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1 Introduction
As early as , Feigenbaum found the period-doubling bifurcation phenomenon by re-
searching the iteration of a single-peak function class []. To reveal the mechanism of
the Feigenbaum phenomenon, many years ago, the Feigenbaum functional equation had
been researched extensively. McCarthy [] obtained the general continuous exact bijec-
tive solutions. Epstein [] gave a new proof of the existence of analytic, unimodal solutions
by taking advantage of the normality properties of Herglotz functions and the Schauder-
Tikhonov theorem. Eokmann and Wittwer [] studied the Feigenbaum fixed point by us-
ing the computer. Thompson [] investigated an essentially singular solution by expressing
Feigenbaum’s equation as a singular Schroder functional equation whose solution was ob-
tained using a scaling ansatz, and so on. Thus, some solutions in specific cases were found.
Specifically, in , to give a feasible method, the second kind of the Feigenbaum func-

tional equation,

⎧⎪⎪⎨
⎪⎪⎩
f (x) = 

λ
f (f (λx)),  < λ < ,

f () = ,

 ≤ f (x) ≤ , x ∈ [, ]

a kind of the equivalent equation, was given by Yang and Zhang []. The continuous
valley-unimodal solutions were shown by using the constructive method. Recently, there
have been a lots of results about the polynomial-like iterative equation. In , by using
Schauder’s fixed point theorem to an operator defined by a linear combination of iter-
ates of the unknown mapping f , a result on the existence of continuous solutions of the
polynomial-like iterative equation was given in []. Furthermore, the results were given
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for its differentiable solutions []. Then the convex solutions and concave solutions [,
], the analytic solutions [–], the symmetric solutions [], the higher-dimensional
solutions [], and the results on the unit circle [] were obtained. In order to understand
the dynamics of a second order delay differential equation with a piecewise constant ar-
gument, the derived planar mappings and their invariant curves were studied []. Based
on the iterative root theory for monotone functions, an algorithm for computing polygo-
nal iterative roots of increasing polygonal functions was given []. Else, a problem about
the Hyers-Ulam stability was raised first by Ulam in  and solved for Cauchy equa-
tion by Hyers []. Later, many papers on the Hyers-Ulam stability have been published,
especially, for the polynomial-like iterative equation [–].
In this paper, by using Schauder’s fixed point theorem, and constructing the special func-

tional space and the construction operator, we consider the properties of the solutions of
the Feigenbaum-like functional equation, which is a non-extended iterative equation,

⎧⎨
⎩
f (x) = 

λ+ f
(λx) + λ

λ+g(x),  < λ < ,

a≤ f (x)≤ b, x ∈ I,
(.)

where g(x) is a given disturbance function, f (x) is an unknown function, and f (x) = f (f (x)),
I = [a,b]. It is clear that a≤  ≤ b, since λx ∈ I for all x ∈ I . We give not only the existence
of continuous solutions of (.) but also their uniqueness, stability (the continuous depen-
dence and the Hyers-Ulam stability), quasi-convexity (or quasi-concavity), symmetry by
applying fixed point theorems. Finally, we give an example to verify those conditions given
in theorems.

2 Preliminary
In this section, we give several important definitions, lemmas and notions.
Let C(I,R) = {f : I → R, f is continuous}. Obviously, C(I,R) is a Banach space with the

norm ‖ · ‖c , where the norm ‖f ‖c =maxx∈I |f (x)| for f ∈ C(I,R).
Let C(I) = {f ∈ C(I,R) : a ≤ f (x) ≤ b,a ≤ f (λx) ≤ b, f is continuous}. Then C(I) is a

complete metric space.
Let X(I;M) = {f ∈ C(I) : |f (x) – f (y)| ≤ M|y – x|,∀x, y ∈ I}, where M is a positive con-

stant.
Let X(I;m,M) = {f ∈ X(I;M) : |f (x) – f (y)| ≥ m|x – x|,∀x ∈ I,  <m ≤ M}, wherem is a

positive constant.
Let f (λx) := f (λ)(x), f (λx) := f (f (λx)) := f (λ)(x), f k(λx) := f k(λ)(x).

Definition . f : I → R is a quasi-convex (or quasi-concave) function [] if for ∀x, y ∈ I
and λ ∈ [, ], we have

f
(
λx + ( – λ)y

) ≤ max
{
f (x), f (y)

} (
or f

(
λx + ( – λ)y

) ≥ min
{
f (x), f (y)

})
.

