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1 Introduction
The theory of nonlinear difference equations has been widely used to study discrete mod-
els appearing in many fields such as computer science, economics, neural network, ecol-
ogy, and cybernetics; see, for example, [1]. In recent years, there have been many papers to
study the existence of positive periodic solutions for second-order difference equations.
By using various methods and techniques, for example, fixed point theorems, the method
of upper and lower solutions, coincidence degree theory, and critical point theory, a se-
ries of existence results of periodic solutions have been obtained; we refer the reader to
[2-8] and references therein. However, there are few techniques for studying the existence
of positive solutions of difference equations with singularity, and thus, the results in the
field are very rare; see [9-12]. At the same time, we also find that difference equations are
closely related to differential equations in the sense that (i) a differential equation model
is usually derived from a difference equation, and (ii) numerical solutions of a differential
equation have to be obtained by discretizing the differential equation (thus resulting in
difference equations). Therefore, it is worthwhile to explore this topic.

Let Z denote the integer set for a,b € Z with a < b, [a,b]z :={a,a +1,...,b}.

In this paper, we are concerned with the existence of positive periodic solutions of the

second-order difference equation

gt) )
ut(t)  ur()

Au(t-1) = +f(t), teZ, (1.1)
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where g,/ : 7Z — [0,00) and f : Z — R are T-periodic functions, A, 1 > 0. By a solution to
(1.1) we understand a function u € E := {u: Z — R|u(t) = u(t + T)} satisfying (1.1). Special
cases of Eq. (1.1) are

gt) k()

2 = _
Au(t-1)= 0 0 e, (1.2)
Alu(t—1)=— ;(3) ), tel, (13)
Alu(t-1) = 552) +f(t), tel. (1.4)

In the related literature, it is said that (1.3) has an attractive singularity, whereas (1.4)
has a repulsive singularity. The interest in this type of equations began with the paper of
Lazer and Solimini [13], in which the authors provide necessary and sufficient conditions
for the existence of periodic solutions of the equation

h(?)

u'(t) = iu*(t)

+f(t), teR,

here i € C(R, [0,00)) and f € C(R,R) are T-periodic functions, A > 0. Equation (1.2) is
interesting due to a mixed type of singularity on the right-hand side. Since the functions
g and & are possibly zero on some sets of positive measure, the singularity may combine
attractive and repulsive effects. If /1, g are positive constants, the singular term can be re-
garded as a generalized Lennard-Jones force or van der Waals attraction/repulsion force
and it is widely used in molecular dynamics to model the interaction between atomic par-
ticles (see, for instance, [14, 15] and the references therein). In a different physical context,
a periodic solution of Eq. (1.3) can describe a discrete nonlinear Schrédinger equation with
a cubic term, then the method of moments leads to the study of a particular case of (1.3);
see [16] for more details. Finally, a third different range of applicability is the evolution of
optical pulses in dispersion-managed fiber communication devices [17].

In spite of the variety of physical applications, the analysis of differential and difference
equations with mixed singularities is at this moment very incomplete, and few references
can be cited (see [12, 18—-20]) if compared with the large number of references devoted
to singular equations either of attractive or repulsive type (see the review [21-23] and the
references therein). Our main purpose in this paper is to contribute to the literature trying
to fill partially this gap in the study of singularities of mixed type with an approach that
should be useful as a starting point for further studies.

The structure of the paper is as follows. Section 2 contains the tools needed in the proofs.
In Section 3, we state and prove the main results and develop some corollaries for the
equation with a singularity of mixed type. To illustrate the results, an application to the
discrete dynamics of a trapless Bose-Einstein condensate is given. This model and related
ones deserve a different treatment more oriented to a physical audience, which will be
performed elsewhere.

For the sake of brevity, we will use the following notation throughout the paper:

T T

T T T
G=) gls), H=) his)) F=Y f(s), F.=)»[f®)], F=)[f6].
s=1 s=1 s=1

s=1 s=1
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2 Auxiliary results
Let

E:= {u:Z—> Rlu(t) = u(t + T)}

under the norm ||| = max;e1, 71, [(¢)]. Then (E, || - ||) is a Banach space.
The proofs of our results rely on the method of upper and lower functions. The following
lemma is classical and can be found, e.g., in [3]. We introduce them in a form suitable for

us.

