x ∈ E.

The modulus of convexity of E is the function δE(ε) : (, ] → [, ] defined by δE(ε) =
inf{ – ‖x+t‖

 : ‖x‖ = ‖y‖ = ,‖x – y‖ ≥ ε}. Recall that E is said to be uniformly convex if
δE(ε) >  for any ε ∈ (, ]. Let p > . We say that E is p-uniformly convex if there exists a
constant cq >  such that δE(ε) ≥ cpε

p for any ε ∈ (, ].
Let BE = {x ∈ E : ‖x‖ = }. The norm of E is said to be Gâteaux differentiable if the limit

limt→(‖x + ty‖ – ‖x‖)/t exists for each x, y ∈ BE . In this case, E is said to be smooth. The
norm of E is said to be uniformly Gâteaux differentiable if for each y ∈ BE , the limit is
attained uniformly for all x ∈ BE . The norm of E is said to be Fréchet differentiable if for
each x ∈ BE , the limit is attained uniformly for all y ∈ BE . The norm of E is said to be
uniformly Fréchet differentiable if the limit is attained uniformly for all x, y ∈ BE .
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Let ρE : [,∞) → [,∞) be the modulus of smoothness of E by

ρE(t) = sup

{‖y + x‖ – ‖y – x‖


–  : ‖y‖ ≤ t, x ∈ BE

}
.

A Banach space E is said to be uniformly smooth if ρE(t)
t →  as t → . Let q > . E is said

to be q-uniformly smooth if there exists a fixed constant c >  such that ρE(t) ≤ ctq. It is
well known that E is uniformly smooth if and only if the norm of E is uniformly Fréchet
differentiable. If E is q-uniformly smooth, then q ≤  and E is uniformly smooth [], and
hence the norm of E is uniformly Fréchet differentiable, in particular, the norm of E is
Fréchet differentiable.

Typical examples of both uniformly convex and uniformly smooth Banach spaces are
Lp, where p > . To be more precise, Lp is mini{p, }-uniformly smooth for every p > . It
is well known that E is p-uniformly convex if and only if E∗ is q-uniformly smooth, where
p and q satisfy the relation 

p + 
q = .

Let T be a mapping on E. The fixed point set of T is denoted by Fix(T). Recall that T is
said to be nonexpansive iff

‖Tx – Ty‖ ≤ ‖x, y‖, ∀x, y ∈ E.

Let I denote the identity operator on E. An operator A ⊂ E × E with domain D(A) =
{z ∈ E : Az �= ∅} and range R(A) = ∪{Az : z ∈ D(A)} is said to be accretive if, for t >  and
x, y ∈ D(A),

‖x – y‖ ≤ ∥∥t(u – v) + (x – y)
∥∥, ∀u ∈ Ax, v ∈ Ay.

It follows from Kato [] that A is accretive if and only if, for x, y ∈ D(A), there exists jq(x –
y) ∈ Jq(x – y) such that

〈
u – v, jq(x – y)

〉 ≥ .

An accretive operator A is said to be m-accretive if R(I + rA) = E for all r > . In Hilbert
spaces, an operator A is m-accretive if and only if A is maximal monotone. In this paper,
we use A–() to denote the set of zero points of A.

Recall that a single valued operator A on E is said to be α-strongly accretive if there
exists a constant α >  and some jq(x – y) ∈ Jq(x – y) such that

〈
Ax – Ay, jq(x – y)

〉 ≥ α‖x – y‖q, ∀x, y ∈ E.

A is said to be α-inverse strongly accretive if there exists a constant α >  and some jq(x –
y) ∈ Jq(x – y) such that

〈
Ax – Ay, jq(x – y)

〉 ≥ α‖Ax – Ay‖q, ∀x, y ∈ E.

