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Abstract
A class of second-order three-point integral boundary value problems at resonance is
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1 Introduction
We are interested in the existence of the solutions for the following second-order three-
point integral boundary value problems at resonance:

u′′(t) + f
(
t,u(t)

)
= ,  ≤ t ≤ , (.)

u() = , u() = α

∫ η


u(s)ds, (.)

where η ∈ (, ), 
αη =  and f ∈ C([, ]× R,R).

In the last few decades,many authors have studied themulti-point boundary value prob-
lems for linear and nonlinear ordinary differential equations by using various methods,
such as Leray-Schauder fixed point theorem, coincidence degree theory, Krasnosel’skii
fixed point theorem, the shooting method and Leggett-Williams fixed point theorem. We
refer the readers to [–] and references therein. Also, there are a lot of papers dealing
with the resonant case for multi-point boundary value problems, see [–].
In [], Infante and Zima studied the existence of solutions for the following n-point

boundary value problem with resonance:

u′′(t) + f
(
t,u(t)

)
= ,  ≤ t ≤ , (.)

u′() = , u() =
n–∑
i=

αiu(ηi), (.)

where  < ηi <  and
∑n–

i= αi = . Using the Leggett-Williams norm-type theorem, they
obtained the existence of a positive solution for problem (.)-(.).
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Problem (.)-(.) with  < η <  and  < 
αη <  was studied by Tariboon and

Sitthiwirattham in []. They obtained the existence of at least one positive solution. In
this paper, we are interested in the existence of the solution for problem (.)-(.) under
the condition 

αη = , which is a resonant case.
In this paper, using some properties of the Green functionG(t, s) and intermediate value

theorems, we establish a sufficient condition for the existence of positive solutions of prob-
lem (.)-(.).
The rest of the paper is organized as follows. The main results for problem (.)-(.)

under the condition 
αη =  are given in Section . In Section , we give some lemmas

for our results. We prove our main result in Section , and finally an example is given to
illustrate our result.

2 Some lemmas andmain results
In this section, we first introduce some lemmas which will be useful in the proof of our
main results.
Let � = C[, ], u ∈ � equipped with the norm

∥∥u(t)∥∥ = sup
≤t≤

∣∣u(t)∣∣,

then � is a Banach space.

Lemma . [] Let X be a Banach space with C ⊂ X closed and convex. Assume that U
is a relatively open subset of C with  ∈ U and T :U → C is completely continuous. Then
either

(i) T has a fixed point in U , or
(ii) there exist u ∈ ∂U and γ ∈ (, ) with u = γTu.

Lemma . Problem (.)-(.) is equivalent to the following integral equation:

u(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds + u()t, (.)

where

G(t, s) =


α – 

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–(α – )(t – s) + αt( – s) – αt(η – s),  ≤ s ≤ min{t,η} ≤ ;

–(α – )(t – s) + αt( – s), η ≤ s ≤ t ≤ ;

αt( – s) – αt(η – s), t ≤ s ≤ η;

αt( – s), max{t,η} ≤ s ≤ .

(.)

Proof Assume that u(t) is a solution of problem (.)-(.), then it satisfies the following
integral equation:

u(t) = –
∫ t


(t – s)f

(
s,u(s)

)
ds +C +Ct, (.)
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where C, C are constants. By the boundary value condition (.), we obtain

C = ,

C =
α

α – 

{∫ 


( – s)f

(
s,u(s)

)
ds –

∫ η


(η – s)f

(
s,u(s)

)
ds

}
+ u().

(.)

Combining (.) with (.), we have

u(t) =


α – 

{
–

∫ t


(α – )(t – s)f

(
s,u(s)

)
ds +

∫ 


αt( – s)f

(
s,u(s)

)
ds

–
∫ η


αt(η – s)f

(
s,u(s)

)
ds

}
+ u()t. (.)

According to (.) it is easy to see that (.) holds.
On the other hand, if u(t) is a solution of equation (.), deriving both sides of (.) two

order, it is easy to show that u(t) is also a solution of problem (.)-(.).
Therefore, problem (.)-(.) is equivalent to the integral equation (.) with the func-

tion G(t, s) defined in (.). The proof is completed. �

Lemma. For any (t, s) ∈ [, ]× [, ],G(t, s) is continuous, and G(t, s) >  for any (t, s) ∈
(, )× (, ).

