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Abstract
Let (X ,d) be a metric space and J : X → 2X be a multivalued mapping. In this work, we
discuss the definition of G-contraction mappings introduced by Beg et al. (Comp.
Math. Appl. 60:1214-1219, 2010) and show that it is restrictive and fails to give the
main result of (Beg et al. in Comp. Math. Appl. 60:1214-1219, 2010). In this work, we
give a new definition of the G-contraction and obtain sufficient conditions for the
existence of fixed points for such mappings.
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1 Introduction
Fixed point theorems for monotone single-valued mappings in a metric space endowed
with a partial ordering have been widely investigated. These theorems are hybrids of the
two most fundamental and useful theorems in fixed point theory: the Banach contraction
principle [], Theorem ., and Tarski’s fixed point theorem [, ]. Generalizing the Banach
contraction principle for multivalued mapping to metric spaces, Nadler [] obtained the
following result.

Theorem . ([]) Let (X, d) be a complete metric space. Denote by CB(X) the set of all
nonempty closed bounded subsets of X. Let F : X → CB(X) be a multivalued mapping. If
there exists k ∈ [, ) such that

H
(
F(x), F(y)

) ≤ kd(x, y)

for all x, y ∈ X, where H is the Pompeiu-Hausdorff metric on CB(X), then F has a fixed
point in X.

A number of extensions and generalizations of Nadler’s theorem were obtained by differ-
ent authors; see for instance [, ] and references cited therein. The Tarski theorem was
extended to multivalued mappings by different authors; see [–]. The existence of fixed
points for single-valued mappings in partially ordered metric spaces was initially consid-
ered by Ran and Reurings in [], who proved the following result.
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Theorem . ([]) Let (X,�) be a partially ordered set such that every pair x, y ∈ X has
an upper and lower bound. Let d be a metric on X such that (X, d) is a complete metric
space. Let f : X → X be a continuous monotone (either order preserving or order reversing)
mapping. Suppose that the following conditions hold:

. There exists k ∈ [, ) with

d
(
f (x), f (y)

) ≤ kd(x, y), for all x � y.

. There exists an x ∈ X with x � f (x) or x � f (x).
Then f is a Picard Operator (PO), that is, f has a unique fixed point x∗ ∈ X and for each
x ∈ X, limn→∞ f n(x) = x∗.

After this, various authors considered the problem of existence of a fixed point for con-
traction mappings in partially ordered metric spaces; see [–] and references cited
therein. Nieto et al. in [] extended the ideas of [] to prove the existence of solutions
to some differential equations. Recently, two results have appeared, giving sufficient con-
ditions for f to be a PO, if (X, d) is endowed with a graph. The first result in this direction
was given by Jachymski and Lukawska [, ], who generalized the results of [, , ,
] to single-valued mapping in metric spaces with a graph instead of partial ordering.

The aim of this paper is twofold: first to give a correct definition of monotone multival-
ued mappings, second to extend the conclusion of Theorem . to the case of monotone
multivalued mappings in metric spaces endowed with a graph.

2 Preliminaries
It seems that the terminology of graph theory instead of partial ordering gives a clearer
picture and yields an interesting generalization of the Banach contraction principle. Let us
begin this section with such a terminology for metric spaces as will be used throughout.

Let G be a directed graph (digraph) with the set of vertices V (G) and the set of edges
E(G) contains all the loops, i.e. (x, x) ∈ E(G) for any x ∈ V (G). We also assume that G has no
parallel edges (arcs) and so we can identify G with the pair (V (G), E(G)). Our graph theory
notations and terminology are standard and can be found in all graph theory books, like
[] and []. Moreover, we may treat G as a weighted graph (see [], p.]) by assigning
to each edge the distance between its vertices. By G– we denote the conversion of a graph
G, i.e., the graph obtained from G by reversing the direction of edges. Thus we have

E
(
G–) =

{
(y, x)|(x, y) ∈ E(G)

}
.

A digraph G is called an oriented graph if whenever (u, v) ∈ E(G), then (v, u) /∈ E(G). The
letter G̃ denotes the undirected graph obtained from G by ignoring the direction of edges.
Actually, it will be more convenient for us to treat G̃ as a directed graph for which the set
of its edges is symmetric. Under this convention,

E(G̃) = E(G) ∪ E
(
G–).