For a multi-valued accretive operator A, we can define a nonexpansive single valued
mapping JA

r : R(I +rA) → D(A) by JA
r = (I +rA)– for each r > , which is called the resolvent

operator of A.
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The convex feasibility problem asks to find a point in the intersection of convex sets.
This is an important problem in mathematics and engineering; see, e.g., [–] and the ref-
erences therein. Oftentimes, the convex sets are given as fixed point sets of projections
or (more generally) averaged nonexpansive operators. In this paper, we will focus our at-
tention on the problem of finding a common element in Fix(T) ∩ (A + B)–(), where T
is a nonexpansive mapping, A is an α-inverse strongly accretive operator and B is an m-
accretive operator, in the framework of uniformly convex and q-uniformly smooth Ba-
nach spaces. The problem is quite general in the sense that it includes: split feasibility
problems, convexly constrained linear inverse problems, fixed point problems, variational
inequalities, convexly constrained minimization problems, and Nash equilibrium prob-
lems in noncooperative games, as special cases; see, for instance, [–] and the refer-
ences therein. Recently, mean valued iterative algorithms have been introduced by many
authors to investigate this problem; see, for instance, [–] and the references therein.
Related work can also be found, e.g., in [–]. However, there is little work in the exist-
ing literature in the setting of Banach spaces. The aim of this paper is to establish a weak
convergence theorem in the framework of Banach spaces based on a Mann-like iterative
algorithm. Applications are also provided to support the main results of this article.

In order to obtain our main results, we also need the following lemmas.

Lemma . Let E be a real Banach space. Let A : E → E be a single valued operator and
let B : E → E be an m-accretive operator. Then

(A + B)–() = Fix
(
JB
r (I – rA)

)
,

where JB
r (I – rA) is the resolvent of B for a > .

Proof

p ∈ Fix
(
JB
r (I – rA)

) ⇐⇒ p = JB
r (I – rA)p

⇐⇒ p + rBp = p – rAp

⇐⇒ p ∈ (A + B)–(). �

Lemma . [] Let E be a real q-uniformly smooth Banach space. Then the following in-
equality holds:

‖x + y‖q ≤ ‖x‖q + q
〈
y,Jq(x + y)

〉
, ∀x, y ∈ E,

and

‖x + y‖q ≤ ‖x‖q + q
〈
y,Jq(x)

〉
+ Kq‖y‖q, ∀x, y ∈ E,

where Kq is some fixed positive constant.

Lemma . [] Let r >  and q >  be two fixed real numbers. Then a Banach space E is
uniformly convex if and only if there exists a continuous strictly increasing convex function
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ϕ : [,∞) → [,∞) with ϕ() =  such that

∥∥ax + ( – a)y
∥∥q ≤ ( – a)‖y‖q + a‖x‖q – w(a)ϕ

(‖y – x‖),

where w(a) = aq( – a) + ( – a)qa, for all x, y ∈ Br() := {x ∈ E : ‖x‖ ≤ r} and a ∈ [, ].

Lemma . [] Let E be a real uniformly convex Banach space and let C be a nonempty
closed convex and bounded subset of E. Then there is a strictly increasing and continu-
ous convex function ψ : [,∞) → [,∞) with ϕ() =  such that, for every nonexpansive
mapping T : C → C and, for all x, y ∈ C and t ∈ [, ], the following inequality holds:

∥∥(
tTx + ( – t)Ty

)
– T

(
tx + ( – t)y

)∥∥ ≤ ψ–(‖y – x‖ – ‖Ty – Tx‖).

Lemma . [] Let E be a real uniformly convex Banach space, and let T be a nonexpan-
sive mapping on E. Then I – T is demiclosed at zero.

Lemma . [] Let E be a real uniformly convex Banach space. Let E∗ the dual space
of E such that it has the Kadec-Klee property. Suppose that {xn} is a bounded sequence
such that limn→∞ ‖( – a)p – p + axn‖ exists for all a ∈ [, ] and p, p ∈ ωw(xn), where
ωw(xn) : {x : ∃xni ⇀ x} denotes the weak ω-limit set of {xn} Then ωw(xn) is a singleton.

