
Alsulami et al. Fixed Point Theory and Applications 2014, 2014:213
http://www.fixedpointtheoryandapplications.com/content/2014/1/213

RESEARCH Open Access

Fixed points of generalized contractive
mappings of integral type
Hamed H Alsulami1*, Erdal Karapınar1,2, Donal O’Regan1,3 and Priya Shahi4

*Correspondence:
hamed9@hotmail.com;
hhaalsalmi@kau.edu.sa
1Nonlinear Analysis and Applied
Mathematics Research Group
(NAAM), King Abdulaziz University,
Jeddah, Saudi Arabia
Full list of author information is
available at the end of the article

Abstract
The aim of this paper is to introduce classes of α-admissible generalized contractive
type mappings of integral type and to discuss the existence of fixed points for these
mappings in complete metric spaces. Our results improve and generalize fixed point
results in the literature.
MSC: 46T99; 54H25; 47H10; 54E50

Keywords: α-admissible mapping; fixed point; complete metric space; contractive
mapping; partial order

1 Introduction and preliminaries
In , Branciari [] established a fixed point theorem for a single-valued mapping satis-
fying a contractive inequality of integral type; we also refer the reader to [–]. Recently,
Liu et al. [] (see also [, ]) obtained fixed point theorems for general classes of con-
tractive mappings of integral type in complete metric spaces. In this paper, using auxiliary
functions, we establish some fixed point theorems for self-mappings satisfying a certain
contractive inequality of integral type.
Throughout the paperR+ = [,+∞),N =N∪{}, whereN denotes the set of all positive

integers, (X,d) is a metric space and f : X → X is a self-mapping. Let
� = {ϕ : ϕ :R+ →R

+ is Lebesgue integrable, summable on each compact subset of
R

+ and
∫ ε

 ϕ(t)dt >  for each ε > };
� = {ϕ : ϕ :R+ →R

+ satisfies that lim infn→∞ ϕ(an) >  ⇔ lim infn→∞ an >  for each
{an}n∈N ⊂R

+};
� = {ϕ : ϕ :R+ →R

+ is nondecreasing continuous and ϕ(t) =  ⇔ t = };
� = {ϕ : ϕ :R+ →R

+ satisfies that ϕ() = };
� = {ϕ : ϕ :R+ →R

+ satisfies that lim sups→t ϕ(s) <  for each t > };
� = {(α,β) : α,β :R+ → [, ) satisfy that lim sups→+ β(s) < , lim sups→t+

α(s)
–β(s) < 

and α(t) + β(t) <  for each t > }.
In , Liu et al. [] introduced the following three contractive mappings of integral

type:

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
≤ ψ

(∫ d(x,y)


ϕ(t)dt

)
– φ

(∫ d(x,y)


ϕ(t)dt

)
, ()
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where (ϕ,φ,ψ) ∈ � × � × �,

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
≤ α

(
d(x, y)

)
ψ

(∫ d(x,y)


ϕ(t)dt

)
, ∀x, y ∈ X, ()

where (ϕ,ψ ,α) ∈ � × � × �, and

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
≤ α

(
d(x, y)

)
φ

(∫ d(x,fx)


ϕ(t)dt

)

+ β
(
d(x, y)

)
ψ

(∫ d(y,fy)


ϕ(t)dt

)
, ∀x, y ∈ X, ()

where (ϕ,ψ ,φ) ∈ � × � × � and (α,β) ∈ �.
The following lemmas will be used in the proof of our main results.

Lemma . [] Let ϕ ∈ � and {rn}n∈N be a nonnegative sequence with limn→∞ rn = a.
Then we have

lim
n→∞

∫ rn


ϕ(t)dt =

∫ a


ϕ(t)dt.

Lemma . [] Let ϕ ∈ � and {rn}n∈N be a nonnegative sequence. Then we have the fol-
lowing equivalence:

lim
n→∞

∫ rn


ϕ(t)dt = 

if and only if limn→∞ rn = .

Lemma . [] Let ϕ ∈ �. Then ϕ(t) >  if and only if t > .

The notion of α-admissibility was defined in [] and appreciated by several authors
[–] (see also [–]).

Definition . [] Let T : X → X and α : X × X → [,∞). The mapping T is said to be
α-admissible if for all x, y ∈ X, we have

α(x, y)≥  ⇒ α(Tx,Ty)≥ . ()

Definition . Let T : X → X and α : X ×X → [,∞). The mapping T is said to be weak
triangular α-admissible if for all x ∈ X we have

α(x,Tx)≥  and α
(
Tx,Tx

) ≥  ⇒ α
(
x,Tx

) ≥ . ()

2 Main results
In this section, we state and prove our main results. We start with the following general
contractive inequality of integral type.

http://www.fixedpointtheoryandapplications.com/content/2014/1/213
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Definition . Let (X,d) be a complete metric space, f : X → X and α : X × X → [,∞)
be mappings. Suppose that there exist (ϕ,φ,ψ) ∈ � × � × � and L ≥  such that

α(x, y)ψ
(∫ d(fx,fy)


ϕ(t)dt

)
≤ ψ

(∫ M(x,y)


ϕ(t)dt

)
– φ

(∫ N(x,y)


ϕ(t)dt

)

+ Lψ

(∫ O(x,y)


ϕ(t)dt

)
()

for all x, y ∈ X, where

M(x, y) =max

{
d(x, y),d(x, fx),d(y, fy),



[
d(x, fy) + d(y, fx)

]}
,

and

N(x, y) =max
{
d(x, y),d(x, fx),d(y, fy)

}
and

O(x, y) =min
{
d(x, fx),d(y, fy),d(y, fx),d(x, fy)

}
.

Then f is said to be an α-admissible contractive inequality of integral type I .

Theorem . Let (X,d) be a complete metric space. Suppose that f : X → X is an α-
admissible contractive inequality of integral type I which satisfies

(i) f is weak triangular α-admissible;
(ii) there exists x ∈ X such that either α(x, fx)≥  or α(fx,x)≥ ;
(iii) f is continuous.

Then T has a fixed point.

Proof From (ii), there exists a point x ∈ X such that α(x, fx) ≥  (due to the symmetry of
the metric, the other case yields the same result). Let x = x and we define an iterative
sequence {xn} in X by xn+ = fxn for all n≥ . Note that we have

α(x,x) = α(x, fx) ≥  ⇒ α(fx, fx) = α(x,x) ≥ .