Let Xσ (I;M) denote the families consisting of all quasi-convex functions or quasi-
concave ones in X(I;M), where σ = qcv or σ = qcc.
The following Lemma . and Lemma . are useful, and the methods of their proofs

are similar to ones in the paper [].
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Lemma . X(I;M), Xqcv(I;M), and Xqcc(I;M) are compact convex subsets of C(I,R).

Lemma . The composition f ◦ g is quasi-convex (or quasi-concave) if f is increasing
and g is quasi-convex (or quasi-concave). In particular, for an increasing quasi-convex (or
quasi-concave) function f , f k is also quasi-convex (or quasi-concave).

Lemma . If f ,h ∈ X(I;M), then

∥∥f (λ) – h(λ)
∥∥
c ≤ (M + )‖f – h‖c . (.)

Proof Note that

∥∥f (λ) – h(λ)
∥∥
c =max

x∈I
∣∣f (λx) – h(λx)

∣∣
≤ max

x∈I
∣∣f (f (λx)) – f

(
h(λx)

)∣∣ +max
x∈I

∣∣f (h(λx)) – h
(
h(λx)

)∣∣
≤ M

∥∥f (λ) – h(λ)
∥∥
c + ‖f – h‖c .

Let y = λx. Then y ∈ λI , and

∥∥f (λ) – h(λ)
∥∥
c =max

y∈λI

∣∣f (y) – h(y)
∣∣

≤ max
y∈I

∣∣f (y) – h(y)
∣∣

≤ ‖f – h‖c .

Then

∥∥f (λ) – h(λ)
∥∥
c ≤ M‖f – h‖c + ‖f – h‖c
= (M + )‖f – h‖c .

Thus, (.) holds. �

Lemma . Suppose that ϕ ∈ X(I;m,M). If the positive constants m,M and λ satisfy


λ
+  >

M

m
, (.)

then Lϕ, defined by

Lϕ(x) =
(
 +


λ

)
x –


λ

ϕ(λϕ–(x)
)
, (.)

is an orientation-preserving homeomorphism from I onto itself, and

(Lϕ)– ∈ X
(
I;


ξ
,

ξ

)
, (.)
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where

ξ =  +

λ
+
M

m
, ξ =  +


λ
–
M

m
> . (.)

Proof Because ϕ ∈ X(I;m,M), by the paper [], ϕ– ∈ X(I; 
M , 

m ). Thus, for any x 	= x ∈ I ,
by (.) and (.)

∣∣Lϕ(x) – Lϕ(x)
∣∣ =

∣∣∣∣
(
 +


λ

)
(x – x) +


λ

(
ϕ(λϕ–(x)

)
– ϕ(λϕ–(x)

))∣∣∣∣
≥

(
 +


λ

)
|x – x| –M∣∣ϕ–(x) – ϕ–(x)

∣∣

≥
(
 +


λ

)
|x – x| – M

m
|x – x|

≥ ξ|x – x| > .

On the other hand,

∣∣Lϕ(x) – Lϕ(x)
∣∣ =

∣∣∣∣
(
 +


λ

)
(x – x) +


λ

(
ϕ(λϕ–(x)

)
– ϕ(λϕ–(x)

))∣∣∣∣
≤

(
 +


λ

)
|x – x| + M

m
|x – x|

≤ ξ|x – x|.

Therefore, Lϕ ∈ X(I; ξ, ξ). This implies that Lϕ is strictly increasing and invertible on I ,
and (Lϕ)– ∈ X(I; 

ξ
, 

ξ
). �

Lemma . Suppose that g ∈ X(I;m,M) and ϕ ∈ X(I;m,M). If

 +

λ
>max

{
M

m
,



(
M

M
+
m

m

)}
, (.)

then

ϕk := (Lϕk–)– ◦ g (.)

and

Lϕk–(x) :=
(
 +


λ

)
x –


λ

ϕ
k–

(
λϕ–

k–(x)
)

(.)

are well defined, and ϕk ∈ X(I;m,M), k = , , . . . .