Proof The continuity of G(t, s) for any (t, s) ∈ [, ]× [, ] is obvious. Let

g(t, s) = –(α – )(t – s) + αt( – s) – αt(η – s),  ≤ s ≤ min{t,η} ≤ .

Here we only need to prove that g(t, s) >  for  ≤ s ≤ min{t,η} ≤ , the rest of the proof
is similar. So, from the definition of g(t, s),  < η <  and the resonant condition 

αη = ,
we have

g(t, s) = –(α – )(t – s) + αt( – s) – αt(η – s) = (t – s) + αs( – t) – αt(η – s)

≥ (t – s) + αs( – t) – αt( – s) = (t – s) + α(s – t)

> (t – s) + (s – t) = 

for  ≤ s ≤ min{t,η} ≤ . The proof is completed. �

Let

G∗(t, s) = t–G(t, s). (.)

Then

G∗(t, s) =


α – 

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

–(α – )(t – s)t– + α( – s) – α(η – s),  ≤ s ≤ min{t,η} ≤ ;

–(α – )(t – s)t– + α( – s), η ≤ s ≤ t ≤ ;

α( – s) – α(η – s), t ≤ s ≤ η;

α( – s), max{t,η} ≤ s ≤ .

(.)

http://www.boundaryvalueproblems.com/content/2013/1/197
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Thus, problem (.)-(.) is equivalent to the following integral equation:

u(t) =
∫ 


tG∗(t, s)f

(
s,u(s)

)
ds + u()t. (.)

By a simple computation, the new Green function G∗(t, s) has the following properties.

Lemma . For any (t, s) ∈ [, ] × [, ], G∗(t, s) is continuous, and G∗(t, s) >  for any
(t, s) ∈ (, )× (, ). Furthermore,

lim
t→

G∗(t, s) :=G∗(, s) =


α – 

⎧⎨
⎩

α( – s) – α(η – s),  ≤ s ≤ η;

α( – s), η ≤ s ≤ .
(.)

Lemma . For any s ∈ (, ), G∗(t, s) is nonincreasing with respect to t ∈ [, ], and for
any s ∈ [, ], ∂G∗(t,s)

∂t ≤ , and ∂G∗(t,s)
∂t =  for t ∈ [, s]. That is, G∗(, s) ≤ G∗(t, s) ≤ G∗(s, s),

where

G∗(t, s)≤ G∗(s, s) =


α – 

⎧⎨
⎩

α( – s) – α(η – s),  ≤ s ≤ η;

α( – s), η ≤ s ≤ 
(.)

and

G∗(t, s)≥ G∗(, s) =


α – 

⎧⎨
⎩
( – s) – α(η – s),  ≤ s≤ η;

( – s), η ≤ s≤ .
(.)

Let

u(t) = w(t)t. (.)

Then u() = w(), and equation (.) gives

w(t) =
∫ 


G∗(t, s)f

(
s, sw(s)

)
ds +w(). (.)

Now we let

y(t) = w(t) –w(). (.)

Then y() = w() –w() = , and equation (.) gives

y(t) =
∫ 


G∗(t, s)f

(
s, s

(
y(s) +w()

))
ds. (.)

We replace w() by any real number μ, then (.) can be rewritten as

y(t) =
∫ 


G∗(t, s)f

(
s, s

(
y(s) +μ

))
ds. (.)

To present our result, we assume that f (t,u) satisfies the following:

http://www.boundaryvalueproblems.com/content/2013/1/197
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(H) f (t,u) ∈ C([, ]× R,R) and there exist two positive continuous functions
m(t),n(t) ∈ C([, ],R+) such that

∣∣f (t, tu)∣∣ ≤ m(t) + n(t)|u|p, t ∈ [, ], (.)

where  ≤ p≤ . Furthermore,

lim
u→±∞ f (t, tu) = ∞ (.)

for any t ∈ (, ).
Our results are the following theorems.

Theorem . Assume that (H) holds. If

∫ 


G∗(s, s)n(s)ds < , (.)

then problem (.)-(.) has at least one solution, where

G∗(s, s) =


α – 

⎧⎨
⎩

α( – s) – α(η – s),  ≤ s ≤ η;

α( – s), η ≤ s ≤ .
(.)