Inductively, we have

α(xn,xn+) ≥  for all n ∈ N. ()

In the sequel, we use the following abbreviations:

dn = d(xn,xn+) and αn = α(xn,xn+) for n ∈N. ()

Notice that if xn = xn+ for some n, then it is evident that u = xn is a fixed point of f .
This completes the proof. Consequently, we assume that xn �= xn+ for all n ∈N, that is,

 < dn = d(xn,xn+) for all n ∈N. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/213
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We now prove that {dn} is a non-increasing sequence of real numbers, that is,

dn ≤ dn–, ∀n ∈N. ()

Suppose, on the contrary, that inequality () does not hold. Thus, there exists some n ∈N

such that

dn > dn–. ()

From () and (), we get

 <
∫ dn–


ϕ(t)dt <

∫ dn


ϕ(t)dt. ()

Regarding again () and () together with the properties of ψ , we conclude that

 = ψ() < ψ

(∫ dn–


ϕ(t)dt

)
≤ ψ

(∫ dn


ϕ(t)dt

)
. ()

Using equations (), (), (), () and the fact that (ϕ,φ,ψ) ∈ � × � × �, we obtain
immediately that

ψ

(∫ dn–


ϕ(t)dt

)
≤ ψ

(∫ dn


ϕ(t)dt

)

≤ αnψ

(∫ dn


ϕ(t)dt

)
= αnψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ ψ

(∫ M(f n–x,f n x)


ϕ(t)dt

)
– φ

(∫ N(f n–x,f nx)


ϕ(t)dt

)

+ Lψ

(∫ O(f n–x,f nx)


ϕ(t)dt

)
, ()

where

M
(
f n–x, f nx

) ≤max
{
d
(
f n–x, f nx

)
,d

(
f nx, f n+x

)}
=max{dn–,dn},

N
(
f n–x, f nx

)
=max

{
d
(
f n–x, f nx

)
,d

(
f nx, f n+x

)}
=max{dn–,dn},

O
(
f n–x, f nx

)
= min

{
d
(
f n–x, f nx

)
,d

(
f nx, f n+x

)
,

d
(
f nx, f nx

)
,d

(
f n–x, f n+x

)}
= .

Thus M(f n–x, f nx) ≤ dn and N(f n–x, f nx) = dn from (). Hence, inequality ()
turns into

ψ

(∫ dn


ϕ(t)dt

)
≤ αnψ

(∫ dn


ϕ(t)dt

)

≤ ψ

(∫ dn


ϕ(t)dt

)
– φ

(∫ dn


ϕ(t)dt

)
<ψ

(∫ dn


ϕ(t)dt

)
, ()
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which is a contradiction. Hence () holds. Thus, there exists a constant c ≥  such that
limn→∞ dn = c≥ .
Next we show that c = , that is,

lim
n→∞dn = . ()

Suppose, on the contrary, that c > . It follows from () and () that

ψ

(∫ dn


ϕ(t)dt

)
= ψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ α(xn,xn+)ψ
(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ ψ

(∫ M(f n–x,f nx)


ϕ(t)dt

)
– φ

(∫ N(f n–x,f nx)


ϕ(t)dt

)

+ Lψ

(∫ O(f n–x,f nx)


ϕ(t)dt

)
, ()

where

M
(
f n–, f nx

) ≤max
{
d
(
f n–x, f nx

)
,d

(
f nx, f n+x

)}
=max{dn–,dn},

N
(
f n–x, f nx

)
=max

{
d
(
f n–x, f nx

)
,d

(
f nx, f n+x

)}
=max{dn–,dn},

O
(
f n–x, f nx

)
=min

{
d
(
f n–x, f nx

)
,d

(
f nx, f n+x

)
,d

(
f nx, f nx

)
,d

(
f n–x, f n+x

)}
= .

Hence, inequality () becomes

ψ

(∫ dn


ϕ(t)dt

)
= ψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)
≤ αnψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ ψ

(∫ dn–


ϕ(t)dt

)
– φ

(∫ dn–


ϕ(t)dt

)
. ()

Taking the upper limit in () and using Lemma . and noting (ϕ,φ,ψ) ∈ � × � × �,
we get

ψ

(∫ c


ϕ(t)dt

)
= lim

n→∞ supψ

(∫ dn


ϕ(t)dt

)

≤ lim
n→∞ sup

[
ψ

(∫ dn–


ϕ(t)dt

)
– φ

(∫ dn–


ϕ(t)dt

)]

= ψ

(∫ c


ϕ(t)dt

)
– lim

n→∞ infφ

(∫ dn–


ϕ(t)dt

)

< ψ

(∫ c


ϕ(t)dt

)
, ()

which is a contradiction. Hence c = .

http://www.fixedpointtheoryandapplications.com/content/2014/1/213
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Next we prove that {f nx}n∈N is a Cauchy sequence. Suppose, on the contrary, that
{f nx}n∈N is not a Cauchy sequence. Thus, there is a constant ε >  such that for each pos-
itive integer k, there are positive integers m(k) and n(k) with m(k) > n(k) > k satisfying

d
(
f m(k)x, f n(k)x

)
> ε. ()

For each positive integer k, letm(k) denote the least integer exceeding n(k) and satisfying
(). This implies that

d
(
f m(k)x, f n(k)x

)
> ε and d

(
f m(k)–x, f n(k)x

) ≤ ε for all k ∈N. ()

On the other hand, we have

d
(
f m(k)x, f n(k)x

) ≤ d
(
f n(k)x, f m(k)–x

)
+ dm(k)–, ∀k ∈N,∣∣d(

f m(k)x, f n(k)+x
)
– d

(
f m(k)x, f n(k)x

)∣∣ ≤ dn(k), ∀k ∈N,∣∣d(
f m(k)+x, f n(k)+x

)
– d

(
f m(k)x, f n(k)+x

)∣∣ ≤ dm(k), ∀k ∈ N,∣∣d(
f m(k)+x, f n(k)+x

)
– d

(
f m(k)+x, f n(k)+x

)∣∣ ≤ dn(k)+, ∀k ∈N.

()

In view of () and (), we infer that

lim
k→∞

d
(
f n(k)x, f m(k)x

)
= ε,

lim
k→∞

d
(
f m(k)x, f n(k)+x

)
= ε,

lim
k→∞

d
(
f m(k)+x, f n(k)+x

)
= ε,

lim
k→∞

d
(
f m(k)+x, f n(k)+x

)
= ε.

()

Using the weak triangular alpha admissible property of f , we get in view of ()

α
(
f m(k)x, f n(k)+x

) ≥ . ()

From () and (), we have

ψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

≤ α
(
f m(k)x, f n(k)+x

)
ψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

≤ ψ

(∫ M(f m(k)x,f n(k)+)


ϕ(t)dt

)
– φ

(∫ N(f m(k)x,f n(k)+)


ϕ(t)dt

)

+ Lψ

(∫ O(f m(k)x,f n(k)+)


ϕ(t)dt

)
, ∀k ∈N. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/213
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Taking the upper limit in () and using (), (ϕ,φ,ψ) ∈ � ×� ×� and Lemma ., we
get

ψ

(∫ ε


ϕ(t)dt

)
= lim

k→∞
supψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

≤ lim sup
k→∞

α
(
f m(k)x, f n(k)+x

)
ψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

≤ lim sup
k→∞

ψ

(∫ M(f m(k)x,f n(k)+x)


ϕ(t)dt

)

– lim inf
k→∞

φ

(∫ N(f m(k)x,f n(k)+x)


ϕ(t)dt

)

+ L lim sup
k→∞

ψ

(∫ O(f m(k)x,f n(k)+)


ϕ(t)dt

)

