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Abstract
In this paper, we study the multiplicity of positive doubly periodic solutions for a
singular semipositone telegraph equation. The proof is based on a well-known fixed
point theorem in a cone.
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1 Introduction
Recently, the existence and multiplicity of positive periodic solutions for a scalar singular
equation or singular systems have been studied by using some fixed point theorems; see
[–]. In [], the authors show that the method of lower and upper solutions is also one
of common techniques to study the singular problem. In addition, the authors [] use
the continuation type existence principle to investigate the following singular periodic
problem:

(∣∣u′∣∣p–u′)′ + h(u)u′ = g(u) + c(t).

More recently, using a weak force condition, Wang [] has built some existence results
for the following periodic boundary value problem:

⎧⎨
⎩utt – uxx + cut + a(t,x)u + a(t,x)v = f(t,x,u, v) + χ(t,x),

vtt – vxx + cvt + a(t,x)u + a(t,x)v = f(t,x,u, v) + χ(t,x).

The proof is based on Schauder’s fixed point theorem. For other results concerning the
existence and multiplicity of positive doubly periodic solutions for a single regular tele-
graph equation or regular telegraph system, see, for example, the papers [–] and the
references therein. In these references, the nonlinearities are nonnegative.
On the other hand, the authors [] study the semipositone telegraph system

⎧⎨
⎩utt – uxx + cut + a(t,x)u = b(t,x)f (t,x,u, v),

vtt – vxx + cvt + a(t,x)v = b(t,x)g(t,x,u, v),
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where the nonlinearities f , g may change sign. In addition, there are many authors who
have studied the semipositone equations; see [, ].
Inspired by the above references, we are concernedwith themultiplicity of positive dou-

bly periodic solutions for a general singular semipositone telegraph equation

⎧⎨
⎩utt – uxx + cut + a(t,x)u = λf (t,x,u),

u(t + π ,x) = u(t,x + π ) = u(t,x),
()

where c >  is a constant, λ >  is a positive parameter, a(t,x) ∈ C(R× R,R), f (t,x,u) may
change sign and is singular at u = , namely,

lim
u→+

f (t,x,u) = +∞.

The main method used here is the following fixed-point theorem of a cone mapping.

Lemma . [] Let E be a Banach space, and K ⊂ E be a cone in E. Assume �, � are
open subsets of E with  ∈ �, � ⊂ �, and let T : K ∩ (� \ �) → K be a completely
continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂� and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�; or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂� and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�.

Then T has a fixed point in K ∩ (� \ �).

The paper is organized as follows. In Section , some preliminaries are given. In Sec-
tion , we give the main result.

2 Preliminaries
Let � be the torus defined as

� = (R/πZ)× (R/πZ).

Doubly π-periodic functions will be identified to be functions defined on �. We use the
notations

Lp
(�), C

(�), Cα
(�), D

(�) = C∞(�), . . .
to denote the spaces of doubly periodic functions with the indicated degree of regularity.
The space D′(�) denotes the space of distributions on �.
By a doubly periodic solution of Eq. () we mean that a u ∈ L(�) satisfies Eq. () in the

distribution sense, i.e.,
∫

�

u
(
ϕtt – ϕxx – cϕt + a(t,x)ϕ

)
dt dx = λ

∫
�

f (t,x,u)ϕ dt dx.

First, we consider the linear equation

utt – uxx + cut – ξu = h(t,x), in D′(�), ()

where c > , μ ∈ R, and h(t,x) ∈ L(�).
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Let £ξ be the differential operator

£ξu = utt – uxx + cut – ξu,

acting on functions on �. Following the discussion in [], we know that if ξ < , £ξ has
the resolvent Rξ ,

Rξ : L
(�) → C

(�), hi(t,x) �→ ui(t,x),

where u(t,x) is the unique solution of Eq. (), and the restriction of Rξ on Lp(�) ( < p <
∞) or C(�) is compact. In particular, Rξ : C(�) → C(�) is a completely continuous
operator.
For ξ = –c/, the Green function G(t,x) of the differential operator £ξ is explicitly ex-

pressed; see Lemma . in []. From the definition of G(t,x), we have

G := ess infG(t,x) = e–cπ//
(
 – e–cπ

),
G := ess supG(t,x) =

(
 + e–cπ

)
/

(
 – e–cπ

).
For convenience, we assume the following condition holds throughout this paper:
(H) a(t,x) ∈ C(�,R),  ≤ a(t,x)≤ c

 on �, and
∫
� a(t,x)dt dx > .

Finally, if –ξ is replaced by a(t,x) in Eq. (), the author [] has proved the following
unique existence and positive estimate result.