We define an operator T on the set � as follows:

Ty(t) =
∫ 


G∗(t, s)f

(
s, s

(
y(s) +μ

))
ds. (.)

Lemma . Assume that f ∈ C([, ]× R,R) and (.) hold. Then the operator T is com-
pletely continuous in �.

Proof It is not difficult to check that T maps � into itself. Next, we divide the proof into
three steps.
Step . Ty(t) is continuous with respect to y(t) ∈ �.
Suppose that {yn(t)} is a sequence in �, and {yn(t)} converges to y(t) ∈ �. Because of

f (t, ty) being continuous with respect to y ∈ R and from Lemma ., it is obvious that
G∗(t, s) is uniformly continuous with respect to (t, s) ∈ [, ]× [, ]. Then, for any positive
number ε, there exists an integer N . When n >N , we have

∥∥f (t, t(yn(t) +μ
))
– f

(
t, t

(
y(t) +μ

))∥∥ ≤ ε∫ 
 G∗(t, s)ds

. (.)

It follows from (.) and (.) that

∥∥(Tyn)(t) – (Ty)(t)
∥∥ =

∥∥∥∥
∫ 


G∗(t, s)

{
f
(
s, s

(
yn(s) +μ

))
– f

(
s, s

(
y(s) +μ

))}
ds

∥∥∥∥
≤

∥∥∥∥
∫ 


G∗(t, s)ds

∥∥∥∥
∥∥f (s, s(yn(s) +μ

))
– f

(
s, s

(
y(s) +μ

))∥∥
≤ ε.

http://www.boundaryvalueproblems.com/content/2013/1/197
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Thus the operator T is continuous in �.
Step . T maps a bounded set in � into a bounded set.
Assume that D ∈ � is a bounded set with ‖y(t)‖ ≤ r for any y ∈ D. Then we have from

(.) and (.) that

∥∥(Ty)(t)∥∥ =
∥∥∥∥
∫ 


G∗(t, s)f

(
s, s

(
y(s) +μ

))
ds

∥∥∥∥
≤

∫ 


G∗(t, s)m(s)ds +

∫ 


G∗(t, s)n(s)

∣∣y(s) +μ
∣∣p ds

≤
∫ 


G∗(t, s)m(s)ds +

∫ 


G∗(t, s)n(s)ds

(∥∥y(s)∥∥ + ‖μ‖)p

≤
∫ 


G∗(s, s)m(s)ds +

∫ 


G∗(s, s)n(s)ds

(
r + ‖μ‖)p := L. (.)

This implies that the operator T maps a bounded set into a bounded set in �.
Step . T is equicontinuous in �.
It suffices to show that for any y(t) ∈D and any  < t < t < , Ty(t) → Ty(t) as t → t.

There are the following three possible cases:
Case (i) t < t ≤ η;
Case (ii) t < η < t;
Case (iii) η ≤ t < t.
We only need to consider case (i) because the proofs of the other two are similar. Since

D is bounded, then there exists M >  such that |f | ≤ M. From (.), for any f ∈ D, we
have

∥∥(Ty)(t) – (Ty)y(t)
∥∥ ≤

∫ 



∣∣G∗(t, s) –G∗(t, s)
∣∣∣∣f (s, s(y(s) +μ

))∣∣ds

≤ M
∫ 



∣∣G∗(t, s) –G∗(t, s)
∣∣ds

≤ M
{∫ t



s(t – t)
(tt)

ds +
∫ t

t

(
 –

s
t

)
ds +

∫ η

t
ds +

∫ 

η

ds
}

= M
(

t
t

+  +


–

t
t

)
(t – t)

≤ M(t – t) →  as t → t.

Because of Step  to Step , it follows that the operator T is completely continuous in �.
The proof is completed. �

Lemma . Assume that f ∈ C([, ]× R,R) and (.) and (.) hold. Then the integral
equation (.) has at least one solution for any real number μ.