Proof Let

Lϕ :=
(
 +


λ

)
x –


λ

ϕ

(
λϕ–

 (x)
)
. (.)
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From Lemma ., Lϕ is well defined and is an orientation-preserving homeomorphism
from I onto itself, and (Lϕ)– ∈ X(I; 

ξ
, 

ξ
). Then ϕ(x) := (Lϕ)– ◦ g(x) is well defined and

ϕ ∈ X(I; m
ξ
, M

ξ
) ⊂ X(I;m,M) by (.) and Lemma .. If

Lϕk :=
(
 +


λ

)
x –


λ

ϕ
k
(
λϕ–

k (x)
)

(.)

is well defined and is an orientation-preserving homeomorphism from I onto itself, then
(Lϕk)– ∈ X(I; 

ξ
, 

ξ
). We similarly see that

ϕk+(x) := (Lϕk)– ◦ g(x) (.)

is well defined, and

ϕk+ ∈ X
(
I;
mk

ξ
,
Mk

ξ

)
⊂ X(I;m,M). (.)

This implies that the results in Lemma . are also true for k + , which completes the
proof. �

3 Main results
In this section, we give several important theorems on the existence, uniqueness, quasi-
convex (quasi-concave), symmetry and stability of equation (.).

Theorem . (Existence) Given a positive constant M and g(x) ∈ X(I;M). If there exist
constants M and λ such that

λ

λ + 
(
M +M

) ≤ M, (.)

then equation (.) has a solution f in X(I;M).

Proof Define T : X(I;M) → C(I) by

Tf (x) =


λ + 
f (λx) +

λ

λ + 
g(x), ∀x ∈ I. (.)

Because f , f (λx) and g are continuous for all x ∈ I , we obtain that Tf is continuous for all
x ∈ I , and Tf ∈ C(I). By (.), for any x, y in I ,

∣∣Tf (x) – Tf (y)
∣∣ =

∣∣∣∣ 
λ + 

f (λx) +
λ

λ + 
g(x) –


λ + 

f (λy) –
λ

λ + 
g(y)

∣∣∣∣
≤ 

λ + 
∣∣f (λx) – f (λy)

∣∣ + λ

λ + 
∣∣g(x) – g(y)

∣∣

≤ M
λ + 

∣∣f (λx) – f (λy)
∣∣ + λM

λ + 
|x – y|

≤ λM

λ + 
|x – y| + λM

λ + 
|x – y|

=
λ

λ + 
(
M +M

)|x – y|

≤ M|x – y|.

http://www.advancesindifferenceequations.com/content/2013/1/231


Liang et al. Advances in Difference Equations 2013, 2013:231 Page 6 of 13
http://www.advancesindifferenceequations.com/content/2013/1/231

Thus, Tf ∈ X(I,M). Nowwe prove the continuity of T under the norm ‖ ·‖c . For arbitrary
f, f ∈ X(I,M),

‖Tf – Tf‖c =max
x∈I

∣∣Tf(x) – Tf(x)
∣∣

=max
x∈I

∣∣∣∣ 
λ + 

f  (λx) –


λ + 
f  (λx)

∣∣∣∣
=


λ + 

max
x∈I

∣∣f  (λx) – f  (λx)
∣∣

=


λ + 
∥∥f (λ) – f (λ)

∥∥
≤ E‖f – f‖C ,

where Lemma . is used and

E =
M + 
λ + 

. (.)

Thus, T is continuous under the norm ‖ · ‖c . Summarizing all the above, we see that T
is a continuous mapping from the compact convex subset X(I,M) of the Banach space
C(I,R) into itself. By Schauder’s fixed point theorem, we assert that there is a mapping
f ∈ X(I,M) such that

f (x) = Tf (x) =


λ + 
f (λx) +

λ

λ + 
g(x), ∀x ∈ I. (.)

This completes the proof. �

Theorem . (Uniqueness) Suppose that (.) is satisfied and

M < λ. (.)

For any function g ∈ X(I,M), equation (.) has a unique solution f ∈ X(I,M).

Proof The existence of equation (.) inX(I;M) is given by Theorem .. Note thatX(I;M)
is a closed subset of C(I). By (.) and (.), we see that T : X(I;M) → X(I;M) is a con-
traction mapping. Therefore T has a unique fixed point f (x) in X(I;M), that is, equation
(.) has a unique solution f (x) in X(I;M). �

Below, we discuss the quasi-convex (or quasi-concave) solutions of equation (.).

Definition . Suppose that� is a Lie group of all linear transformations onR. Amapping
f : R → R, is said to be �-equivariant [] if f (γ x) = γ f (x), ∀γ ∈ �, ∀x ∈ R.