= ψ

(∫ ε


ϕ(t)dt

)
– lim inf

k→∞
φ

(∫ d(f m(k)x,f n(k)+x)


ϕ(t)dt

)

+ L lim sup
k→∞

ψ

(∫ O(f m(k)x,f n(k)+)


ϕ(t)dt

)

= ψ

(∫ ε


ϕ(t)dt

)
– lim inf

k→∞
φ

(∫ d(f m(k)x,f n(k)+x)


ϕ(t)dt

)

< ψ

(∫ ε


ϕ(t)dt

)
,

which is impossible. Thus {f nx}n∈N is a Cauchy sequence. Now, since (X,d) is complete,
there exists a point a ∈ X such that limn→∞ f nx = a. From the continuity of f , it follows
that xn = fxn+ → fa as n → +∞. From the uniqueness of limits, we get a = fa, that is, a is
a fixed point of f . This completes the proof. �

Theorem . Let (X,d) be a complete metric space. Suppose that f : X → X is an α-
admissible contractive inequality of integral type I which satisfies

(i) f is weak triangular α-admissible;
(ii) there exists x ∈ X such that either α(x, fx)≥  or α(fx,x)≥ ;
(iii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and xn → x ∈ X as

n→ +∞, then α(xn,x) ≥  for all n.
Then f has a fixed point.

Proof Following the proof in Theorem ., we see that {xn} is a Cauchy sequence in the
complete metric space (X,d). Then there exists a ∈ X such that xn → a as n → +∞. On
the other hand, from inequality () and hypothesis (iii), we have

α(xn,a)≥  ∀n ∈N. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/213
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Let us suppose that a �= fa. In view of the above inequality and (), we obtain that

ψ

(∫ d(f n+x,fa)


ϕ(t)dt

)
≤ α(xn,a)ψ

(∫ d(f n+x,fa)


ϕ(t)dt

)

≤ ψ

(∫ M(f nx,a)


ϕ(t)dt

)
– φ

(∫ N(f nx,a)


ϕ(t)dt

)

+ Lψ

(∫ O(f nx,a)


ϕ(t)dt

)
()

for all n ∈N. On the other hand, we have

M
(
f nx,a

)
=max

{
d
(
f nx,a

)
,d

(
f nx, f n+x

)
,d(a, fa),



[
d
(
f nx, fa

)
+ d

(
a, f n+x

)]}
,

N
(
f nx,a

)
=max

{
d
(
f nx,a

)
,d

(
f nx, f n+x

)
,d(a, fa)

}
,

O
(
f nx,a

)
=min

{
d
(
f nx, f n+x

)
,d(a, fa),d

(
f nx, fa

)
,d

(
a, f n+x

)}
.

()

Taking the upper limit in (), in view of Lemmas . and . and (ϕ,φ,ψ) ∈ � ×� ×�,
we infer from () that

ψ

(∫ d(a,fa)


ϕ(t)dt

)
= lim

n→∞ supψ

(∫ d(f n+x,fa)


ϕ(t)dt

)

≤ lim
n→∞ supα(xn,a)ψ

(∫ d(f n+x,fa)


ϕ(t)dt

)

≤ lim
n→∞ supψ

(∫ M(f nx,a)


ϕ(t)dt

)
– lim

n→∞ infφ

(∫ N(f nx,a)


ϕ(t)dt

)

+ L lim
n→∞ supψ

(∫ O(f nx,a)


ϕ(t)dt

)

≤ ψ

(∫ d(a,fa)


ϕ(t)dt

)
– φ

(∫ d(a,fa)


ϕ(t)dt

)

< ψ

(∫ d(a,fa)


ϕ(t)dt

)
,

which is a contradiction. Thus, we have a = fa. �

Now, we present another contractive inequality of integral type.

Definition . Let (X,d) be a complete metric space and f : X → X be a self-mapping.
Suppose that there exist (ϕ,φ,ψ) ∈ � × � × � and L≥  such that

α(x, y)ψ
(∫ d(fx,fy)


ϕ(t)dt

)
≤ ψ

(∫ M∗(x,y)


ϕ(t)dt

)
– φ

(∫ N∗(x,y)


ϕ(t)dt

)

+ Lψ

(∫ O(x,y)


ϕ(t)dt

)
()

http://www.fixedpointtheoryandapplications.com/content/2014/1/213
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for all x, y ∈ X, where

M∗(x, y) =max

{
d(x, y),



[
d(x, fx) + d(y, fy)

]
,


[
d(x, fy) + d(y, fx)

]}
,

and

N∗(x, y) =max

{
d(x, y),



[
d(x, fx) + d(y, fy)

]}

and

O(x, y) =min
{
d(x, fx),d(y, fy),d(y, fx),d(x, fy)

}
.

Then f is said to be an α-admissible contractive inequality of integral type II .

We omit the proof of the following two theorems since they mimic the proof of Theo-
rem . and Theorem ..

Theorem . Let (X,d) be a complete metric space. Suppose that f : X → X is an α-
admissible contractive inequality of integral type II which satisfies

(i) f is weak triangular α-admissible;
(ii) there exists x ∈ X such that either α(x, fx) ≥  or α(fx,x) ≥ ;
(iii) f is continuous.

Then T has a fixed point.

Theorem . Let (X,d) be a complete metric space. Suppose that f : X → X is an α-
admissible contractive inequality of integral type II which satisfies

(i) f is weak triangular α-admissible;
(ii) there exists x ∈ X such that either α(x, fx) ≥  or α(fx,x) ≥ ;
(iii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and xn → x ∈ X as

n→ +∞, then α(xn,x) ≥  for all n.
Then T has a fixed point.

The following condition provides the uniqueness of fixed points of the maps considered
in Theorem . and Theorem .. Consider

(U∗) for all x, y ∈ Fix(f ), there exists z ∈ X such that α(x, z)≥  and α(y, z) ≥ , where Fix(f )
denotes the set of fixed points of f .

Theorem . If the condition (U∗) is added to the hypotheses of Theorem . (respectively,
Theorem .), then the fixed point u of T is unique.

Proof From (U∗), we have

α(x, z)≥  and α(y, z) ≥ .

Define the sequence {zn} in X by zn+ = fzn for all n ≥  and z = z. Using the weak trian-
gular α-admissible property of f , we infer that

α
(
x, zn

) ≥  and α(y, zn) ≥ 

http://www.fixedpointtheoryandapplications.com/content/2014/1/213
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for all n ∈N. Using inequality (), we get

∫ d(x,zn)


ϕ(t)dt =

∫ d(fx,f (zn–))


ϕ(t)dt

≤ α(x, zn–)
∫ d(fx,f (zn–))


ϕ(t)dt

≤ ψ

(∫ d(x,zn–)


ϕ(t)dt

)
– φ

(∫ d(x,zn–)


ϕ(t)dt

)

+ Lψ

(∫ d(x,zn–)


ϕ(t)dt

)
.

