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Abstract

This article is devoted to both the theoretical and numerical study of boundary-value
problems for nonlinear fractional integro-differential equations. Positivity and
uniqueness results for the problem are provided and proved. Two monotone
sequences of upper and lower solutions which converge uniformly to the unique
solution of the problem are constructed using the method of lower and upper
solutions. Sufficient numerical examples are discussed to corroborate the theory
presented herein.
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1 Introduction
In the past few years, there has been a growing interest in the theory and applications

of fractional integro-differential equations (FIDEs) due to their importance in many

scientific areas such as: viscoelasticity and damping, diffusion and wave propagation,

heat conduction in materials, biology, signal processing, telecommunications, physics,

and finance (for more details see [1,2], and the references therein).

It is well-known that it is extremely difficult to find exact solutions of FIDEs. There-

fore, several numerical methods have been proposed to approximate exact solutions

for such problems. Examples of such methods are the Adomian decomposition method

[3,4], collocation spline method [5], Variational iteration method and homotopy per-

turbation method [6], fractional differential transform method [7,8], CAS wavelets [2]

and Taylor expansion method [9]. However, for recent work on existence and unique-

ness of solutions of different classes of FIDEs, we may refer to [10-13], and the refer-

ences therein.

In this article we consider a class of boundary value problems for nonlinear FIDEs of

the form

Ly := Dαy(x) +

x∫
0

K(x, t)f (t, y) dt + h(x) = 0, x ∈ I = [0, 1], 1 < α < 2, (1:1)
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subject to

y(0) = y0, y(1) = y1, (1:2)

where f Î C[I × ℝ, ℝ] is a decreasing function, K Î C[I × I, ℝ+] is a positive kernel,

h(x) Î C[I, ℝ] and y0, y1 Î •. Here, Da denotes the fractional differential operator of

order a in Caputo’s sense and is given by

Dαy(x) =
1

�(k − α)

x∫
0

(x − t)k−α−1y(k)(t)dt, (1:3)

where k Î • and satisfies the relation k - 1 <a <k.

The purposes of this article are: (i) to prove the positivity and uniqueness results for

the problem, and (ii) to employ the lower and upper solutions method (see [14]) to

construct two monotone sequences which converge uniformly to the exact solution of

the problem. It is worth mentioning that the present work is partially an extension to

the works of [15,16].

The rest of the article is organized as follows: some definitions and preliminary

results are presented in Section 2. In Section 3, some relevant theoretical results are

presented. In Section 3, we describe the algorithm used to construct two uniformly

convergent sequences. In Section 4, numerical examples are discussed to prove the

efficiency and the rapid convergence of the present algorithm.

2 Definitions and preliminary results
This section presents some definitions and preliminary results that will be extensively

used in this study. We first introduce the Riemann-Liouville definition of fractional

derivative operator Jαa .

Definition 2.1. The Riemann-Liouville fractional integral operator of order a is

defined by

Jαa y(x) =
1

�(α)

x∫
0

(x − t)α−1y(t)dt

where y Î L1[a, b], and a Î •+.

The following lemma is important in our discussion.

Lemma 2.1. For k Î •, a Î •+, if k - 1 <a <k, and y Î L1[a, b] then

Dα
a J

α
a y(x) = y(x)

and

Jαa D
α
a y(x) = y(x) −

k−1∑
m=0

y(m)(0+)
(x − a)m

m!

where b >a ≥ 0 and x > 0.

The definitions of lower and upper solutions for problem (1.1)-(1.2) are given by:
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Definition 2.2. A function w Î C2[I, •] is called a lower solution of(1.1)-(1.2) on I if

Lw := Dαw +

x∫
0

K(x, t)f (t,w) dt + h(x) ≥ 0, x ∈ I, 1 < α < 2,

with

w(0) ≤ y0,w(1) ≤ y1,

and an upper solution, if the reversed inequalities hold.

Definition 2.3. If w, v Î C2[I, •] are, respectively, lower and upper solutions of (1.1)-

(1.2) on I with w(x) ≤ v(x) for all x Î I, then we say that w and v are ordered lower

and upper solutions.

3 Analytical results
In this section we present some analytical results which end with the proof of unique-

ness of the solution to (1.1)-(1.2). In the following lemma we introduce a positivity

result which is the most important to establish our main results.

Lemma 3.1. (Positivity result) Let Z(x) Î C2[I, ℝ] and R(x) < 0 ∀x Î I. If Z satisfies

the inequality

DαZ(x) +

x∫
0

R(t)Z(t) dt ≤ 0, x ∈ (0, 1) (3:1)

with

Z(0), Z(1) ≥ 0,

then Z(x) ≥ 0, for all x Î I.

