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1 Introduction
As early as 1978, Feigenbaum found the period-doubling bifurcation phenomenon by re-
searching the iteration of a single-peak function class [1]. To reveal the mechanism of
the Feigenbaum phenomenon, many years ago, the Feigenbaum functional equation had
been researched extensively. McCarthy [2] obtained the general continuous exact bijec-
tive solutions. Epstein [3] gave a new proof of the existence of analytic, unimodal solutions
by taking advantage of the normality properties of Herglotz functions and the Schauder-
Tikhonov theorem. Eokmann and Wittwer [4] studied the Feigenbaum fixed point by us-
ing the computer. Thompson [5] investigated an essentially singular solution by expressing
Feigenbaum’s equation as a singular Schroder functional equation whose solution was ob-
tained using a scaling ansatz, and so on. Thus, some solutions in specific cases were found.
Specifically, in 1985, to give a feasible method, the second kind of the Feigenbaum func-
tional equation,

f&) = 1f(f(x), 0<i<l,
0=<f) =1L =x€l0,1]

a kind of the equivalent equation, was given by Yang and Zhang [6]. The continuous
valley-unimodal solutions were shown by using the constructive method. Recently, there
have been a lots of results about the polynomial-like iterative equation. In 1987, by using
Schauder’s fixed point theorem to an operator defined by a linear combination of iter-
ates of the unknown mapping f, a result on the existence of continuous solutions of the

polynomial-like iterative equation was given in [7]. Furthermore, the results were given
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for its differentiable solutions [8]. Then the convex solutions and concave solutions [9,
10], the analytic solutions [11-13], the symmetric solutions [14], the higher-dimensional
solutions [15], and the results on the unit circle [16] were obtained. In order to understand
the dynamics of a second order delay differential equation with a piecewise constant ar-
gument, the derived planar mappings and their invariant curves were studied [17]. Based
on the iterative root theory for monotone functions, an algorithm for computing polygo-
nal iterative roots of increasing polygonal functions was given [18]. Else, a problem about
the Hyers-Ulam stability was raised first by Ulam in 1940 and solved for Cauchy equa-
tion by Hyers [19]. Later, many papers on the Hyers-Ulam stability have been published,
especially, for the polynomial-like iterative equation [20-22].

In this paper, by using Schauder’s fixed point theorem, and constructing the special func-
tional space and the construction operator, we consider the properties of the solutions of

the Feigenbaum-like functional equation, which is a non-extended iterative equation,

£ = F520) + g, 0<h<l,
agf(x)fb, xel,

(1.1)

where g(x) is a given disturbance function, f(x) is an unknown function, and f2(x) = f(f(x)),
I =[a,b].1tis clear that a < 0 < b, since Ax € [ for all x € I. We give not only the existence
of continuous solutions of (1.1) but also their uniqueness, stability (the continuous depen-
dence and the Hyers-Ulam stability), quasi-convexity (or quasi-concavity), symmetry by
applying fixed point theorems. Finally, we give an example to verify those conditions given
in theorems.

2 Preliminary
In this section, we give several important definitions, lemmas and notions.

Let C°(1,R) = {f : I — R,f is continuous}. Obviously, C°(Z, R) is a Banach space with the
norm || - ||,0, where the norm ||f||,0 = max,e; |f(x)| for f € C°(,R).

Let C°(I) = {f € C°(I,R) : a < f(x) < b,a < f(Ax) < b,f is continuous}. Then C°(J) is a
complete metric space.

Let X(I M) = {f € C°() : |[f (%) — f(¥)| < M|y — x|,Vx,y € I}, where M is a positive con-
stant.

Let X(I;m, M) = {f € X(LM): |f(x) —f()| = m|xy —x1|,Vx € 1,0 < m < M}, where m is a
positive constant.

Let f(x) := f M (%), f2(Ax) := £ (f (Ax)) := 2P (x), f5 () 2= 5P ().

Definition 2.1 f: [ — R is a quasi-convex (or quasi-concave) function [23] if for Vx,y € I
and A € [0,1], we have

f()»x +(1- A)y) < max{f(x),f(y)} (or f(kx +(1- A)y) > min{f(x),f(y)}).