Using standard techniques, we derive that d(x, zn) ≤ d(x, zn–) and hence the sequence
{d(x, zn)} converges to some L ≥ . If L = , then the proof is complete. Indeed, we get that
zn → x and analogously, zn → y as n → ∞ and from the uniqueness of limits, we derive
that x = y. Suppose, on the contrary, L > . By letting n → ∞, we derive from the above
inequality that

∫ L


ϕ(t)dt ≤ ψ

(∫ L


ϕ(t)dt

)
– φ

(∫ L


ϕ(t)dt

)
,

which is a contradiction. �

Now we introduce a third type of contractive inequality of integral type.

Definition . Let (X,d) be a complete metric space and f : X → X be a self-mapping.
Suppose that there exist (ϕ,φ,ψ) ∈ � × � × � such that

α(x, y)ψ
(∫ d(fx,fy)


ϕ(t)dt

)
≤ ψ

(∫ d(x,y)


ϕ(t)dt

)
– φ

(∫ d(x,y)


ϕ(t)dt

)
. ()

Then f is said to be an α-admissible contractive inequality of integral type III .

Theorem . Let (X,d) be a complete metric space. Suppose that f : X → X is an α-
admissible contractive inequality of integral type III which satisfies

(i) f is weak triangular α-admissible;
(ii) there exists x ∈ X such that either α(x, fx) ≥  or α(fx,x) ≥ ;
(iii) f is continuous.

Then T has a fixed point.

Proof Following the lines in the proof of Theorem ., we conclude the result. �

Theorem . Let (X,d) be a complete metric space. Suppose that f : X → X is an α-
admissible contractive inequality of integral type III which satisfies

(i) f is weak triangular α-admissible;
(ii) there exists x ∈ X such that either α(x, fx) ≥  or α(fx,x) ≥ ;
(iii) if {xn} is a sequence in X such that α(xn,xn+) ≥  for all n and xn → x ∈ X as

n→ +∞, then α(xn,x) ≥  for all n.
Then f has a fixed point.

http://www.fixedpointtheoryandapplications.com/content/2014/1/213
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Proof The reasoning in Theorem . establishes the result. �

Example . Suppose that X = [, ] with the usual metric. We consider a mapping f :
X → X defined by f (x) = x

 . Define the mapping α : X × X → [, +∞) by α(x, y) =  for all
x, y ∈ X. Hence, f is weak triangular α-admissible. Define ϕ ∈ � by ϕ(t) = t. Let us define
ψ ∈ � and φ ∈ � by ψ(t) = t

 and φ(t) = t
 respectively for all t ≥ .

Clearly, in view of the definitions of α and f , we infer that f is an α-admissible contractive
inequality of integral type III . There exists x ∈ X such that α(x, fx) ≥ . In fact, for x = ,
we obtain

α(, f ) = α

(
,



)
= .

Clearly, f is continuous. Now, all the hypotheses of Theorem . are satisfied. Thus f has
a fixed point in X. In this case,  is a fixed point of f .

Example . Suppose that X = { 
n : n ∈ N} ∪ {} with the usual metric d(x, y) = |x – y|

induced by R. It is a complete metric space, since X is a closed subset of R. We consider a
mapping f : X → X defined by

f (x) =

{


n+ if x = 
n ,

 if x = .

Define the mapping α : X × X → [, +∞) by α(x, y) =  for all x, y ∈ X. It is clear that f is
weak triangular α-admissible. Thus, the condition (i) of Theorem . is satisfied.
Now, consider the following auxiliary function ϕ defined as

ϕ(t) =

⎧⎪⎨
⎪⎩
 if t = ,
t(/t)–[ – log t] if  < t < ,
 if t ≥ .

Then, for any ε > , we have
∫ ε

 ϕ(t)dt = ε/ε for  < ε <  and
∫ ε

 ϕ(t)dt = ε for ε ≥ .
Consequently, we have ϕ ∈ �.
Clearly, in view of the definitions of α and f , we infer that f is an α-admissible contractive

inequality of integral type III for ψ(t) = t
 and φ(t) = t

 , for all t ≥ , where ψ ∈ � and
φ ∈ �.
There exists x ∈ X such that α(x, fx) ≥ . In fact, for example, for x = , we obtain

α(, f ) = α(, ) = . Hence, the condition (ii) of Theorem . is fulfilled.
Let {xn} be a sequence in X such that α(xn,xn+) ≥  for all n and xn → x as n → +∞

for some x ∈ X. From the definition of α, for all n, we have α(xn,x) =  for all. So, the last
condition of Theorem . is satisfied. As a result, due to Theorem ., the mapping f has
a fixed point. Notice that u =  is a fixed point of f .

Theorem. If the condition (U∗) is added to the hypotheses of Theorem . (respectively,
Theorem .), then the fixed point u of T is unique.

http://www.fixedpointtheoryandapplications.com/content/2014/1/213
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3 Consequences in metric spaces
We get the following result by letting α(x, y) =  in Theorem ..

Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying,
for all x, y ∈ X,

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
≤ ψ

(∫ M∗(x,y)


ϕ(t)dt

)
– φ

(∫ N∗(x,y)


ϕ(t)dt

)

+ Lψ

(∫ O(x,y)


ϕ(t)dt

)
, ()

where M∗(x, y) = max{d(x, y),  [d(x, fx),d(y, fy)],  [d(x, fy) + d(y, fx)]}, N∗(x, y) = max{d(x,
y),  [d(x, fx),d(y, fy)]}, O(x, y) = min{d(x, fx),d(y, fy),d(y, fx),d(x, fy)} and (ϕ,φ,ψ) ∈ � ×
� × �. Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for each x ∈ X.

If we take L =  in Theorem ., we get the following result.

Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying,
for all x, y ∈ X,

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
≤ ψ

(∫ M∗(x,y)


ϕ(t)dt

)
– φ

(∫ N∗(x,y)


ϕ(t)dt

)
, ()

where M∗(x, y) =max{d(x, y),  [d(x, fx),d(y, fy)],  [d(x, fy) + d(y, fx)]}, N(x, y) =max{d(x, y),

 [d(x, fx),d(y, fy)]} and (ϕ,φ,ψ) ∈ � × � × �. Then f has a unique fixed point a ∈ X
such that limn→∞ f nx = a for each x ∈ X.

If we take ψ(t) = t in Theorem ., we get the following result.

Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying,
for all x, y ∈ X,

∫ d(fx,fy)


ϕ(t)dt ≤

∫ M∗(x,y)


ϕ(t)dt – φ

(∫ N∗(x,y)


ϕ(t)dt

)
, ()

where M∗(x, y) =max{d(x, y),  [d(x, fx) + d(y, fy)],  [d(x, fy) + d(y, fx)]}, N∗(x, y) =max{d(x,
y),  [d(x, fx) + d(y, fy)]} and (ϕ,φ) ∈ � × �. Then f has a unique fixed point a ∈ X such
that limn→∞ f nx = a for each x ∈ X.

Remark . The following theorem is the main result of [] that can be easily deduced
by taking α(x, y) = , for all x, y ∈ X, in Theorem .. Consequently, all corollaries of the
main result of [] can be deduced evidently.

Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying,
for all x, y ∈ X,

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
≤ ψ

(∫ d(x,y)


ϕ(t)dt

)
– φ

(∫ d(x,y)


ϕ(t)dt

)
, ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/213
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where (ϕ,φ,ψ) ∈ � × � × �. Then f has a unique fixed point a ∈ X such that
limn→∞ f nx = a for each x ∈ X.

If we take ψ(t) = t in Theorem ., we get the following result.

Theorem . Let f be a mapping from a complete metric space (X,d) into itself satisfying,
for all x, y ∈ X,

∫ d(fx,fy)


ϕ(t)dt ≤

∫ d(x,y)


ϕ(t)dt – φ

(∫ d(x,y)


ϕ(t)dt

)
, ()

where (ϕ,φ) ∈ � × �. Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a
for each x ∈ X.

Theorem . Let f be a mapping from a complete metric space (X,d) into itself. If there is
k ∈ [, ) satisfying the following condition for all x, y ∈ X:

∫ d(fx,fy)


ϕ(t)dt ≤ k

∫ d(x,y)


ϕ(t)dt, ()

then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for each x ∈ X.

4 Consequences in partially orderedmetric spaces
Definition . Let (X,�) be a partially ordered set and T : X → X be a given mapping.
We say that T is nondecreasing with respect to � if

x, y ∈ X, x � y �⇒ Tx � Ty.

Definition . Let (X,�) be a partially ordered set. A sequence {xn} ⊂ X is said to be
nondecreasing with respect to � if xn � xn+ for all n.

Definition . Let (X,�) be a partially ordered set and d be a metric on X. We say that
(X,�,d) is regular if for every nondecreasing sequence {xn} ⊂ X such that xn → x ∈ X as
n→ ∞, there exists a subsequence {xn(k)} of {xn} such that xn(k) � x for all k.

We have the following result.

Corollary . Let (X,�) be a partially ordered set and d be a metric on X such that (X,d)
is complete. Let f : X → X be a nondecreasing mapping with respect to � and satisfy the
following inequality:

ψ

(∫ d(fx,fy)


ϕ(t)dt

)
≤ ψ

(∫ M∗(x,y)


ϕ(t)dt

)
– φ

(∫ N∗(x,y)


ϕ(t)dt

)

+ Lψ

(∫ O(x,y)


ϕ(t)dt

)

for all x, y ∈ X with x � y, where M∗(x, y) = max{d(x, y),  [d(x, fx) + d(y, fy)],  [d(x, fy) +
d(y, fx)]}, N∗(x, y) =max{d(x, y),  [d(x, fx) + d(y, fy)]}, O(x, y) =min{d(x, fx),d(y, fy),d(y, fx),
d(x, fy)} and (ϕ,φ,ψ) ∈ � × � × �. Suppose also that the following conditions hold:

http://www.fixedpointtheoryandapplications.com/content/2014/1/213
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(i) there exists x ∈ X such that x � fx;
(ii) f is continuous or (X,�,d) is regular.

Then f has a fixed point.Moreover, if for all x, y ∈ X there exists z ∈ X such that x � z and
y� z, we have uniqueness of the fixed point.

Proof Define the mapping α : X ×X → [,∞) by

α(x, y) =

{
 if x � y or x � y,
 otherwise.

Clearly, f is an α-admissible contractive inequality of integral type I . From condition (i),
we have α(x, fx) ≥ . Moreover, for all x, y ∈ X, from the monotone property of f , we
have

α(x, y)≥  �⇒ x� y or x � y �⇒ fx � fy or fx � fy �⇒ α(fx, fy) ≥ .

Thus f is α-admissible. Now, if f is continuous, the existence of a fixed point follows from
Theorem .. Suppose now that (X,�,d) is regular. Let {xn} be a sequence in X such that
α(xn,xn+) ≥  for all n and xn → x ∈ X as n → ∞. From the regularity hypothesis, there
exists a subsequence {xn(k)} of {xn} such that xn(k) � x for all k. This implies from the defini-
tion of α that α(xn(k),x) ≥  for all k. In this case, the existence of a fixed point follows from
Theorem .. To show the uniqueness, let x, y ∈ X. By hypothesis, there exists z ∈ X such
that x � z and y� z, which implies from the definition of α that α(x, z)≥  and α(y, z) ≥ .
Thus we deduce the uniqueness of the fixed point by Theorem .. �

The following result is an immediate consequence of Corollary ..

Corollary . Let (X,�) be a partially ordered set and d be a metric on X such that (X,d)
is complete. Let T : X → X be a nondecreasing mapping with respect to �. Suppose that
there exists a function ψ ∈ 
 such that

d(Tx,Ty) ≤ ψ
(
d(x, y)

)
,

for all x, y ∈ X with x� y. Suppose also that the following conditions hold:
(i) there exists x ∈ X such that x � Tx;
(ii) T is continuous or (X,�,d) is regular.

Then T has a fixed point.Moreover, if for all x, y ∈ X there exists z ∈ X such that x� z and
y� z, we have uniqueness of the fixed point.

Remark . Let {Ai}i= be nonempty closed subsets of a complete metric space (X,d) and
T : Y → Y be a given mapping, where Y = A ∪A. If the following condition holds:

T(A) ⊆ A and T(A) ⊆ A, ()

then T is called a cyclic mapping. Since A and A are closed subsets of the complete
metric space (X,d), then (Y ,d) is complete. Define the mapping α : Y × Y → [,∞) by

α(x, y) =

{
 if (x, y) ∈ (A ×A)∪ (A ×A),
 otherwise.

http://www.fixedpointtheoryandapplications.com/content/2014/1/213
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By using the observation above, it is possible to deduce some fixed point results of a cyclic
mapping that satisfies, e.g., one of the inequalities between ()-(), and so on. For more
details on such approach, we refer, e.g., to [, ].

5 Further results
Theorem . Let (X,d) be a complete metric space, f : X → X and α : X × X → [, +∞)
be self-mappings. Suppose that there exist (ϕ,ψ ,γ ) ∈ � × � × � and L ≥  such that

α(x, y)ψ
(∫ d(fx,fy)


ϕ(t)dt

)
≤ γ

(
M(x, y)

)
ψ

(∫ M(x,y)


ϕ(t)dt

)

+ Lψ

(∫ O(x,y)


ϕ(t)dt

)
, ()

for all x, y ∈ X, where

M(x, y) =max

{
d(x, y),d(x, fx),d(y, fy),



[
d(x, fy) + d(y, fx)

]}
,

and

O(x, y) =min
{
d(x, fx),d(y, fy),d(y, fx),d(x, fy)

}
.

Suppose also that the following conditions hold:
(i) f is weak triangular α-admissible;
(ii) there exists x ∈ X such that x � fx;
(iii) f is continuous or (X,�,d) is regular.

Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for each x ∈ X.

Proof From (ii), there exits a point x ∈ X such that α(x, fx)≥  (due to the symmetry of the
metric, the other case yields the same result). Let x = x and consider an iterative sequence
{xn} in X by xn+ = fxn for all n≥ . Note that we have

α(x,x) = α(x, fx) ≥  ⇒ α(fx, fx) = α(x,x) ≥ .