Proof. We use the method of proof by contradiction. Assume that Z has negative

values at some points in the interval (0, 1). Since Z is a continuous function on I, then

Z must attain its local and absolute minimum at some points x0 Î (0, 1); i.e., Z(x) ≥ Z

(x0) ∀x Î I with Z(x0) < 0. From the result of Theorem 2.2 in [17], we have DaZ(x0) ≥

0. Since R(x) < 0 ∀x Î I, we may apply the weighted mean value theorem for integrals

as follows

DαZ(x0) +

x0∫
0

R(t)Z(t) dt = DαZ(x0) + Z(μ)

x0∫
0

R(t) dt, μ ∈ (0, x0)

≥ DαZ(x0) + Z(x0)

x0∫
0

R(t) dt

> 0,

(3:2)

which is a contradiction. Hence, Z(x) ≥ 0 ∀x Î I.

Lemma 3.2. Consider the nonlinear FIDE (1.1)-(1.2) with f(x, y) be strictly decreasing

with respect to y and K > 0 in D. Let w and v be, respectively, any lower and upper

solutions to (1.1)-(1.2), then w and v are ordered.

Proof. We shall prove that w(x) ≤ v(x) for all x Î I. Since w and v are, respectively,

lower and upper solutions to (1.1)-(1.2), we have
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Dαw(x) +

x∫
0

K(x, t)f (t,w) dt + h(x) ≥ 0, x ∈ I, (3:3)

w(0) ≤ y0, w(1) ≤ y1, (3:4)

Dαv(x) +

x∫
0

K(x, t)f (t, v) dt + h(x) ≤ 0, x ∈ I, (3:5)

v(0) ≥ y0, v(1) ≥ y1, (3:6)

where 1 <a < 2. Subtracting Equation (3.3) from Equation (3.5) and then applying

the mean value theorem on f, we obtain

Dα(v − w) +

x∫
0

K(x, t)
∂f

∂y
(ξ)(v − w) dt ≤ 0, (3:7)

where ξ = bv + (1 - b)w, for b Î [0, 1]. Setting Z = v - w we obtain

DαZ(x) +

x∫
0

K(x, t)
∂f

∂y
(ξ)Z dt ≤ 0,

with Z(0), Z(1) ≥ 0. Since f is strictly decreasing with respect to y, ∂ f
∂y (ξ) should be

negative and, therefore, K(x, t) ∂ f
∂y (ξ) < 0. Hence, Lemma (3.1) implies that Z(x) ≥ 0 for

all x Î I as desired.

Lemma 3.3. (Uniqueness result) Let f(x, y) be strictly decreasing with respect to y and

K > 0 in D. If Y1 and Y2 are solutions of the problem (1.1)-(1.2) then Y1 = Y2.

Proof. Since Y1 and Y2 are solutions of (1.1)-(1.2), we have

DαY1(x) +

x∫
0

K(x, t)f (t,Y1) dt + h(x) = 0, x ∈ I, (3:8)

Y1(0) = y0, Y1(1) = y1, (3:9)

DαY2(x) +

x∫
0

K(x, t)f (t,Y2) dt + h(x) = 0, x ∈ I, (3:10)

Y2(0) = y0, Y2(1) = y1. (3:11)

Subtracting Equation (3.8) from Equation (3.10) and then applying the mean value

theorem on f, we obtain

X

Dα(Y2 − Y1) +

x∫
0

K(x, t)
∂f

∂y
(ξ)(Y2 − Y1) dt = 0, (3:12)
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where ξ = bY2 + (1 - b)Y1, 0 ≤ b ≤ 1. Let Z = Y2 - Y1, then Equation (3.12) is written

as

DαZ(x) +

x∫
0

K(x, t)
∂f

∂y
(ξ)Z(t) dt = 0, (3:13)

with Z(0) = Z(1) = 0. By applying Lemma (3.1) we conclude that Z ≥ 0 and -Z ≥ 0

which means Y1 = Y2 in I. Thus, the proof is complete.

4 A monotone iterative method
In the results below, we employ the concept of upper and lower solutions to construct

two monotone sequences that converge uniformly to the exact solution of problem

(1.1)-(1.2).