Let X,(I; M) denote the families consisting of all quasi-convex functions or quasi-
concave ones in X(I; M), where o = gcv or o = gcc.
The following Lemma 2.1 and Lemma 2.2 are useful, and the methods of their proofs

are similar to ones in the paper [24].
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Lemma 2.1 X(I; M), Xy, (I; M), and X c.(I; M) are compact convex subsets of C°(I,R).
Lemma 2.2 The composition f o g is quasi-convex (or quasi-concave) if f is increasing
and g is quasi-convex (or quasi-concave). In particular, for an increasing quasi-convex (or

quasi-concave) function f, ¥ is also quasi-convex (or quasi-concave).

Lemma 2.3 Iff,h € X(I; M), then
P2 = PP o < M+ D)|f - hll0. 1)
Proof Note that

HfM) e ”CO = max Vz(kx) - hz()»x)’
< max If (fOx)) = f (H(Ax)) | + Izclglx[f(h()»x)) —h(h(\x))|
<M|f® =M o+ If - hllo.

Let y = Ax. Then y € AI, and

|V(A) A Hco = r;g)ﬂf()’) - h(y)\
< max|f () - h(y)
< |If = hllo.

Then

[f2¥ =¥ o < MIf = hllo + IIf - Rl 0

=M+DI|f -4l
Thus, (2.1) holds. O

Lemma 2.4 Suppose that ¢ € X(I; m, M). If the positive constants m, M and A satisfy

1 M?
—+1>—, (2.2)
A m

then Ly, defined by
1 1,
Lo(x)=(1+ T )E e (o7 (%), (2.3)
is an orientation-preserving homeomorphism from I onto itself, and

1 L l)
(Ly) eX(L 55 ) (2.4)
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1 M2 1 M
%‘1=1+—+—’ %‘2=1+———>O. (25)
A m A m

Proof Because ¢ € X(I;m, M), by the paper [7], o1 € X(I; 1\_14’ #). Thus, for any x; # x5 € I,
by (2.3) and (2.5)

|Lo(es) - L) = ‘(1 . %)(?Q )+ (6 (07 ) - 0 (07 )

1
1+ X) oty —21] = M| (x2) — 7' (31) |

1 M?
> 1+ ) =] = — %o — x|
A m

On the other hand,

ILo(es) - L) = ‘(1 . %)(xz )+ (6707 ) - 0 (97 )

1 M?
<1+ = )k =] + — Ko — 1]
A m

<& lxy —x1].

Therefore, Ly € X(I;&1,&). This implies that Ly is strictly increasing and invertible on 1,

-1 .11
and (Lo)™ € X(I; £ El)' O

Lemma 2.5 Suppose that g € X(I;m1, M) and ¢y € X(I; m, M). If

2

1+l>max{1\i,l(%+@>}, (2.6)

A m 2\ M m

then

o= Lora) ' og (2.7)
and

a 1y 1, 1
Loj_1(x):=1+ . x A¢k71()“/’k71(x)) (2.8)

are well defined, and ¢ € X(I, m, M), k=1,2,....

Proof Let

Log := (1 + %)x— %(pé(k(pal(x)). (2.9)
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From Lemma 2.4, Ly is well defined and is an orientation-preserving homeomorphism
from I onto itself, and (Lgo) ! € X([; 1 5 L). Then ¢ (x) := (Lgo) ™ 0 g(x) is well defined and

o1 € X(I; 2, %) € X(I;m, M) by (2.6) and Lemma 2.4. If

Loy := (1 + %)x— i(p (Mpkl(x)) (2.10)

is well defined and is an orientation-preserving homeomorphism from I onto itself, then
(Lo ™ € XL £ 5 E 1). We similarly see that

P (%) = (L) 0 g(x) (2.11)
is well defined, and

M,
Qi1 € X(I; ? g—k) C X(I;m, M). (2.12)
2 1

This implies that the results in Lemma 2.5 are also true for k + 1, which completes the
proof. O

3 Main results
In this section, we give several important theorems on the existence, uniqueness, quasi-
convex (quasi-concave), symmetry and stability of equation (1.1).