By mathematical induction, we get

α(xn,xn+) ≥  for all n ∈ N. ()

Let us denote

dn = d(xn,xn+) and αn = α(xn,xn+) for n ∈N. ()

Now, if xn = xn+ for some n, then u = xn is a fixed point of f . This completes the proof.
Consequently, suppose xn �= xn+ for all n ∈N, that is,

 < dn = d(xn,xn+) for all n ∈N. ()

http://www.fixedpointtheoryandapplications.com/content/2014/1/213


Alsulami et al. Fixed Point Theory and Applications 2014, 2014:213 Page 16 of 24
http://www.fixedpointtheoryandapplications.com/content/2014/1/213

Now, we proceed to show that {dn} is a non-increasing sequence of real numbers, that is,

dn ≤ dn–, ∀n ∈N. ()

Suppose, on the contrary, that inequality () does not hold. Thus, there exists some n ∈
N such that

dn > dn–. ()

From () and (), we get

 <
∫ dn–


ϕ(t)dt <

∫ dn


ϕ(t)dt. ()

Regarding again () and () together with the properties of ψ , we conclude that

 = ψ() < ψ

(∫ dn–


ϕ(t)dt

)
≤ ψ

(∫ dn


ϕ(t)dt

)
. ()

Using equations ()-(), () we obtain that

ψ

(∫ dn–


ϕ(t)dt

)
≤ αnψ

(∫ dn–


ϕ(t)dt

)

≤ αnψ

(∫ dn


ϕ(t)dt

)
= αnψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ γ
(
M

(
f n–x, f nx

))
ψ

(∫ M(f n–x,f nx)


ϕ(t)dt

)

+ Lψ

(∫ O(f n–x,f nx)


ϕ(t)dt

)
, ()

where

M
(
f n–x, f nx

) ≤max
{
d
(
f n–x, f nx

)
,d

(
f nx, f n+x

)}
=max{dn–,dn},

O
(
f n–x, f nx

)
= min

{
d
(
f n–x, f nx

)
,d

(
f nx, f n+x

)
,d

(
f nx, f nx

)
,

d
(
f n–x, f n+x

)}
= .

From (), we haveM(f n–x, f nx)≤ dn . Hence, inequality () implies

ψ

(∫ dn–


ϕ(t)dt

)
≤ αnψ

(∫ dn–


ϕ(t)dt

)
≤ αnψ

(∫ dn


ϕ(t)dt

)

≤ γ (dn )ψ
(∫ dn


ϕ(t)dt

)

< ψ

(∫ dn


ϕ(t)dt

)
, ()

which contradicts inequality (). Hence, () holds. Thus, there exists a constant c ≥ 
such that limn→∞ dn = c≥ .
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Next we show that c = , that is,

lim
n→∞dn = . ()

Suppose, on the contrary, that c > . It follows from () and () that

ψ

(∫ dn


ϕ(t)dt

)
= ψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ αnψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ γ
(
M

(
f nx, f n–x

))
ψ

(∫ M(f nx,f n–x)


ϕ(t)dt

)

+ Lψ

(∫ O(f n–x,f nx)


ϕ(t)dt

)
, ()

where

M
(
f n–, f nx

) ≤max
{
d
(
f n–x, f nx

)
,d

(
f nx, f n+x

)}
=max{dn–,dn},

O
(
f n–x, f nx

)
=min

{
d
(
f n–x, f nx

)
,d

(
f nx, f n+x

)
,d

(
f nx, f nx

)
,d

(
f n–x, f n+x

)}
= .

Hence, inequality () becomes

ψ

(∫ dn


ϕ(t)dt

)
= ψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)
≤ αnψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ γ (dn–)ψ
(∫ dn–


ϕ(t)dt

)
. ()

Taking the upper limit in () and using Lemma ., we get

ψ

(∫ c


ϕ(t)dt

)
= lim

n→∞ supψ

(∫ dn


ϕ(t)dt

)

≤ lim
n→∞ sup

[
γ (dn–)ψ

(∫ dn–


ϕ(t)dt

)]

≤ lim
n→∞ sup

[
γ (dn–)

] · lim
n→∞ sup

[
ψ

(∫ dn–


ϕ(t)dt

)]

< ψ

(∫ c


ϕ(t)dt

)
, ()

which is a contradiction. Hence c = .
Next we show that {f nx}n∈N is a Cauchy sequence. Suppose, on the contrary, that

{f nx}n∈N is not a Cauchy sequence. Thus, there is a constant ε >  such that for each pos-
itive integer k, there are positive integers m(k) and n(k) with m(k) > n(k) > k satisfying

d
(
f m(k)x, f n(k)x

)
> ε. ()
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For each positive integer k, letm(k) denote the least integer exceeding n(k) and satisfying
(). This implies that

d
(
f m(k)x, f n(k)x

)
> ε and d

(
f m(k)–x, f n(k)x

) ≤ ε for all k ∈N. ()

On the other hand, we have

d
(
f m(k)x, f n(k)x

) ≤ d
(
f n(k)x, f m(k)–x

)
+ dm(k)–, ∀k ∈N,∣∣d(

f m(k)x, f n(k)+x
)
– d

(
f m(k)x, f n(k)x

)∣∣ ≤ dn(k), ∀k ∈N,∣∣d(
f m(k)+x, f n(k)+x

)
– d

(
f m(k)x, f n(k)+x

)∣∣ ≤ dm(k), ∀k ∈ N,∣∣d(
f m(k)+x, f n(k)+x

)
– d

(
f m(k)+x, f n(k)+x

)∣∣ ≤ dn(k)+, ∀k ∈N.

()

In view of () and (), we infer that

lim
k→∞

d
(
f n(k)x, f m(k)x

)
= ε,

lim
k→∞

d
(
f m(k)x, f n(k)+x

)
= ε,

lim
k→∞

d
(
f m(k)+x, f n(k)+x

)
= ε,

lim
k→∞

d
(
f m(k)+x, f n(k)+x

)
= ε.