Theorem 4.1. Consider that the nonlinear FIDE (1.1)-(1.2) with f(x, y) is strictly

decreasing and K > 0 in D. Let s0 = w and S0 = v be an initial ordered lower and

upper solutions of (1.1)-(1.2) on I. Let sk and Sk fork ≥ 1 be, respectively, the solutions of

−Dαsk + σ

x∫
0

Ksk dt = σ

x∫
0

Ksk−1 dt+

x∫
0

Kf (t, sk−1) dt + h(x), x ∈ I (4:1)

sk−1(0) ≤ sk(0) ≤ y0, sk−1(1) ≤ sk(1) ≤ y1, (4:2)

−DαSk + σ

x∫
0

KSk dt = σ

x∫
0

KSk−1 dt+

x∫
0

Kf (t, Sk−1) dt + h(x), x ∈ I (4:3)

Sk−1(0) ≥ Sk(0) ≥ y0, Sk−1(1) ≥ Sk(1) ≥ y1, (4:4)

where −σ ≤ ∂f
∂y

≤ 0on [s0, S0]. Then we have

(i) {sk} is an increasing sequence of lower solutions to (1.1)-(1.2) on I.

(ii) {Sk} is a decreasing sequence of upper solutions to (1.1)-(1.2) on I.

(iii) sk ≤ Sk, for k ≥ 1.

Proof.

(i) Since the proof of (ii) is similar to that of (i) we prove only part (i). To show

that {sk} is an increasing sequence, it suffices to prove

sk − sk−1 ≥ 0, ∀k ≥ 1. (4:5)

To this end, we use the method of mathematical induction. For k = 1, Equation (4.1)

gives

−Dαs1 + σ

x∫
0

Ks1 dt = σ

x∫
0

Ks0 dt+

x∫
0

Kf (t, s0) dt + h(x), x ∈ I, (4:6)
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with

s0(0) ≤ s1(0) ≤ y0, s0(1) ≤ s1(1) ≤ y1. (4:7)

On the other hand, since s0 = w represents a lower solution of (1.1)-(1.2), it must

satisfies

Dαs0 +

x∫
0

K(x, t)f (t, s0) dt + h(x) ≥ 0, x ∈ I, (4:8)

with

s0(0) ≤ y0, s0(1) ≤ y1.

Adding (4.6) to (4.8), we obtain

Dα(s1 − s0) +

x∫
0

−σK(x, t)(s1 − s0) dt ≤ 0. (4:9)

If we set Z = s1 - s0 then Equation (4.9) can be written as

DαZ +

x∫
0

−σK(x, t)Z dt ≤ 0, (4:10)

with Z(0), Z(1) ≥ 0. According to Lemma (3.1) we conclude that Z ≥ 0 in I which

implies that s1 ≥ s0. If we assume that the statement (4.5) holds for k = n then we

must prove that (4.5) is true for k = n + 1. From Equation (4.1), we have

Dα(sn+1 − sn) − σ

x∫
0

K(sn+1 − sn) dt = σ

x∫
0

K(sn−1 − sn) dt

+

x∫
0

K(f (t, sn−1) − f (t, sn)) dt, x ∈ I.

(4:11)

Applying the mean value theorem on f and then rearranging the terms we obtain

DαZ − σ

x∫
0

K(x, t)Z dt = σ

x∫
0

K(x, t)
(

σ +
∂f
∂y

(t, ξ)
)
(sn−1 − sn) dt ≤ 0. (4:12)

where Z = sn+1 - sn and ξ = bsn + (1 - b)sn-1, 0 ≤ b ≤ 1. Since Z(0), Z(1) ≥ 0, Lemma

3.1 implies that Z(x) ≥ 0 in I. Hence sn+1 ≥ sn in I as desired.

To prove that sk is a lower solution to (1.1)-(1.2) on I, it suffices to prove that

Lsk ≥ 0 with sk(0) ≤ y0,sk(1) ≤ y1. Subtracting
∫ x

0
K(x, t)f (t, sk) dt from both sides of

(4.1) and rearranging the terms, we obtain

Lsk := σ

x∫
0

K(x, t)(sk − sk−1) dt+

x∫
0

K(x, t)(f (t, sk) − f (t, sk−1)) dt, (4:13)
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where Lsk is given by

Lsk = Dαsk +

x∫
0

K(x, t)f (t, sk) dt + h(x), x ∈ I.

Applying the mean value theorem on f and rearranging the terms, we obtain

Lsk =
x∫

0

K(x, t)
(

σ +
∂f

∂y
(ξ)

)
(sk − sk−1) dt ≥ 0, (4:14)

where ξ = bs1 + (1 - b)s0, 0 ≤ b ≤ 1. Notice that, we used the result (4.5). Now,

since Lsk ≥ 0 with sk(0) ≤ y0, sk(1) ≤ y1, then sk is a lower solution of (1.1)-(1.2)

on I.

(iii) Finally, the proof of (iii) follows directly from Lemma 3.2 since sk and Sk are,

respectively, lower and upper solutions of (1.1)-(1.2) on I.