Proof We only need to present that the operator T is a priori bounded. Set

r =max

{
,

∫ 
 G

∗(s, s)m(s)ds +
∫ 
 G

∗(s, s)n(s)ds|μ|p
 –

∫ 
 G∗(s, s)m(s)ds

}
, (.)

http://www.boundaryvalueproblems.com/content/2013/1/197


Liu and Ouyang Boundary Value Problems 2013, 2013:197 Page 7 of 11
http://www.boundaryvalueproblems.com/content/2013/1/197

and define a set K ∈ � as follows:

K =
{
y ∈ � | ∥∥y(t)∥∥ ≤ r

}
.

To use Lemma . to prove the existence of a fixed point of the operator T , we need to
show that the second possibility of Lemma . should not happen.
In fact, assume that there exists y ∈ ∂K with ‖y(t)‖ = r and γ ∈ (, ) such that y = γTy.

It follows that

y(t) = γ
∣∣(Ty)(t)∣∣ = γ

∣∣∣∣
∫ t


G∗(t, s)f

(
s, s

(
y(s) +μ

))
ds

∣∣∣∣
and

∥∥y(t)∥∥ =
∥∥∥∥γ

∫ t


G∗(t, s)f

(
s, s

(
y(s) +μ

))
ds

∥∥∥∥
≤ γ

∫ t


G∗(s, s)

∣∣f (s, s(y(s) +μ
))∣∣ds

<
∫ t


G∗(s, s)m(s)ds +

∫ t


G∗(s, s)n(s)ds‖μ‖p +

∫ t


G∗(s, s)n(s)ds‖r‖p

≤
∫ t


G∗(s, s)m(s)ds +

∫ t


G∗(s, s)n(s)ds‖μ‖p +

∫ t


G∗(s, s)n(s)ds‖r‖

≤ ‖r‖. (.)

Here we use the inequality

(a + b)p ≤ ap + bp for a,b ≥ ,≤ p ≤ .

Obviously, (.) contradicts our assumption that ‖y(t)‖ = r. Therefore, by Lemma .,
it follows that T has a fixed point y ∈ K . Hence, the integral equation (.) has at least a
solution y(t). The proof is completed. �

3 The proof of Theorem 2.1
In this section, we prove Theorem . by using Lemmas .-. and the intermediate value
theorem.

Proof of Theorem . From the right-hand side of (.), we know that (.) is continu-
ously dependent on the parameter μ. So, we just need to find μ such that y() = , which
implies that u() = μ.
We rewrite (.) for any given real number μ as follows:

yμ(t) =
∫ 


G∗(t, s)f

(
s, s

(
yμ(s) +μ

))
ds, t ∈ [, ]. (.)

From (.), it suffices to show that there exists μ such that

L(μ) := yμ() =
∫ 


G∗(, s)f

(
s, s

(
yμ(s) +μ

))
ds, t ∈ [, ]. (.)

http://www.boundaryvalueproblems.com/content/2013/1/197
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Obviously, yμ() is continuously dependent on the parameter μ. Our aim here is to prove
that there exists μ∗ such that yμ∗ () = , we only need to prove that limμ→∞ L(μ) = ∞ and
limμ→–∞ L(μ) = –∞.
Firstly, we prove that limμ→∞ L(μ) = ∞. On the contrary, we suppose that limμ→∞L(μ) <

∞. Then there exists a sequence {μn} with limn→∞ μn = ∞ such that limμn→∞ L(μn) < ∞,
which implies that the sequence {L(μn)} is bounded. Notice that the function f (t, ty) is
continuous with respect to t ∈ [, ] and y ∈ R. So, it is impossible to have

f
(
t, t

(
yμn (t) +μn

)) ≥  for all t ∈ [, ] (.)

as μn is large enough. Indeed, assume that (.) is true. Then by (.) we have

yμ ≥  for all t ∈ [, ]. (.)

Thus we get that

lim
μn→∞ f

(
t, t

(
yμ(t) +μn

))
= ∞ for all t ∈ [, ]. (.)

Since we have from (H) that

lim
μ→∞ f (t, tu) = ∞ for all t ∈ (, ), (.)

by (.), (.) and (.), we have

lim
μn→∞ yμn () = lim

μn→∞

∫ 


G∗(, s)f

(
s, s(yμn +μn)

)
ds

≥ lim
μn→∞

∫ 





G∗(, s)f
(
s, s(yμn +μn)

)
ds

= ∞, (.)

which contradicts our assumption.
Now, for large μn, we define

In =
{
t ∈ [, ] | f (t, t(yμn +μn)

)
< 

}
.