2 Main results
Theorem . Let E be a real uniformly convex and q-uniformly smooth Banach space with
constant Kq. Let B : D(B) ⊂ E → E be an m-accretive operator, A : E → E an α-inverse
strongly accretive operator and T : E → E a nonexpansive mapping such that Fix(T) ∩
(A + B)–() �= ∅. Let {rn} be a positive number sequence and let {αn} be a real number
sequence in (, ) such that {αn} ⊂ [α,α′], where  < α < α′ <  and {rn} ⊂ [r, r′], where
 < r < r′ < ( qα

Kq
)


q– . Let {xn} be a sequence generated in the following manner: x ∈ E and

xn+ = αnTxn + ( – αn)(I + rnB)–(xn – rnAxn), ∀n ≥ , Then {xn} converges weakly to some
point in Fix(T) ∩ (A + B)–().

Proof First, we show that {xn} is bounded. From Lemma ., we have

∥∥(I – rnA)x – (I – rnA)y
∥∥q

≤ ‖x – y‖q – qrn
〈
Ax – Ay,Jq(x – y)

〉
+ Kqrq

n‖Ax – Ay‖q

≤ ‖x – y‖q – qrnα‖Ax – Ay‖q + Kqrq
n‖Ax – Ay‖q

= ‖x – y‖q –
(
αq – Kqrq–

n
)
rn‖Ax – Ay‖q. (.)

In view of the restriction imposed on {rn}, one sees that I – rnA is nonexpansive. Put JB
rn =

(I + rnB)– and fix p ∈ (A + B)–() ∩ Fix(T). By using Lemma ., we find from (.) that

‖xn+ – p‖ ≤ αn‖Txn – p‖ + ( – αn)
∥∥JB

rn (xn – rnAxn) – p
∥∥

≤ αn‖xn – p‖ + ( – αn)
∥∥(xn – rnAxn) – (p – rnAp)

∥∥

≤ ‖xn – p‖.
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It follows that limn→∞ ‖xn – p‖ exists and, in particular, that {xn} is bounded. Put yn =
JB
rn (xn – rnAxn). Since B is m-accretive, we find from Lemma . and (.) that

‖yn – p‖q ≤
∥∥∥∥

rn



(
xn – rnAxn – yn

rn
–

(I – rnA)p – p
rn

)
+ (yn – p)

∥∥∥∥

q

=
∥∥∥∥



(
(I – rnA)xn – (I – rnA)p

)
+




(yn – p)
∥∥∥∥

q

≤ 

‖yn – p‖q +



∥∥(I – rnA)xn – (I – rnA)p

∥∥q

–


q ϕ
(∥∥(yn – p) –

(
(I – rnA)xn – (I – rnA)p

)∥∥)

≤ ∥∥(I – rnA)xn – (I – rnA)p
∥∥q

–


q ϕ
(∥∥(yn – p) –

(
(I – rnA)xnn – (I – rnA)p

)∥∥)

≤ ‖xn – p‖q –
(
αq – Kqrq–

n
)
rn‖Axn – Ap‖q

–


q ϕ
(∥∥(yn – p) –

(
(I – rnA)xnn – (I – rnA)p

)∥∥)
. (.)

Since ‖ · ‖q is convex, we find from (.) and (.) that

‖xn+ – p‖q ≤ αn‖Txn – p‖q + ( – αn)‖yn – p‖q

≤ ‖xn – p‖q –
(
αq – Kqrq–

n
)
rn( – αn)‖Axn – Ap‖q

– ( – αn)


q ϕ
(∥∥(yn – p) –

(
(I – rnA)xn – (I – rnA)p

)∥∥)
.

It follows from the restrictions imposed on {αn} and {rn} that

lim
n→∞

∥∥(yn – xn) – (rnAp – rnAxn)
∥∥ =  (.)

and

lim
n→∞‖Axn – Ap‖ = . (.)

Since ‖yn – xn‖ ≤ ‖(yn – xn) – (rnAp – rnAxn)‖ + rn‖Ap – Axn‖, we find from (.) and (.)
that

lim
n→∞

∥∥xn – JB
rn (xn – rnAxn)

∥∥ = . (.)

Since B is an m-accretive operator, we have

〈
xn – JB

r (I – rA)xn

r
–

xn – JB
rn (I – rnA)xn

rn
,Jq

(
JB
r (I – rA)xn – JB

rn (I – rnA)xn
)〉 ≥ .