We call (V ′, E′) a subgraph of G if V ′ ⊆ V (G), E′ ⊆ E(G), and for any edge (x, y) ∈ E′,
x, y ∈ V ′.
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If x and y are vertices in a graph G, then a (directed) path in G from x to y of length
N is a sequence (xi)i=N

i= of N +  vertices such that x = x, xN = y, and (xn–, xn) ∈ E(G) for
i = , . . . , N . A graph G is connected if there is a directed path between any two vertices. G is
weakly connected if G̃ is connected. If G is such that E(G) is symmetric and x is a vertex in
G, then the subgraph Gx consisting of all edges and vertices which are contained in some
path beginning at x is called the component of G containing x. In this case V (Gx) = [x]G,
where [x]G is the equivalence class of the relation R defined on V (G) by the rule

y R z if there is a (directed) path in G from y to z.

Clearly Gx is connected.

Definition . ([]) Let (X, d) be a metric space and CB(X) be the class of all nonempty
closed and bounded subsets of X. The Pompeiu-Hausdorff distance [] on CB(X) is de-
fined by

H(U , W ) := max
{

sup
w∈W

d(w, A), sup
u∈U

d(u, W )
}

,

for U , W ∈ CB(X), where d(u, W ) := infw∈W d(u, w). The mapping H is said to be a
Pompeiu-Hausdorff metric induced by d.

Definition . ([]) Let (X, d) be a metric space and CB(X) be the class of all nonempty
closed and bounded subsets of X. A multivalued map J : X → CB(X) is called contractive
if there exists k ∈ [, ) such that

H
(
J(x), J(y)

) ≤ kd(x, y),

for all x, y ∈ X.

Example . Let I = [, ] denote the unit interval of real numbers (with the usual metric)
and let f : I → I be given by

f (x) =

⎧
⎨

⎩


 x + 

 ,  ≤ x ≤ 
 ,

– 
 x + 

 , 
 ≤ x ≤ .

Define F : I → I by F(x) = {} ∪ {f (x)} for each x ∈ I . It is easy to verify that F is a multi-
valued contraction mapping with set of fixed points {, 

 }.

Example . Let I = {(x, y) :  ≤ x ≤  and  ≤ y ≤ }, and let F : I → CB(I) be defined
by F(x, y) is the line segment in I from the point ( 

 x, ) to the point ( 
 x, ) for each (x, y) ∈

I. It is easy to see that F is a multivalued contraction mapping with the set of fixed points
{(, y) :  ≤ y ≤ }.

Next we introduce the concept of monotone multivalued mappings. In [], the authors
offered the following definition.
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Definition . ([], Def. .) Let F : X � X be a set valued mapping with nonempty
closed and bounded values. The mapping F is said to be a G-contraction if there exists
k ∈ [, ) such that

H
(
F(x), F(y)

) ≤ kd(x, y), for all (x, y) ∈ E(G)

and such that if u ∈ F(x) and v ∈ F(y) are such that

d(u, v) ≤ kd(x, y) + α, for each α > ,

then (u, v) ∈ E(G).

In particular, this definition implies that if u ∈ F(x) and v ∈ F(y) are such that

d(u, v) ≤ kd(x, y),

then (u, v) ∈ E(G), which is very restrictive. In fact, in the proof of Theorem . in [],
there is absolutely no reason for (x, x) ∈ E(G). Definition . of G-contraction multival-
ued mappings, inspired by the definition of contraction multivalued mappings in [, ],
is more appropriate. In the sequel, we assume that (X, d) is a metric space, and G is a di-
rected graph (digraph) with the set of vertices V (G) = X and the set of edges E(G) contains
all the loops, i.e. (x, x) ∈ E(G), for any x ∈ X.

Definition . ([, ]) A multivalued mapping T : X → X is said to be monotone in-
creasing G-contraction if there exists α ∈ [, ) such that for any u, w ∈ X with (u, w) ∈ E(G)
and any U ∈ T(u) there exists W ∈ T(w) such that

(U , W ) ∈ E(G) and d(U , W ) ≤ αd(u, v).

Property  For any sequence (xn)n∈N in X, if xn → x and (xn, xn+) ∈ E(G) for n ∈ N, then
(xn, x) ∈ E(G).

3 Main results
We begin with the following theorem, which gives the existence of a fixed point for mono-
tone multivalued mappings in metric spaces endowed with a graph.

Theorem . Let (X, d) be a complete metric space and suppose that the triple (X, d, G) has
property . Let T : X → CB(X) be a monotone increasing G-contraction mapping and XT :=
{x ∈ X; (x, u) ∈ E(G) for some u ∈ T(x)}. If XT �= ∅, then the following statements hold:

() For any x ∈ XT , T |[x]G̃
has a fixed point.