Theorem 3.1 (Existence) Given a positive constant My and g(x) € X(I; My). If there exist
constants M and )\ such that

A
1 (M? + M) <M, (3.1

then equation (1.1) has a solution f in X(I; M).

Proof Define T : X(I; M) — C°(I) by

Tf (x) = )\L 2(hx) + 1g(ac), Vx el (3.2)

Because f, f(1x) and g are continuous for all x € I, we obtain that Tf is continuous for all
x €1,and Tf € C°(I). By (3.1), for any x, y in I,

A 1,
o lg(x) - mf (Ay) -

76 - T70)] = | /%00 +
_M[ﬁ () ~209)] + 5~ |e@) ~50)

< M) )| +

AM?
A+l

A
A 1(M +M1)|x ¥

<

=] AMH |
Xx—y+ ——|x—
N

<Mlx -yl
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Thus, Ty € X(I, M). Now we prove the continuity of T under the norm | - || 0. For arbitrary
_fl; 2 € X(Ir M)1

1T - Tholeo = max| T() ~ Th(x)|

1 1,
= max| —— -2
r??fxuﬂ( Y- 0

= ﬁ max VZ (Ax) - f22 (Ax)‘

el
<Elf —fallco

where Lemma 2.3 is used and

M+1
= . (3.3)
A+1
Thus, T is continuous under the norm || - ||,0. Summarizing all the above, we see that T

is a continuous mapping from the compact convex subset X(I, M) of the Banach space
C%(1, R) into itself. By Schauder’s fixed point theorem, we assert that there is a mapping
f € X(I,M) such that

1 A
= Tf (x) = 2(Ax) + ——g(x), Vxel 3.4
f@)=Tf) = =70 + - gl), Vxe (3.4)
This completes the proof. O
Theorem 3.2 (Uniqueness) Suppose that (3.1) is satisfied and
M < A. (3.5)

For any function g € X(I, M), equation (1.1) has a unique solution f € X(I, M).

Proof The existence of equation (1.1) in X(I; M) is given by Theorem 3.1. Note that X (I; M)
is a closed subset of C°(I). By (3.3) and (3.5), we see that T : X(I; M) — X(I; M) is a con-
traction mapping. Therefore T has a unique fixed point f(x) in X(I; M), that is, equation
(1.1) has a unique solution f(x) in X(I; M). O

Below, we discuss the quasi-convex (or quasi-concave) solutions of equation (1.1).

Definition 3.1 Suppose that I isa Lie group of all linear transformations on R. A mapping
f+R— R, is said to be I'-equivariant [25] if f(yx) = yf(x), Vy € ', Vx € R.

This implies that f* is the I"-equivariant. Let G-(I) = {g € C°() | g(yx) = yg(x),Vy €
T',Vx € I} and Gr-(I; M) = Gr-(I) N X(I; M).

Lemma 3.1 Gr(I) is a closed convex subset of C°(I), and Gr(I; M) is a compact convex
subset of C°(I).

The methods of the proofs are similar to the paper [24].
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Theorem 3.3 (Quasi-convexity (Quasi-concavity)) Ifg € X, (I;M,), (3.1) and (3.5) are sat-
isfied, then (1.1) has a solution f € X, (I; M).

Proof Define a mapping T : X, (I; M) — CO(I) as in (3.2). Note that each f € Xge(l;M) is
an increasing function. In fact, ifx < y in I, there exists £y € (0,1) such thatx = tpa+ (1-ty)y,

and by the quasi-convexity, we get

S(x) < max(f(a),f () =f (). (3.6)
Thus, for f € Xy, (I, M), %,y €I, and t € [0,1], we get

1

A
Tf(tx+ a- t)y) = mfz()»(tx+ 1- t)y)) + Tl

1

g(tx+ (1-1t)y)

f(max{f(kx),f(ky)}) + % max{g(x):g(y)}

A
1 max{fz()\x),fz()»y)} + i1

IA

>
-+

—_

=

max{g(x),g()}

>

+

< max{ Tf (x), Tf(y)}

Thus, T maps X, (I, M) into itself. Similarly, we can prove that T is continuous. By
Lemma 2.1, X, (I, M) is a compact convex subset of the Banach space C°(I). Then
Schauder’s fixed point theorem guarantees the existence of a fixed point f of T in
Xge(I; M). In the same way, the proof of the quasi-concave solution of equation (1.1) is

similarly obtained. 0
Now, we study the symmetric solutions of (1.1).