Qin and Yao Journal of Inequalities and Applications  (2016) 2016:232 Page 6 of 9

It follows that

∥∥xn – JB
rn (I – rnA)xn

∥∥∥∥JB
r (I – rA)xn – JB

rn (I – rnA)xn
∥∥q–

≥ rn – r
rn

〈
xn – JB

rn (I – rnA)xn,Jq
(
JB
r (I – rA)xn – JB

rn (I – rnA)xn
)〉

≥ ∥∥JB
r (I – rA)xn – JB

rn (I – rnA)xn
∥∥q,

which implies

∥∥xn – JB
rn (I – rnA)xn

∥∥ ≥ ∥∥JB
r (I – rA)xn – JB

rn (I – rnA)yn
∥∥. (.)

From (.), one sees that

lim
n→∞

∥∥JB
r (xn – rAxn) – xn

∥∥ = . (.)

In view of Lemma ., one has

‖xn+ – p‖q ≤ αn‖Txn – p‖q + ( – αn)‖yn – p‖q

–
(
αq

n( – αn) + ( – αn)qαn
)
ϕ
(‖Txn – yn‖

)

≤ ‖xn – p‖q –
(
αq

n( – αn) + ( – αn)qαn
)
ϕ
(‖Txn – yn‖

)
,

that is,

(
αq

n( – αn) + ( – αn)qαn
)
ϕ
(‖Txn – yn‖

) ≤ ‖xn – p‖q – ‖xn+ – p‖q.

This shows that limn→∞ ‖Txn – yn‖ = . From (.), we find limn→∞ ‖Txn – xn‖ = . In view
of Lemma ., we see that ωw(xn) ⊂ Fix(JB

r (I + rA)) ∩ Fix(T) = (A + B)–() ∩ Fix(T).
Next, we show that ωw(xn) is a singleton set. Define mappings Sn : E → E by

Snx := αnTx + ( – αn)JB
rn (I – rnA)x, ∀x ∈ C.

Set

Sn,m = Sn+m–Sn+m– · · ·Sn, ∀n, m ≥ .

Since Sn is nonexpansive, we find that Sn,m is also nonexpansive and Sn,mxn = xn+m. For all
t ∈ [, ] and n, m ≥ , put

bn(t) =
∥∥txn + ( – t)p – p

∥∥

and

cn,m =
∥∥Sn,m

(
txn + ( – t)p

)
–

(
txn+m + ( – t)p

)∥∥,

where p and p are in (A + B)–() ∩ Fix(T). Using Lemma ., we find that
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cn,m ≤ ψ–(‖xn – p‖ – ‖Sn,mxn – Sn,mp‖
)

= ψ–(‖xn – p‖ – ‖xn+m – p + p – Sn,mp‖
)

≤ ψ–(‖xn – p‖ –
(‖xn+m – p‖ – ‖p – Sn,mp‖

))
.

This implies that {cn,m} converges uniformly to zero as n → ∞ for all m ≥ . On the other
hand, we have

bn+m(t) ≤ cn,m +
∥∥Sn,m

(
txn + ( – t)p

)
– p

∥∥

≤ cn,m +
∥∥Sn,m

(
txn + ( – t)p

)
– Sn,mp

∥∥ + ‖Sn,mp – p‖
≤ cn,m + bn(t) + ‖Sn,mp – p‖.

Taking lim sup as m → ∞ and then the lim inf as n → ∞, we find that lim supn→∞ bn(t) ≤
lim infn→∞ bn(t). This proves that limn→∞ bn(t) exists for any t ∈ [, ]. This implies from
Lemma . that ωw(xn) is a singleton set. This proves the proof. �

Note that, in the framework of Hilbert spaces, the concept of monotonicity coincides
with the concept of accretivity. Next, we apply our main results to solve variational in-
equality problems and minimizer problems of convex functions in the framework of
Hilbert spaces.