() If G is weakly connected, then T has a fixed point in G.
() If X ′ :=

⋃{[x]G̃ : x ∈ XT }, then T |X′ has a fixed point in X .
() If T(X) ⊆ E(G) then T has a fixed point.
() Fix T �= ∅ if and only if XT �= ∅.
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Proof . Let x ∈ XT , then there exists x ∈ T(x) such that (x, x) ∈ E(G). Since T is
monotone increasing G-contraction, there exists x ∈ T(x), (x, x) ∈ E(G), such that

d(x, x) ≤ αd(x, x),

where α <  is associated to the definition of T being monotone increasing G-contraction.
Without loss of generality, we may assume α > . By induction, we construct a sequence
{xn} such that xn+ ∈ T(xn), (xn, xn+) ∈ E(G), and

d(xn, xn+) ≤ αd(xn, xn–) ≤ αnd(x, x),

for any n ≥ . Since
∑∞

n= d(xn, xn+) ≤ d(x, x)
∑∞

n= αn < ∞, we conclude that {xn} is
a Cauchy sequence, and hence converges to some x ∈ X since X is a complete metric
space. We claim that x ∈ T(x), i.e. x is a fixed point of T . Indeed using the definition of
G-contraction of T , there exists yn ∈ T(x) such that (xn+, yn) ∈ E(G) and

d(xn+, yn) ≤ αd(xn, x),

for any n ≥ . Hence

d(yn, x) ≤ d(yn, xn+) + d(xn+, x) ≤ αd(xn, x) + d(xn+, x),

for any n ≥ . This implies that {yn} converges to x. Since T(x) is closed, we get x ∈ T(x) as
claimed. As (xn, x) ∈ E(G), for every n ≥ , we conclude that (x, x, . . . , xn, x) is a path in G
and so x ∈ [x]G̃.

. Since XT �= ∅, there exists an x ∈ XT , and since G is weakly connected, then [x]G̃ = X
and by , mapping T has a fixed point.

. It follows easily from  and .
. T(X) ⊆ E(G) implies that all x ∈ X are such that there exists some y ∈ T(x) with (x, y) ∈

E(G); so XT = X and by  and , T has a fixed point.
. Assume Fix T �= ∅. This implies that there exists an x ∈ Fix T such that x ∈ T(x). � ⊆

E(G) therefore (x, x) ∈ E(G), which implies that x ∈ XT . So XT �= ∅. Conversely if XT �= ∅,
then Fix T �= ∅, follows from  and . �

Remark . The missing information in Theorem . is the uniqueness of the fixed point.
In fact, we do have a partial positive answer to this question. Indeed if ū and w̄ are two
fixed points of T such that (ū, w̄) ∈ E(G), then we must have ū = w̄. In general T may have
more than one fixed point.

Remark . If we assume G is such that E(G) := X × X then clearly G is connected and
our Theorem . gives Nadler’s theorem [].

The following is a direct consequence of Theorem ..

Corollary . Let (X, d) be a complete metric space and the triple (X, d, G) have the
Property . If G is weakly connected then every G-contraction T : X → CB(X) such that
(x, x) ∈ E(G), for some x ∈ T(x), has a fixed point.



Alfuraidan Journal of Inequalities and Applications  (2015) 2015:202 Page 6 of 7

Figure 1 G: Pompeiu-Hausdorff weighted graph.

Example . Let X = {, , , , } = V (G) and

E(G) =
{

(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )
}
.

Let V (G) be endowed with metric d : X × X →R
+ defined by

d(, ) = d(, ) = d(, ) = d(, ) = ,

d(, ) = d(, ) =



,

d(, ) = d(, ) = d(, ) = d(, ) = d(, ) = · · · = d(, ) =



.

The graph of G is shown in Figure .
The Pompeiu-Hausdorff weights assigned to U , W ∈ CB(X) are

H(U , W ) =

⎧
⎪⎪⎨

⎪⎪⎩


 if U , W ⊆ {, } with U �= W ,

 if U or W (or both) � {, } with U �= W ,

 if U = W .

Define T : X → CB(X) as follows:

T(x) =

⎧
⎨

⎩
{} if x ∈ {, },
{} if x ∈ {, }.

Note that, for all x, y ∈ X with edge between x and y, there is an edge between T(x) and
T(y). Also there is a path between x and y implies that there is a path between T(x) and
T(y). Moreover, T is a G-contraction with all other assumptions of Theorem . satisfied
and T has  as a fixed point.
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