Theorem 3.4 (Symmetry) If(3.1) and (3.5) are satisfied, and g € Gr(I; M), then equation
(1.1) has a unique U -equivariant solution f € Gr(I; My).

Proof By Lemma 3.1 and (3.2), we have

1 A

Tfy) = - (yax) + o 780r)

+1
1, A
=y——F* (A -
Y1 (x)+y“1g(x)

=y If (x).

From Theorem 3.1, we can find that 7 is a contraction mapping in Gr(I;M,). Since
Gr(I; M,) is a compact convex subset of C°(I), by Banach’s fixed point theorem, we as-
sert that there is a unique fixed point f € Gr([; My). g

In the following, we give the conditions to guarantee two kinds of stability: the contin-
uous dependence and the Hyers-Ulam stability [21].

Theorem 3.5 (Continuous dependence) If(3.1) and (3.5) are satisfied, the solutions of (1.1)
in X(I; M) is continuously dependent on the given function g(x) in X(I; My).
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Proof For g&,g, € X(I; M), Theorem 3.1 implies that there are functions f;,f, € X(I; M;)

such that
filx) = T 1f1 (Ax) + lgl(x), (3.7)
falx) = r (%) + lgz(x). (3.8)

Thus, by Lemma 2.3
Ifi —fallo = rgg;({ﬁ(x) A%l

)\L ax[}fl(kx) f2 Ax|

7 g1 (x) — g2(%)|

A 1 Hfl —fzm) HCO + m”& -2l

A
~falleo + m”gl - &ll0,

which implies

M+1
(1 )”_fl ,f2||c0 =< ﬁ”gl g2||c0)

SO

A
|[f1 f2||c0 = mﬂgl Lll0. (3.9)

Inequality (3.5) yields that the solution of (1.1) in X(/; M) is continuously dependent on
the given function g in X(I;M). |

Definition 3.2 The functional equation

Ei(p) = Ex(p) (3.10)

has the Hyers-Ulam stability [26] if for any approximate solution ¢; such as ||E;(¢s) =
E> ()|l < 38, there exist a solution ¢ of equation (3.10) such as ||¢ — ¢s|| < &, where § > 0,
¢ >0, and a constant ¢ dependent only on §.

Theorem 3.6 (Hyers-Ulam stability) Suppose that g € X(I;m1, M1), and ¢, € X(I; m, M)
satisfy

’g(x) - (1 + %)(ps(x) + %(pf()\x) <8, Vxel, (3.11)

where & > 0 is a positive constant. If (2.6), (3.1) and (3.5) are satisfied, there exists a unique
continuous solution ¢ € X(I;m, M) of (1.1) such that

o) —s(x)| < ¢8, Vxel, (3.12)
1 M+l | M>
where ¢ = sy = ﬁ + <1
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Proof Construct a sequence {¢y} of functions as follows. Take ¢y = ¢;, and then define
@k as in (2.7) and Lgy as in (2.8). By Lemma 2.4, both ¢ and Ly are well defined for
any integer k > 1. Lemma 2.4 and Lemma 2.5 also imply that ¢ or Lgy is an orientation-
preserving homeomorphism from I into itself with (Lg)™! € X(I; é, é), where & and &,
are given in (2.5).

Now we claim that

lg - Lok 0 g ll < n*718, (3.13)
k-1 3
k= @kl =" — )
lok — 1l < E (3.14)
1

forallxeland k=1,2,....
The case k =1 is trivial. Assume that (3.13) and (3.14) hold for k. Since

lg() — Low o @i | < 1Lgrr 0 ox — Lok 0 gkl

IA

|01 (i (00) + 0 (hei (1) |

IA

|k (rec) — i (i) |

IA

(et (reic) = ek (oil) | + ok (roils) = v (Reis) )

IA
> = e >

(M2 @it = oy || + (M + Dllgr = grall),

where Lemma 2.3 is applied. From the hypothesis of induction, it follows that

M+1
lg(x) = Lox o ¢x|| §M2||¢;1—90;31H+( ; )Ilsok—sok_lll
<M2 M+1>k .
<{—+ 8=n"4.
nm A&