()

Using the weak triangular alpha admissible property of f , we get in view of ()

α
(
f m(k)x, f n(k)+x

) ≥ . ()

From () and (), we have, for all k ∈ N,

ψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

≤ α
(
f m(k)x, f n(k)+x

)
ψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

≤ γ
(
M

(
f m(k)x, f n(k)+

))
ψ

(∫ M(f m(k)x,f n(k)+)


ϕ(t)dt

)

+ Lψ

(∫ O(f m(k)x,f n(k)+)


ϕ(t)dt

)
. ()

Taking the upper limit in () and using () and Lemma ., we get

ψ

(∫ ε


ϕ(t)dt

)
= lim

k→∞
supψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

≤ lim
k→∞

supα
(
f m(k)x, f n(k)+x

)
ψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

≤ lim
k→∞

supγ
(
M

(
f m(k)x, f n(k)+x

))
ψ

(∫ M(f m(k)x,f n(k)+x)


ϕ(t)dt

)
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+ L lim
k→∞

supψ

(∫ O(f m(k)x,f n(k)+)


ϕ(t)dt

)

< ψ

(∫ ε


ϕ(t)dt

)
,

which is impossible. Thus {f nx}n∈N is a Cauchy sequence. Now, since (X,d) is complete,
there exists a point a ∈ X such that limn→∞ f nx = a. From the continuity of f , it follows
that xn = fxn+ → fu as n → +∞. From the uniqueness of limits, we get a = fa, that is, u is
a fixed point of f . This completes the proof. �

Theorem . Let (X,d) be a complete metric space and f : X → X be a self-mapping.
Suppose that there exist (ϕ,φ,ψ) ∈ � × � × � with φ(t) ≤ ψ(t) for all t ∈ R

+, β ∈ �,
α : X ×X → [, +∞) and L ≥  such that

α(x, y)ψ
(∫ d(fx,fy)


ϕ(t)dt

)
≤ β

(
M(x, y)

)
φ

(∫ M(x,y)


ϕ(t)dt

)

+ Lψ

(∫ O(x,y)


ϕ(t)dt

)
()

for all x, y ∈ X, where

M(x, y) =max

{
d(x, y),d(x, fx),d(y, fy),



[
d(x, fy) + d(y, fx)

]}
,

and

O(x, y) =min
{
d(x, fx),d(y, fy),d(y, fx),d(x, fy)

}
.

Suppose also that the following conditions hold:
(i) f is weak triangular α-admissible;
(ii) there exists x ∈ X such that x � fx;
(iii) f is continuous or (X,�,d) is regular.

Then f has a unique fixed point a ∈ X such that limn→∞ f nx = a for each x ∈ X.

Proof From condition (ii), there exists a point x ∈ X such that α(x, fx)≥  (due to the sym-
metry of the metric, the other case yields the same result). Let x = x and let the iterative
sequence {xn} in X be defined by xn+ = fxn for all n≥ . Note that we have

α(x,x) = α(x, fx) ≥  ⇒ α(fx, fx) = α(x,x) ≥ .

Using mathematical induction, we obtain

α(xn,xn+) ≥  for all n ∈ N. ()

Set

dn = d(xn,xn+) and αn = α(xn,xn+) for n ∈N. ()
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If for some n, xn = xn+, then u = xn is a fixed point of f . This completes the proof.
Suppose that xn �= xn+ for all n ∈N, that is,

 < dn = d(xn,xn+) for all n ∈N. ()

Now, we need to show that {dn} is a non-increasing sequence of real numbers, that is,

dn ≤ dn–, ∀n ∈N. ()

Suppose, on the contrary, that inequality () does not hold. Thus, there exists some n ∈
N such that

dn > dn–. ()

From () and (), we get

 <
∫ dn–


ϕ(t)dt <

∫ dn


ϕ(t)dt. ()

From equations () and () and using the properties of ψ , we get

 = ψ() < ψ

(∫ dn–


ϕ(t)dt

)
≤ ψ

(∫ dn


ϕ(t)dt

)
. ()

In view of equations ()-(), () we infer that

ψ

(∫ dn–


ϕ(t)dt

)
≤ αnψ

(∫ dn–


ϕ(t)dt

)

≤ αnψ

(∫ dn


ϕ(t)dt

)
= αnψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ β
(
M

(
f n–x, f nx

))
φ

(∫ M(f n–x,f nx)


ϕ(t)dt

)

+ Lψ

(∫ O(f n–x,f nx)


ϕ(t)dt

)
, ()

where

M
(
f n–x, f nx

) ≤max
{
d
(
f n–x, f nx

)
,d

(
f nx, f n+x

)}
=max{dn–,dn},

O
(
f n–x, f nx

)
= min

{
d
(
f n–x, f nx

)
,d

(
f nx, f n+x

)
,d

(
f nx, f nx

)
,

d
(
f n–x, f n+x

)}
= .

From (), we haveM(f n–x, f nx) ≤ dn . Hence, inequality () implies

ψ

(∫ dn–


ϕ(t)dt

)
≤ αnψ

(∫ dn–


ϕ(t)dt

)
≤ αnψ

(∫ dn


ϕ(t)dt

)

≤ β(dn )φ
(∫ dn


ϕ(t)dt

)
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≤ β(dn )ψ
(∫ dn


ϕ(t)dt

)

< ψ

(∫ dn


ϕ(t)dt

)
, ()

which contradicts inequality (). Hence, () holds. Thus, there exists a constant c ≥ 
such that limn→∞ dn = c≥ .
Next we show that c = , that is,

lim
n→∞dn = . ()

Suppose, on the contrary, that c > . It follows from () and () that

ψ

(∫ dn


ϕ(t)dt

)
= ψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)
≤ αnψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ β
(
M

(
f nx, f n–x

))
φ

(∫ M(f nx,f n–x)


ϕ(t)dt

)

+ Lψ

(∫ O(f n–x,f nx)


ϕ(t)dt

)
, ()

where

M
(
f n–, f nx

) ≤max
{
d
(
f n–x, f nx

)
,d

(
f nx, f n+x

)}
=max{dn–,dn},

O
(
f n–x, f nx

)
=min

{
d
(
f n–x, f nx

)
,d

(
f nx, f n+x

)
,d

(
f nx, f nx

)
,d

(
f n–x, f n+x

)}
= .

Hence, inequality () becomes

ψ

(∫ dn


ϕ(t)dt

)
= ψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)
≤ αnψ

(∫ d(f nx,f n+x)


ϕ(t)dt

)

≤ β(dn–)φ
(∫ dn–


ϕ(t)dt

)
. ()

Taking the upper limit in () and using Lemma ., we get

ψ

(∫ c


ϕ(t)dt

)
= lim

n→∞ supψ

(∫ dn


ϕ(t)dt

)

≤ lim
n→∞ sup

[
β(dn–)φ

(∫ dn–


ϕ(t)dt

)]

≤ lim
n→∞ sup

[
β(dn–)

] · lim
n→∞ sup

[
φ

(∫ dn–


ϕ(t)dt

)]

≤ lim
n→∞ sup

[
β(dn–)

] · lim
n→∞ sup

[
ψ

(∫ dn–


ϕ(t)dt

)]

< ψ

(∫ c


ϕ(t)dt

)
, ()

which is a contradiction. Hence c = .
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Now, we show that {f nx}n∈N is a Cauchy sequence. Suppose, on the contrary, that
{f nx}n∈N is not a Cauchy sequence. Thus, there is a constant ε >  such that for each pos-
itive integer k, there are positive integers m(k) and n(k) with m(k) > n(k) > k satisfying

d
(
f m(k)x, f n(k)x

)
> ε. ()

For each positive integer k, letm(k) denote the least integer exceeding n(k) and satisfying
(). This implies that

d
(
f m(k)x, f n(k)x

)
> ε and d

(
f m(k)–x, f n(k)x

) ≤ ε for all k ∈N. ()

On the other hand, we have

d
(
f m(k)x, f n(k)x

) ≤ d
(
f n(k)x, f m(k)–x

)
+ dm(k)–, ∀k ∈N,∣∣d(

f m(k)x, f n(k)+x
)
– d

(
f m(k)x, f n(k)x

)∣∣ ≤ dn(k), ∀k ∈N,∣∣d(
f m(k)+x, f n(k)+x

)
– d

(
f m(k)x, f n(k)+x

)∣∣ ≤ dm(k), ∀k ∈ N,∣∣d(
f m(k)+x, f n(k)+x

)
– d

(
f m(k)+x, f n(k)+x

)∣∣ ≤ dn(k)+, ∀k ∈N.