Lemma . Let h(t,x) ∈ L(�). Then Eq. () has a unique solution u(t,x) = P[h(t,x)], P :
L(�)→ C(�) is a linear bounded operator with the following properties:

(i) P : C(�) → C(�) is a completely continuous operator;
(ii) If h(t,x) > , a.e (t,x) ∈ �, P[h(t,x)] has the positive estimate

G‖h‖L ≤ P
[
h(t,x)

] ≤ G
G‖a‖L

‖h‖L . ()

3 Main result
Theorem . Assume (H) holds. In addition, if f (t,x,u) satisfies
(H) limu→+ f (t,x,u) = +∞, uniformly (t,x) ∈ �,
(H) f :� × (, +∞) → (–∞, +∞) is continuous,
(H) there exists a nonnegative function h(t,x) ∈ C(�) such that

f (t,x,u) + h(t,x)≥ , (t,x) ∈ �,u > ,

(H)
∫
� F∞(t,x)dt dx = +∞, where the limit function F∞(t,x) = lim infu→+∞ f (t,x,u)

u ,
then Eq. () has at least two positive doubly periodic solutions for sufficiently small λ.

C(�) is a Banach space with the norm ‖u‖ = max(t,x)∈� |u(t,x)|. Define a cone K ⊂
C(�) by

K =
{
u ∈ C

(�) : u≥ ,u(t,x)≥ δ‖u‖},
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where δ = G‖a‖L
G ∈ (, ). Let ∂Kr = {u ∈ K : ‖u‖ = r}, [u]+ =max{u, }. By Lemma ., it is

easy to obtain the following lemmas.

Lemma. If h(t,x) ∈ C(�) is a nonnegative function, the linear boundary value problem

⎧⎨
⎩utt – uxx + cut + a(t,x)u = λh(t,x),

u(t + π ,x) = u(t,x + π ) = u(t,x)

has a unique solution ω(t,x). The function ω(t,x) satisfies the estimates

λG‖h‖L ≤ ω(t,x) = λP
(
h(t,x)

) ≤ λ
G

G‖a‖L
‖h‖L .

Lemma . If the boundary value problem

⎧⎨
⎩utt – uxx + cut + a(t,x)u = λ[f (t,x, [u(t,x) –ω(t,x)]+) + h(t,x)],

u(t + π ,x) = u(t,x + π ) = u(t,x)

has a solution ũ(t,x) with ‖̃u‖ > λ G

G‖a‖
L

‖h‖L , then u*(t,x) = ũ(t,x) – ω(t,x) is a positive

doubly periodic solution of Eq. ().

Proof of Theorem . Step . Define the operator T as follows:

(Tu)(t,x) = λP
[
f
(
t,x,

[
u(t,x) –ω(t,x)

]+) + h(t,x)
]
.

We obtain the conclusion that T(K\{u ∈ K : [u(t,x) –ω(t,x)]+ = }) ⊆ K , and T : K\{u ∈
K : [u(t,x) –ω(t,x)]+ = } → K is completely continuous.
For any u ∈ K\{u ∈ K : [u(t,x) – ω(t,x)]+ = }, then [u(t,x) – ω(t,x)]+ > , and T is de-

fined. On the other hand, for u ∈ K\{u ∈ K : [u(t,x) –ω(t,x)]+ = }, the complete continu-
ity is obvious by Lemma .. And we can have

(Tu)(t,x) = λP
[
f
(
t,x,

[
u(t,x) –ω(t,x)

]+) + h(t,x)
]

≥ λG
∥∥f (t,x, [u(t,x) –ω(t,x)

]+) + h(t,x)
∥∥
L

≥ G
G‖a‖L

G
∥∥T(u)∥∥

≥ δ‖Tu‖.

Thus, T(K\{u ∈ K : u(t,x)≤ ω(t,x)})⊆ K .
Now we prove that the operator T has one fixed point ũ ∈ K and ‖̃u‖ > λ G

G‖a‖
L

‖h‖L
for all sufficiently small λ.
Since

∫
� F∞(t,x)dt dx = +∞, there exists r ≥  such that

∫
�

f (t,x,u)
u

dt dx≥ 
δ
, u ≥ δr.

http://www.boundaryvalueproblems.com/content/2013/1/7
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Furthermore, we have
∫
� f (t,x, δr)dt dx ≥ r ≥ . It follows that

∫
�

[
max

{
f (t,x,u) :

δ


r ≤ u≤ r

}
+ h(t,x)

]
dt dx

≥
∫

�
f (t,x, δr)dt dx≥ r ≥ .

Let �(t,x) =max{f (t,x,u) : δ
 r ≤ u ≤ r} + h(t,x). Then � ∈ L(�) and

∫
� �(t,x)dt dx >

. Set

λ* =min

{
δ

G‖h‖L
,
G‖a‖L
G‖�‖L

}
.

For any u ∈ ∂Kr and  < λ < λ*, we can verify that

u(t,x) –ω(t,x) ≥ δ‖u‖ –ω(t,x)

= δr –ω(t,x)

≥ δr – λ
G

G‖a‖L
‖h‖L

≥ δr –
δr


=
δr

.