This implies that f i is the �-equivariant. Let G�(I) = {g ∈ C(I) | g(γ x) = γ g(x),∀γ ∈
�,∀x ∈ I} and G�(I;M) =G�(I)∩X(I;M).

Lemma . G�(I) is a closed convex subset of C(I), and G�(I;M) is a compact convex
subset of C(I).

The methods of the proofs are similar to the paper [].

http://www.advancesindifferenceequations.com/content/2013/1/231
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Theorem. (Quasi-convexity (Quasi-concavity)) If g ∈ Xσ (I;M), (.) and (.) are sat-
isfied, then (.) has a solution f ∈ Xσ (I;M).

Proof Define a mapping T : Xqcv(I;M) → C(I) as in (.). Note that each f ∈ Xqcv(I;M) is
an increasing function. In fact, if x < y in I , there exists t ∈ (, ) such that x = ta+(–t)y,
and by the quasi-convexity, we get

f (x)≤ max
(
f (a), f (y)

)
= f (y). (.)

Thus, for f ∈ Xqcv(I,M), x, y ∈ I , and t ∈ [, ], we get

Tf
(
tx + ( – t)y

)
=


λ + 

f 
(
λ
(
tx + ( – t)y

))
+

λ

λ + 
g
(
tx + ( – t)y

)

≤ 
λ + 

f
(
max

{
f (λx), f (λy)

})
+

λ

λ + 
max

{
g(x), g(y)

}

≤ 
λ + 

max
{
f (λx), f (λy)

}
+

λ

λ + 
max

{
g(x), g(y)

}

≤ max
{
Tf (x),Tf (y)

}
.

Thus, T maps Xqcv(I,M) into itself. Similarly, we can prove that T is continuous. By
Lemma ., Xqcv(I,M) is a compact convex subset of the Banach space C(I). Then
Schauder’s fixed point theorem guarantees the existence of a fixed point f of T in
Xqcv(I;M). In the same way, the proof of the quasi-concave solution of equation (.) is
similarly obtained. �

Now, we study the symmetric solutions of (.).

Theorem . (Symmetry) If (.) and (.) are satisfied, and g ∈G�(I;M), then equation
(.) has a unique �-equivariant solution f ∈ G�(I;M).

Proof By Lemma . and (.), we have

Tf (γ x) =


λ + 
f (γ λx) +

λ

λ + 
g(γ x)

= γ


λ + 
f (λx) + γ

λ

λ + 
g(x)

= γTf (x).

From Theorem ., we can find that T is a contraction mapping in G�(I;M). Since
G�(I;M) is a compact convex subset of C(I), by Banach’s fixed point theorem, we as-
sert that there is a unique fixed point f ∈G�(I;M). �

In the following, we give the conditions to guarantee two kinds of stability: the contin-
uous dependence and the Hyers-Ulam stability [].

Theorem. (Continuous dependence) If (.) and (.) are satisfied, the solutions of (.)
in X(I;M) is continuously dependent on the given function g(x) in X(I;M).

http://www.advancesindifferenceequations.com/content/2013/1/231
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Proof For g, g ∈ X(I;M), Theorem . implies that there are functions f, f ∈ X(I;M)
such that

f(x) =


λ + 
f  (λx) +

λ

λ + 
g(x), (.)

f(x) =


λ + 
f  (λx) +

λ

λ + 
g(x). (.)

Thus, by Lemma .

‖f – f‖c =max
x∈I

∣∣f(x) – f(x)
∣∣

≤ 
λ + 

max
x∈I

∣∣f  (λx) – f  (λx)
∣∣ + λ

λ + 
max
x∈I

∣∣g(x) – g(x)
∣∣

=


λ + 
∥∥f (λ) – f (λ)

∥∥
c +

λ

λ + 
‖g – g‖c

≤ M + 
λ + 

‖f – f‖c + λ

λ + 
‖g – g‖c ,

which implies

(
 –

M + 
λ + 

)
‖f – f‖c ≤ λ

λ + 
‖g – g‖c ,

so

‖f – f‖c ≤ λ

λ –M
‖g – g‖c . (.)

Inequality (.) yields that the solution of (.) in X(I;M) is continuously dependent on
the given function g in X(I;M). �

Definition . The functional equation

E(ϕ) = E(ϕ) (.)

has the Hyers-Ulam stability [] if for any approximate solution ϕs such as ‖E(ϕs) =
E(ϕs)‖ ≤ δ, there exist a solution ϕ of equation (.) such as ‖ϕ – ϕs‖ ≤ ε, where δ ≥ ,
ε > , and a constant ε dependent only on δ.