()

In view of () and (), we infer that

lim
k→∞

d
(
f n(k)x, f m(k)x

)
= ε,

lim
k→∞

d
(
f m(k)x, f n(k)+x

)
= ε,

lim
k→∞

d
(
f m(k)+x, f n(k)+x

)
= ε,

lim
k→∞

d
(
f m(k)+x, f n(k)+x

)
= ε.

()

Using the weak triangular alpha admissible property of f , we get in view of ()

α
(
f m(k)x, f n(k)+x

) ≥ . ()

From () and (), we have, for all k ∈N,

ψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)
≤ α

(
f m(k)x, f n(k)+x

)
ψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

≤ β
(
M

(
f m(k)x, f n(k)+

))
φ

(∫ M(f m(k)x,f n(k)+)


ϕ(t)dt

)

+ Lψ

(∫ O(f m(k)x,f n(k)+)


ϕ(t)dt

)
. ()
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Taking the upper limit in () and using () and Lemma ., we get

ψ

(∫ ε


ϕ(t)dt

)
= lim

k→∞
supψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

≤ lim
k→∞

supα
(
f m(k)x, f n(k)+x

)
ψ

(∫ d(f m(k)+x,f n(k)+x)


ϕ(t)dt

)

≤ lim
k→∞

supβ
(
M

(
f m(k)x, f n(k)+x

))
φ

(∫ M(f m(k)x,f n(k)+x)


ϕ(t)dt

)

+ L lim
k→∞

supψ

(∫ O(f m(k)x,f n(k)+)


ϕ(t)dt

)

≤ lim
k→∞

supβ
(
M

(
f m(k)x, f n(k)+x

))
ψ

(∫ M(f m(k)x,f n(k)+x)


ϕ(t)dt

)

+ L lim
k→∞

supψ

(∫ O(f m(k)x,f n(k)+)


ϕ(t)dt

)

< ψ

(∫ ε


ϕ(t)dt

)
,

which is impossible. Thus {f nx}n∈N is a Cauchy sequence. Now, since (X,d) is complete,
there exists a point a ∈ X such that limn→∞ f nx = a. From the continuity of f , it follows
that xn = fxn+ → fu as n → +∞. From the uniqueness of limits, we get a = fa, that is, u is
a fixed point of f . This completes the proof. �

6 Conclusion
In this paper, we handle contractive mappings of integral type in a more general frame via
α-admissible mappings. More precisely, we examine the contractive mapping of integral
type given in [] by using α-admissible mappings. Very recently, some new contractive
mappings of integral type were introduced in [] and []. We assert that our techniques
are also valid to extent the results of [] and [] in the frame of α-admissible mappings.
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Point Theory Appl. 2013, Article ID 24 (2013). doi:10.1186/1687-1812-2013-24
20. Ali, MU, Kamran, T: On (α∗ ,ψ )-contractive multi-valued mappings. Fixed Point Theory Appl. 2013, Article ID 137

(2013). doi:10.1186/1687-1812-2013-137
21. Ali, MU, Kamran, T, Sintunavarat, W, Katchang, P: Mizoguchi-Takahashi’s fixed point theorem with α , η functions.

Abstr. Appl. Anal. 2013, Article ID 418798 (2013)
22. Abdeljawad, T: Meir-Keeler α-contractive fixed and common fixed point theorems. Fixed Point Theory Appl. 2013,

Article ID 19 (2013). doi:10.1186/1687-1812-2013-19
23. Karapınar, E, Kumam, P, Salimi, P: On α-ψ -Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, Article ID

94 (2013). doi:10.1186/1687-1812-2013-94
24. Chen, CM, Karapınar, E: Fixed point results for the α-Meir-Keeler contraction on partial Hausdorff metric spaces.

J. Inequal. Appl. 2013, Article ID 410 (2013). doi:10.1186/1029-242X-2013-410
25. Salimi, P, Latif, A, Hussain, N: Modified α-ψ -contractive mappings with applications. Fixed Point Theory Appl. 2013,

Article ID 151 (2013). doi:10.1186/1687-1812-2013-151
26. Hussain, N, Salimi, P, Latif, A: Fixed point results for single and set-valued α-η-ψ -contractive mappings. Fixed Point

Theory Appl. 2013, Article ID 212 (2013). doi:10.1186/1687-1812-2013-212
27. Mohammadi, B, Rezapour, S: On modified α-ϕ-contractions. J. Adv. Math. Stud. 6, 162-166 (2013)
28. Berzig, M, Karapınar, E: Note on ‘Modified α-ψ -contractive mappings with application’. Thai J. Math. 2014, Article ID 4

(2014)
29. Ali, MU, Kamran, T, Karapınar, E: (α,ψ ,ξ )-Contractive multi-valued mappings. Fixed Point Theory Appl. 2014, Article

ID 7 (2014). doi:10.1186/1687-1812-2014-7
30. Ali, MU, Kamran, T, Karapınar, E: A new approach to (α,ψ )-contractive nonself multivalued mappings. J. Inequal.

Appl. 2014, Article ID 71 (2014). doi:10.1186/1029-242X-2014-71
31. Ali, MU, Kamran, T, Kiran, Q: Fixed point theorem for (α,ψ ,φ)-contractive mappings on spaces with two metrics.

J. Adv. Math. Stud. 7, 8-11 (2014)

10.1186/1687-1812-2014-213
Cite this article as: Alsulami et al.: Fixed points of generalized contractive mappings of integral type. Fixed Point
Theory and Applications 2014, 2014:213

http://www.fixedpointtheoryandapplications.com/content/2014/1/213
http://dx.doi.org/10.1186/1687-1812-2012-212
http://dx.doi.org/10.1186/1687-1812-2013-24
http://dx.doi.org/10.1186/1687-1812-2013-137
http://dx.doi.org/10.1186/1687-1812-2013-19
http://dx.doi.org/10.1186/1687-1812-2013-94
http://dx.doi.org/10.1186/1029-242X-2013-410
http://dx.doi.org/10.1186/1687-1812-2013-151
http://dx.doi.org/10.1186/1687-1812-2013-212
http://dx.doi.org/10.1186/1687-1812-2014-7
http://dx.doi.org/10.1186/1029-242X-2014-71

	Fixed points of generalized contractive mappings of integral type
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	Main results
	Consequences in metric spaces
	Consequences in partially ordered metric spaces
	Further results
	Conclusion
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