The following theorem proves the uniform convergence of the sequences {sk} and

{Sk} that already constructed in the Theorem 4.1.

Theorem 4.2. Consider that the nonlinear FIDE (1.1)-(1.2) with f(x, y) is strictly

decreasing and K > 0 in D. Let {sk} and {Sk} be, respectively, the sequences of lower and

upper solutions as constructed in Theorem 4.1. If y is the exact solution of (1.1)-(1.2)

then we have

(i) {sk} and {Sk} converge uniformly to s* and S*, respectively, with s* ≤ y ≤ S*.

(ii) if the conditions (4.2) and (4.4) are strictly equal, i.e., sk(0) = Sk(0) = y0 and sk(1)

= Sk(1) = y1 ∀k ≥ 1 then s* = S* = y.

Proof.

(i) The sequence {Sk} is monotonically decreasing and bounded below by s0 = w,

therefore it is convergent to a continuous function S*. Also, since the sequence {sk}

is monotonically increasing and bounded above by S0 = v, it is convergent to a con-

tinuous function s*. On the other hand, since {sk} and {Sk} are sequences of contin-

uous real-valued functions on the compact set I := [0, 1], then Dini’s theorem [18]

proves that these sequences should converge uniformly to s* and S*, respectively.

To show that s* ≤ S*, recall part (iii) of Theorem 4.1 then take the limit of both

sides as k ® ∞; we arrive at

s∗ = lim
k→∞

sk ≤ y ≤ lim
k→∞

Sk = S∗,

as desired.

(ii) To prove part (ii), it is enough to show that s* and S* are solutions to (1.1)-(1.2)

since Lemma 2.3 ensures the uniqueness of the solution. Applying the fractional
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derivative operator Ja on Equation (4.1), and imposing the conditions (1.2) we

obtain

−sk(x) + y(0) + y′(0)x +
1

�(α)

x∫
0

(x − s)α−1[σ (Tsk)(s)

−σ (Tsk−1)(s) − (Tfk−1)(s) − h(s)] ds = 0

(4:15)

where

(Tsk)(s) =

s∫
0

K(s, t)sk(t) dt and (Tfk−1)(s) =

s∫
0

K(s, t)f (t, sk−1)dt.

Taking the limit of both sides of (4.15) as k ® ∞ and using the fact that {sk} con-

verges uniformly to s* we obtain

s∗(x) − y(0) − y′(0)x +
1

�(α)

x∫
0

(x − s)α−1[(Tf ∗)(s) + h(s)] ds = 0, (4:16)

where

(Tf ∗)(s) =
s∫

0

K(s, t)f (t, s∗)dt.

Applying the fractional derivative Da on Equation (4.16) we obtain

Dαs∗(x) +
x∫

0

K(x, t)f (t, s∗)dt + h(x) = 0 (4:17)

as desired. Following similar steps to the above, one can verify that S* is also a solu-

tion to (1.1)-(1.2). Now, applying Lemma 2.3 implies that s* = S* = y. Thus, the proof

is complete.

5 Numerical results
In this section we consider two examples to demonstrate the performance and effi-

ciency of the present technique. Notice that, for a given s0 and S0 (initial ordered

lower and upper solutions of (1.1)-(1.2) on I) we have to solve (4.1)-(4.4) iteratively to

obtain the solutions. However, the typical equation for sk or Sk is a linear FIDE of the

form

DαG(x) + α

x∫
0

K(x, t)G(t) dt = F(x) (5:1)

with

G(0) = y0 G(1) = y1, (5:2)

where F(x) is known function. Finding exact solutions for (5.1)-(5.2) is, usually, a dif-

ficult task. Therefore, we solve them numerically using the collocation spline method,

for the details about this algorithm we can refer to [5]. For comparison purposes,

Example 5.1 is constructed in such a way that the exact solution is known.
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Example 5.1. Consider the nonlinear FIDE

D5/4y(x) +

x∫
0

x(x − t)2
1

(1 + y)2
dt + h(x) = 0, x ∈ I := [0, 1], (5:3)

subject to the boundary conditions

y(0) = 4, y(1) = 1, (5:4)

where h(x) is given by

h(x) = − 1
135

x(−9x2 + 30(1 + log(5))x + (50 − 30x) log(5 − 3x) − 50 log(5)).

Note that the exact solution for this problem is y(x) = 4 - 3x.

Obviously, K = x(x - t)2 is a positive on I × I and the functions w(x) = 0 and v(x) = 4

form, respectively, initial ordered lower and upper solutions of (5.3)-(5.4) on I.