Then In is not empty.
Secondly, we divide the set In into set Ĩn and set În as follows:

Ĩn = {t ∈ In | yμn +μn > },
În = {t ∈ In | yμn +μn ≤ }.

Obviously, we get that Ĩn ∩ În = φ, Ĩn ∪ În = In. So, we have from (H) that În is not empty.
From (H) again, the function f (t, tu) is bounded below by a constant for t ∈ [, ] and

μ ∈ [,∞). Thus, there exists a constantM (< ), independent of t and μn, such that

f
(
t, t

(
yμn (t) +μn

)) ≥ M, t ∈ Ĩn. (.)

http://www.boundaryvalueproblems.com/content/2013/1/197
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Let

j(μn) =min
t∈In

yμn (t).

From the definitions of Ĩn and În, we have

j(μn) =min
t∈În

yμn (t) = –
∥∥yμn (t)

∥∥
În
,

and it follows that j(μn)→ –∞ as μn → ∞ (since if j(μn) is bounded below by a constant
as μn → ∞, then (.) holds). Therefore, we can choose μn large enough such that

j(μn) <min

{
–,

M
∫ 
 G

∗(s, s)ds –
∫ 
 G

∗(s, s)m(s)ds
 –

∫ 
 G∗(s, s)n(s)ds

}
(.)

for n > n. From (H), (.), (.) and (.) and the definitions of Ĩn and În, for any μn > μn ,
we have

yμn (t) =
∫ 


G∗(t, s)f

(
s, s

(
yμn (s) +μn

))
ds

≥
∫
In
G∗(s, s)f

(
s, s

(
yμn (s) +μn

))
ds

≥
∫
Ĩn
G∗(s, s)f

(
s, s

(
yμn (s)

)
+μn

)
ds

+
∫
În
G∗(s, s)

(
–m(s) – n(s)

∣∣yμn (s) +μn
∣∣p)ds

≥
(
M

∫
Ĩn
G∗(s, s)ds –

∫
În
G∗(s, s)m(s)ds

)

–
∫
În
G∗(s, s)n(s)ds

∥∥yμn (s) +μn
∥∥p ds,

from which it follows that

yμn (t) ≥ M
∫ 


G∗(s, s)ds –

∫ 


G∗(s, s)m(s)ds

–
∫ 


G∗(s, s)n(s)ds

∥∥yμn (t)
∥∥p
In

≥ M
∫ 


G∗(s, s)ds –

∫ 


G∗(s, s)m(s)ds

+
∫ 


G∗(s, s)n(s)dsj(μn), t ∈ In,

which implies that

j(μn) ≥ M
∫ 
 G

∗(s, s)ds –
∫ 
 G

∗(s, s)m(s)ds
 –

∫ 
 G∗(s, s)n(s)ds

.

http://www.boundaryvalueproblems.com/content/2013/1/197
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This contradicts (.). Thus, we have proved that limμ→∞ L(μ) = ∞. By a similar method,
we can also prove that limμ→–∞ L(μ) = –∞.
Notice that L(μ) is continuous with respect to μ ∈ (–∞,∞). It follows from the inter-

mediate value theorem [] that there exists μ∗ ∈ (–∞,∞) such that L(μ∗) = , that is,
y() = yμ∗ () = , which satisfies the second boundary value condition of (.). The proof
is completed. �

4 Example
In this section, we give an example to illustrate our main result.

Example Consider the boundary value problem

u′′ + t +


u(t) = , (.)

u() = , u() = 
∫ 




u(s)ds, (.)

where

α = , η =


, f (t,u) = t +



u(t).

So, we have



αη = 

and

f (t, tu) = t +
t

u(t).

Now we take

n(t) =
t

.

It is easy to check that

lim
u→±∞ f (t, tu) = ±∞, t ∈ (, )

and
∫ 


G∗(s, s)n(s)ds ≤ 

α – 

∫ 


α( – s)n(s)ds

=



∫ 


( – s)

s

ds

=


< .

Thus the conditions of Theorem . are satisfied. Therefore problem (.)-(.) has at least
a nontrivial solution.

http://www.boundaryvalueproblems.com/content/2013/1/197
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