Let H be a Hilbert space with inner product 〈·, ·〉 and its induced norm ‖ · ‖. Let C be a
nonempty closed convex subset of H and let ProjH

C be the metric projection from H onto C.
Recall the following classical variational inequality: find x ∈ C such that 〈y – x, Ax〉 ≥ ,
∀y ∈ C. The solution set of the variational inequality is denoted by VI(C, A). Projection-
gradient methods have been recently investigated for solving the variational inequality.
It is well known that x is a solution to the variational inequality iff x is a fixed point of
ProjH

C (I – rA), where I denotes the identity on H and r is a positive real number. If A is
inverse strongly monotone, then ProjH

C (I – rA) is a nonexpansive mapping. Moreover. If C
is also bounded, then the existence of solutions of the variational inequality is guaranteed
by the nonexpansivity of mapping ProjH

C (I – rA). Let iC be a function defined by

iC(x) =

⎧
⎨

⎩
, x ∈ C,

∞, x /∈ C.

It is easy to see that iC is a proper lower and semicontinuous convex function on H , and
the subdifferential ∂iC of iC is maximal monotone. Define the resolvent Jr := (I + r∂iC)–

of subdifferential operator ∂iC . Letting x = Jry, we find that

y ∈ x + r∂iCx ⇐⇒ y ∈ x + rNH
C x

⇐⇒ 〈y – x, v – x〉 ≤ , ∀v ∈ C

⇐⇒ x = ProjH
C y,

where NH
C x := {y ∈ H : 〈y, v – x〉,∀v ∈ C}. Putting B = ∂iC in Theorem ., we find the fol-

lowing results immediately.
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Corollary . Let H be a real Hilbert space. Let C be a nonempty closed and convex subset
of E and let ProjH

C be the metric projection from H onto C. Let A an α-inverse strongly mono-
tone operator on H and T a nonexpansive mapping on C such that Fix(T) ∩ VI(C, A) �= ∅.
Let {rn} be a positive number sequence and let {αn} be a real number sequence in (, ) such
that {αn} ⊂ [α,α′], where  < α < α′ <  and {rn} ⊂ [r, r′], where  < r < r′ < α. Let {xn} be a
sequence generated in the following manner: x ∈ C and xn+ = αnTxn + ( – αn) ProjH

C (xn –
rnAxn), ∀n ≥ . Then {xn} converges weakly to some point in Fix(T) ∩ VI(C, A).

Now, we are in a position to consider the problem of finding minimizers of proper lower
semicontinuous convex functions. For a proper lower semicontinuous convex function
g : H → (–∞,∞], the subdifferential mapping ∂g of g is defined by ∂g(x) = {x∗ ∈ H : g(x) +
〈y – x, x∗〉 ≤ g(y),∀y ∈ H}, ∀x ∈ H . Rockafellar [] proved that ∂g is a maximal monotone
operator. It is easy to verify that  ∈ ∂g(v) if and only if g(v) = minx∈H g(x).

Corollary . Let H be a real Hilbert space. Let g : H → (–∞,∞] be a proper convex and
lower semicontinuous function and let T : H → H be a nonexpansive mapping such that
Fix(T)∩ (∂g)–() �= ∅. Let {rn} be a positive number sequence and let {αn} be a real number
sequence in (, ) such that {αn} ⊂ [α,α′], where  < α < α′ <  and {rn} ⊂ [r, r′], where
 < r < r′ < ( qα

Kq
)


q– . Let {xn} be a sequence generated in the following manner: x ∈ H and

xn+ = αnTxn + ( – αn)yn, ∀n ≥ , where yn = minz∈H{g(z) + ‖z–xn+en‖

rn
}. Then {xn} converges

weakly to some point in Fix(T) ∩ (A + B)–().

Proof Since g : H → (–∞,∞] is a proper convex and lower semicontinuous function,
we see that subdifferential ∂g of g is maximal monotone. Putting A = , we have yn =
arg minz∈H{g(z) + ‖z–xn‖

rn
} is equivalent to  ∈ ∂g(yn) + 

rn
(yn – xn). Hence, we have xn ∈

yn + rn∂g(yn). By use of Theorem ., we find the desired conclusion immediately. �
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