Then we have

‖Tu‖ = λ
∥∥P[

f
(
t,x,

[
u(t,x) –ω(t,x)

]+) + h(t,x)
]∥∥

≤ λ
G

G‖a‖L
∥∥f (t,x, [u(t,x) –ω(t,x)

]+) + h(t,x)
∥∥
L

≤ λ
G

G‖a‖L
∥∥�(t,x)

∥∥
L

< ≤ r = ‖u‖.

On the other hand,

lim inf
u→+∞

f (t,x,u –ω(t,x))
u

= lim inf
u→+∞

f (t,x,u)
u

= F∞(t,x).

By the Fatou lemma, one has

lim inf
u→+∞

∫
�

f (t,x,u –ω(t,x)) + h(t,x)
u

dt dx

≥
∫

�
lim inf
u→+∞

f (t,x,u) + h(t,x)
u

dt dx

=
∫

�
F∞(t,x)dt dx = +∞.
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Hence, there exists a positive number r > δr > r such that

∫
�

f (t,x,u –ω(t,x)) + h(t,x)
u

dt dx ≥ λ–δ–G–(π)–, u ≥ δr.

Hence, we have∫
�

f
(
t,x,u –ω(t,x)

)
+ h(t,x)dt dx≥ λ–G–(π)–r, u≥ δr.

For any u ∈ ∂Kr , we have δr = δ‖u‖ ≤ u(t,x) ≤ ‖u‖ = r. On the other hand, since
 < λ < λ*, we can get

u(t,x) –ω(t,x) ≥ δr –ω(t,x)

≥ δ
r
δ
– λ

G
G‖a‖L

≥ δr – δ

> .

From above, we can have

‖Tu‖ ≥ λP
[
f
(
t,x,

[
u(t,x) –ω(t,x)

]+) + h(t,x)
]

≥ λG
∥∥f (t,x, [u(t,x) –ω(t,x)

]+) + h(t,x)
∥∥
L

≥ λGπλ–G–(π)–r
= r.

Therefore, by Lemma ., the operator T has a fixed point ũ(t,x) ∈ K and

r ≥ ‖̃u‖ ≥ r,

ũ(t,x) –ω(t,x) ≥ δr – λ
G

G‖a‖L
‖h‖L ≥ δr –

G
G‖a‖L

‖h‖L δ

G‖h‖L
≥ δ.

So, Eq. () has a positive solution û(t,x) = ũ(t,x) –ω(t,x)≥ δ.
Step . By conditions (H) and (H), it is clear to obtain that

u = inf
{
u ∈ K : f (t,x,u) ≤ , (t,x) ∈ �} > .

Let r =min{ δ
 ,

δ‖u‖
 }. For any u ∈ (, r], we have f (t,x,u) > . Then define the operator A

as follows:

(Au)(t,x) = λP̂
[
f
(
t,x,u(t,x)

)]
.

It is easy to prove that A(K ∩ {u ∈ C(�) :  < ‖u‖ < r}) ⊆ K , and A : K ∩ {u ∈ C(�) :  <
‖u‖ < r} → K is completely continuous.
And for any ρ > , define

M(ρ) =max
{
f (t,x,u) : u ∈ R+, δρ ≤ u≤ ρ, (t,x) ∈ �} > .

http://www.boundaryvalueproblems.com/content/2013/1/7
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Furthermore, for any u ∈ ∂Kr , we have

‖Au‖ = λ
∥∥P̂[

f
(
t,x,u(t,x)

)]∥∥
≤ λ

G
G‖a‖L

∥∥f (t,x,u(t,x))∥∥L

≤ λ
G

G‖a‖L
M(r)π.

Thus, from the above inequality, there exists λ such that

‖Au‖ < ‖u‖, for u ∈ ∂Kr ,  < λ < λ.

Since limu→+ f (t,x,u) = ∞, then there is  < r < r
 such that

f (t,x,u)≥ μu, for u ∈ R+ with  < u≤ r,

where μ satisfies λGμδ > . For any u ∈ ∂Kr , then we have

f (t,x,u)≥ μu(t,x), for (t,x) ∈ �.

By Lemma ., it is clear to obtain that

‖Au‖ = λ
∥∥P̂[

f
(
t,x,u(t,x)

)]∥∥
≥ λG

∥∥f (t,x,u(t,x))∥∥L

≥ λGμδr

> r = ‖u‖.

Therefore, by Lemma ., A has a fixed point in u(t,x) ∈ K and ‖u‖ ≤ r ≤ δ
 , which is

another positive periodic solution of Eq. ().
Finally, from Step  and Step , Eq. () has two positive doubly periodic solutions û(t,x)

and u(t,x) for sufficiently small λ. �

Example Consider the following problem:

⎧⎨
⎩utt – uxx + ut + sin(t + x)u = λ[ u +min{u, u

|– t
π ||– x

π | } – ],

u(t + π ,x) = u(t,x + π ) = u(t,x).

It is clear that f (t,x,u) satisfies the conditions (H)-(H).
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