Theorem . (Hyers-Ulam stability) Suppose that g ∈ X(I;m,M), and ϕs ∈ X(I;m,M)
satisfy

∣∣∣∣g(x) –
(
 +


λ

)
ϕs(x) +


λ

ϕ
s (λx)

∣∣∣∣ ≤ δ, ∀x ∈ I, (.)

where δ >  is a positive constant. If (.), (.) and (.) are satisfied, there exists a unique
continuous solution ϕ ∈ X(I;m,M) of (.) such that

∣∣ϕ(x) – ϕs(x)
∣∣ ≤ ζ δ, ∀x ∈ I, (.)

where ζ = 
ξ(–η) , η = M+

λξ
+ M

m
< .

http://www.advancesindifferenceequations.com/content/2013/1/231
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Proof Construct a sequence {ϕk} of functions as follows. Take ϕ = ϕs, and then define
ϕk as in (.) and Lϕk as in (.). By Lemma ., both ϕk and Lϕk are well defined for
any integer k ≥ . Lemma . and Lemma . also imply that ϕk or Lϕk is an orientation-
preserving homeomorphism from I into itself with (Lϕk)– ∈ X(I; 

ξ
, 

ξ
), where ξ and ξ

are given in (.).
Now we claim that

‖g – Lϕk– ◦ ϕk–‖ ≤ ηk–δ, (.)

‖ϕk – ϕk–‖ ≤ ηk– δ

ξ
(.)

for all x ∈ I and k = , , . . . .
The case k =  is trivial. Assume that (.) and (.) hold for k. Since

∥∥g(x) – Lϕk ◦ ϕk
∥∥ ≤ ‖Lϕk– ◦ ϕk – Lϕk ◦ ϕk‖

≤ 
λ

∥∥–ϕ
k–

(
λϕ–

k–(ϕk)
)
+ ϕ

k
(
λϕ–

k (ϕk)
)∥∥

≤ 
λ

∥∥ϕ
k
(
λϕ–

k
)
– ϕ

k–
(
λϕ–

k–
)∥∥

≤ 
λ

(∥∥ϕ
k
(
λϕ–

k
)
– ϕ

k
(
λϕ–

k–
)∥∥ +

∥∥ϕ
k
(
λϕ–

k–
)
– ϕ

k–
(
λϕ–

k–
)∥∥)

≤ 
λ

(
λM∥∥ϕ–

k – ϕ–
k–

∥∥ + (M + )‖ϕk – ϕk–‖
)
,

where Lemma . is applied. From the hypothesis of induction, it follows that

∥∥g(x) – Lϕk ◦ ϕk
∥∥ ≤ M∥∥ϕ–

k – ϕ–
k–

∥∥ +
(M + )

λ
‖ϕk – ϕk–‖

≤
(
M

m
+
M + 
λξ

)k

δ = ηkδ.

Moreover,

‖ϕk+ – ϕk‖ =
∥∥(Lϕk)– ◦ g – (Lϕk)– ◦ Lϕk ◦ ϕk

∥∥
≤ 

ξ
‖g – Lϕk ◦ ϕk‖

≤ ηk δ

ξ
.

Thus, (.) and (.) hold.
On the other hand, for any positive integers k and l with k > l, by (.)

‖ϕk – ϕl‖ ≤ ‖ϕk – ϕk–‖ + ‖ϕk– – ϕk–‖ + · · · + ‖ϕl+ – ϕl‖

≤ ηk– δ

ξ
+ ηk– δ

ξ
+ · · · + ηl δ

ξ

≤ ηk – ηl

 – η

δ

ξ
. (.)

http://www.advancesindifferenceequations.com/content/2013/1/231
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Note that η < , so from (.), it follows that

‖ϕk – ϕl‖ →  as k, l → +∞.

This implies that {ϕk(x)} is a Cauchy sequence. Hence, {ϕk(x)} uniformly converges in the
Banach space C(I). Let ϕ = limk→+∞ ϕk(x). Clearly, ϕ ∈ X(I;m,M). From (.),

‖g – Lϕ ◦ ϕ‖ = lim
k→+∞

‖g – Lϕk ◦ ϕk‖ ≤ lim
k→+∞

ηkδ = , (.)

i.e., ϕ is a solution of (.). Furthermore, from (.)