Moreover,

i — il = || (L) ™ o g — (L) ™ o Loic o x|
1

< _
&

x
1

llg = Lox o @kl
<

Thus, (3.13) and (3.14) hold.
On the other hand, for any positive integers k and / with k > /, by (3.14)

lox — @il < llox = @1l + k-1 = @r2ll + -+ + llore1 — @il

8 8 8
A L il

& & &

=7

k [

—als

< -re (3.15)
1-n &
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Note that < 1, so from (3.15), it follows that
lok —@ill = 0 ask,[— +oo.

This implies that {¢x(x)} is a Cauchy sequence. Hence, {¢x(x)} uniformly converges in the
Banach space C°([). Let ¢ = limy_, , o i (%). Clearly, ¢ € X(I;m, M). From (3.13),

lg—Loowll = lim |lg—-Loxogl < lim 7*5=0, (3.16)
k—+00 k—+00
i.e., ¢ is a solution of (1.1). Furthermore, from (3.14)

lo—@sll = lim |lox —oll
k— +00

< 1lim (I¢x = @l + llgeo1 = all + - + o1 = @oll)
k—+00

Thus, ||¢ — ;]| < £§. Then (3.12) holds.
Concerning the uniqueness, we assume that there is another continuous solution ¢ €
X([;m,M) (¢ # @), such that

p(x) - os(x)| <&,
where ¢ > 0 only depends on 8. Then

lo-¢ll=|Le) " og— (L) og]
<|@p)™ - @)

<||Ze)™" = (Le) o (L) o (Le)7!|

< % IL6) o (Ld)™ - (Le) o (L)
< Lo -1o)
=5

< () - 0+ 92067) - 02007

<M”¢_¢,”+Aﬁnw—l_¢—1“
3 &

M+1 _ M_2 1 1
<& o -l + 5 le' ¢ opoo™|
s M gog —pos
= g mé;

2

<M 1+ Mgl
P +— — N
=g me Y
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that is,

(1—M”—E)n TR (317)
e omy )TN '

The assumption of Theorem 3.6 yields ||¢ — ¢|| = 0, i.e., ¢ = ¢, which contradicts with the
assumption. The proof is completed. 0

4 Example
Example 1 Consider the equation

flx) = %ﬂ(%x) + %g(x), (4.1)

where x € [0,1] and A = % Let

1 1
gx, 0§x§Z1
1 1 1 1
“X— i, F<X=<=
7 32’ 2 =79
8l = 1 1 1 3 (4-2)
£ = ES < 2
¥ty 2<¥=%p
1 1 3
1, 1 3 <
X =3 4<x_1.

Then g(x) is quasi-convex and nonconvex (see Figure 1). Note that, for x € [0, i] and y €
(2,1]

=100l = [3- 3 - 5 = [s0-9+ 5 (5-3)

<1| | 3| | 1| |
—ly—xl+<ly—xl==ly—x|.
=3 gV s

Similarly, we can show that for any x,y € [0,1], |f(x) — f(y)| < %ly —x|. Thus, M; = %
Forx e [i, %] andy € [%,1], we have

1 1 1 1
=10 =|37-5-3%* 53| 2 il s

>1| | 1 7
—ly—xl-=|y-=|
4J’ Y

025}
0.20
0.15
g(x)

0.10

0.05

Figure 1 The graph of g(x).
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If1>y> %, then |[f(x) —f(y)| = 2y -« > |y —x[;if Z > y> 3, then

If@) -] = — Iy xl—izily x> - Iy—xl,
32716

since % <ly-x <3 Slmllarly, we can show that for any x,y € [0,1], |[f(x) - f(y)| >
% ly —x|. Thus, m; = g. Therefore, we can get a quasi-convex solution f(x) of equation (4.1)
by Theorem 3.3, which is continuously dependent on the given function g(x) € X(I; M)
with M = 3’ﬁ by Theorem 3.5. Moreover, equation (4.1) satisfies the Hyers-Ulam stability

in X(Z; g i?;:/[—' 3= ‘[) by Theorem 3.6.
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