Further, f(y) = 1/(1 + y)2 is a strictly decreasing function with

−1 ≤ ∂f
∂y

< 0 on [w, v].

Hence, we choose s = 1. The graphs of sk and Sk for k = 0,1, 2, 3 together with the

exact solution y are plotted in Figure 1. Notice that the sequences {sk} and {Sk} con-

verge to the exact solution, y(x). To measure the bound of the error (or the approxi-

mation error) at each iteration k, we use the L2-norm defined as

E(k)U =
∥∥Sk(x) − y(x)

∥∥2 =

1∫
0

(Sk(x) − y(x))2dx,

k � 0

0.2 0.4 0.6 0.8 1.0
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k � 1

0.2 0.4 0.6 0.8 1.0
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3.5

4.0

k � 2

0.2 0.4 0.6 0.8 1.0
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4.0
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Figure 1 Graphs of sk, Sk and y (k = 0, 1, 2, 3) for example : sk (dashed); Sk (solid); y (dotted).
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and

E(k)L =
∥∥sk(x) − y(x)

∥∥2 =

1∫
0

(sk(x) − y(x))2dx.

Table 1 shows that just after three iterations the errors E(k)U
and E(k)L

are of the order

10-11.

It should be noted that in the subsequent examples, the exact solutions are

unknown.

Hence, we measure the bound of the error at each iteration k using the L2-norm

defined as

E(k) =
∥∥Sk(x) − sk(x)

∥∥2 =

1∫
0

(Sk(x) − sk(x))
2dx. (5:5)

This makes sense because, in view of Theorem 4.2, the exact solution is expected to

be between the upper and lower solutions.

Example 5.2. Consider the nonlinear FIDE

D3/2y(x) +

x∫
0

K(x, t)e−ydt + h(x) = 0, x ∈ I := [0, 1], (5:6)

subject to the boundary conditions

y(0) = 2, y(1) = 0, (5:7)

where K(x, t) = (3 - x - t)2 and h(x) = - sin x.

It can be easily verified that the functions w(x) = 0 and v(x) = 3 form, respectively,

initial ordered lower and upper solutions of (5.6)-(5.7) on I. Obviously, K > 0 in I × I

and f(y) = e-y is a strictly decreasing function with

−1 ≤ ∂f
∂y

< 0 on [w, v].

Therefore, by choosing s = 1, Theorem 4.1 applies. Figure 2 clearly shows the con-

vergence of the sequences sk and Sk. Table 2 displays approximate error bounds for Ek
as defined by (5.5).

Example 5.3. Consider the nonlinear FIDE

D7/4y(x) +

x∫
0

ex−t(1 − y2 sin(y)) dt + h(x) = 0, x ∈ I = [0, 1], (5:8)

subject to the boundary conditions

y(0) = 1, y(1) = 2, (5:9)

Table 1 Error bounds Ek (k = 0, 1, 2, 3) for Example 5.3

k 0 1 2 3

E(k)U
3 7.73889 × 10-5 3.18565 × 10-9 1.38462 × 10-11

E(k)L
7 1.18018 × 10-3 6.51391 × 10-8 3.43986 × 10-11
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where K(x, t) = ex-t and h(x) = 1
4(−1 + ex)(−4 + sin(12)).

The functions w(x) = 0.5 and v(x) = 2 are, respectively, initial ordered lower and

upper solutions of (5.8)-(5.9) on I. Note that K is positive in I × I and f = 1 - y2 sin(y)

is a strictly decreasing function with s = 3.2. The graphs of sk and Sk for k = 0, 1, 2, 3

are plotted in Figure 3.
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Figure 2 Graphs of sk and Sk (k = 0, 1, 2, 3) for Example 5.2: sk (solid); Sk (dashed).

Table 2 Error bounds Ek (k = 0, 1, 2, 3, 4) for Example 5.2

k 0 1 2 3 4

Ek 9 0.385123 0.0163607 6.47412 × 10-4 2.51767 × 10-5
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Figure 3 Graphs of sk and Sk (k = 0, 1, 2, 3) for Example 5.3: sk (solid); Sk (dashed).
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The computed error bounds using (5.5) are also presented in Table 3. It is shown

that the lower and upper approximations converge with an error, approximately, of

order 10-9 just after three iterations.

6 Conclusion
In this article, the boundary value problems for nonlinear FIDEs are discussed theoreti-

cally and numerically. Theoretically, we proved the positivity and uniqueness results

for the problem. On the other hand, we utilized the monotone iterative method to

construct two monotone sequences of upper and lower solutions which converge uni-

formly to the exact solution of the problem. Numerical examples have demonstrated

the efficiency of the proposed algorithm.
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