‖ϕ – ϕs‖ = lim
k→+∞

‖ϕk – ϕ‖

≤ lim
k→+∞

(‖ϕk – ϕk–‖ + ‖ϕk– – ϕk–‖ + · · · + ‖ϕ – ϕ‖
)

≤ lim
k→+∞

(
ηk– δ

ξ
+ ηk– δ

ξ
+ · · · + δ

ξ

)

≤
δ
ξ

 – η
=


ξ( – η)

δ.

Thus, ‖ϕ – ϕs‖ < ζ δ. Then (.) holds.
Concerning the uniqueness, we assume that there is another continuous solution φ ∈

X(I;m,M) (φ 	= ϕ), such that

∣∣φ(x) – ϕs(x)
∣∣ ≤ ε,

where ε >  only depends on δ. Then

‖ϕ – φ‖ = ∥∥(Lϕ)– ◦ g – (Lφ)– ◦ g∥∥
≤ ∥∥(Lϕ)– – (Lφ)–

∥∥
≤ ∥∥(Lϕ)– – (Lϕ)– ◦ (Lϕ) ◦ (Lφ)–

∥∥
≤ 

ξ

∥∥(Lφ) ◦ (Lφ)– – (Lϕ) ◦ (Lφ)–
∥∥

≤ 
ξ

‖Lϕ – Lφ‖

≤ 
λξ

(∥∥ϕ(λϕ–) – φ(λϕ–)∥∥ +
∥∥φ(λϕ–) – φ(λφ–)∥∥)

≤ M + 
λξ

‖ϕ – φ‖ + M

ξ

∥∥ϕ– – φ–∥∥

≤ M + 
λξ

‖ϕ – φ‖ + M

ξ

∥∥ϕ– – ϕ– ◦ ϕ ◦ φ–∥∥

≤ M + 
λξ

‖ϕ – φ‖ + M

mξ

∥∥φ ◦ φ– – ϕ ◦ φ–∥∥

≤ M + 
λξ

‖ϕ – φ‖ + M

mξ
‖φ – ϕ‖,
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that is,
(
 –

M + 
λξ

–
M

mξ

)
‖ϕ – φ‖ ≤ . (.)

The assumption of Theorem . yields ‖ϕ – φ‖ = , i.e., ϕ = φ, which contradicts with the
assumption. The proof is completed. �

4 Example
Example  Consider the equation

f (x) =


f 

(


x
)
+


g(x), (.)

where x ∈ [, ] and λ = 
 . Let

g(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩


x, ≤ x ≤ 

 ,

x –


 ,


 < x ≤ 

 ,

x +


 ,


 < x ≤ 

 ,

x –


 ,


 < x ≤ .

(.)

Then g(x) is quasi-convex and nonconvex (see Figure ). Note that, for x ∈ [,  ] and y ∈
[  , ]

∣∣f (x) – f (y)
∣∣ =

∣∣∣∣ y –


–


x
∣∣∣∣ =

∣∣∣∣  (y – x) +



(
y –




)∣∣∣∣
≤ 


|y – x| + 


|y – x| = 


|y – x|.

Similarly, we can show that for any x, y ∈ [, ], |f (x) – f (y)| ≤ 
 |y – x|. Thus,M = 

 .
For x ∈ [  ,


 ] and y ∈ [  , ], we have

∣∣f (x) – f (y)
∣∣ =

∣∣∣∣ y –


–


x +




∣∣∣∣ ≥ 


|y – x| – 


∣∣∣∣y – 


∣∣∣∣.

Figure 1 The graph of g(x).
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If  ≥ y≥ 
 , then |f (x) – f (y)| ≥ 

 |y – x| ≥ 
 |y – x|; if 

 ≥ y≥ 
 , then

∣∣f (x) – f (y)
∣∣ ≥ 


|y – x| – 


≥ 


|y – x| ≥ 


|y – x|,

since 
 ≤ |y – x| ≤ 

 . Similarly, we can show that for any x, y ∈ [, ], |f (x) – f (y)| ≥

 |y– x|. Thus,m = 

 . Therefore, we can get a quasi-convex solution f (x) of equation (.)
by Theorem ., which is continuously dependent on the given function g(x) ∈ X(I;M)
withM = –

√


 by Theorem ..Moreover, equation (.) satisfies theHyers-Ulam stability
in X(I; –

√


–
√
 ,

–
√


 ) by Theorem ..
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