Lemma 2.1 Let there exist positive functions o, § € E such that

I
Ala(t-1)> 5:—2) - ak(—(tz) +f(t), tel, (2.1)
Ap-1< LD MO e e, 2.2)

BL(t)  BH(t)
and a(t) < B(t) for t € [1, T)z. Then there exists at least one positive solution to (1.1).

To finish this section, we show a technical bound on the amplitude of oscillation of a

periodic function.

Lemma 2.2 Given v € E, then

r
My =y < — ;[A%(s -1],, (2.3)
where
M, = max{v(t) (tell, T]Z}, m, = min{v(t) (tell, T]Z}. (2.4)

Moreover, (2.3) is fulfilled as an equality if and only if v is a constant function.

Proof If v is a constant function, then (2.3) follows trivially.
Let v be a non-constant function and choose £y, f; € [1, T]z such that

V(tO) = Mw V(tl) = m,y.

Without loss of generality, we can assume that £y < £;. Indeed, in the case where #; < £y, we

can consider a function —v instead of v, and using the fact that v € E, we have

T T
Z[sz(s - 1)]_ = Z[—sz(s - 1)]+.
s=1 s=1

Put

M = max{Av(t) :t €0, T]Z}, my = min{Av(t) :t €0, T]Z}. (2.5)
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Then, obviously, M; > 0, m; < 0 and by the periodicity of v and Av(¢) = v(t + 1) — v(£), we

have
to-1 T
M, —my =Y Av(s)+ Y  Av(s) < My(T +1to — 1) (2.6)
s=1 s=t1
and
-1
M, —my ==Y Av(s) < —my(t — Lo). (2.7)
s=toy

On the other hand, we have M, — m, > 0, and thus multiplying of the corresponding sides
of (2.6) and (2.7) results in

(M, —m,)* < —mM(T + to — &) (t1 — to). (2.8)
Now, using the inequality AB < 1(A + B)?, from (2.8) we get

(My — my)*T?

M, - mv)2 < 16

)

whence the inequality
T
M, —m, < Z(Ml - my) (2.9)

follows.
On the other hand, choose t,, t3 € [0, Tz such that

Av(ty) = My, Av(t3) = my.
If t; < t3, then by using again that v is T-periodic, we have
My —my = My — Av(0) + Av(T) — my

ty T
= ZA2V(8—1)+ Z APv(s-1)
s=1

s=t3+1
T
=Y [aten
s=1
If t3 < £y, then
ty T
M, —m; = Zsz(s— ZAz s—l)
s=t3+1 s=1

Consequently, in both cases t; < t3 and #3 < £, we have M; —m; < Zil [A2v(s—1)],, which
together with (2.9) implies (2.3). O
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3 The main results
The following theorems are the main results of the paper.

Theorem 3.1 Let H >0, F > 0, functions w,o € E be such that the equalities

A’w(t -1) = Hg(t) - Gh(t) forteZ, (3.1)
Alo(t-1) = _Igh(t) +f(t) forteZ (3.2)

are fulfilled, and let there exist xo € (0, +00) such that

H 1/ 1 1/
X0 (W(t) - WZW) + G(t) — My < (xOGT-l-P') — (xO—H) , te [1, T]Z, (33)
where
mwzmin{w(t):te [1, T]Z}, My =min{o(t):te 1, T]Z}. (3.4)

Then the problem (1.1) has at least one positive T-periodic solution.

Proof Put

v
Ol(t)=(xOLH) M+xo(W(t)—mw)+a(t)—mg forteZ.

Obviously, @ € E, and in view of (3.1) and (3.2), we have

A2t —1) = xoHg(t) - (xoG + g)h(t) +f(t), telZ. (3.5)

Moreover, according to (3.3) and (3.4),

1 1/ H 1/
— <a(t) <[ —— for t € Z. 3.6
(on> sal)= <x0GH+F) orte (3:6)

Now (3.5) and (3.6) imply

gt)  h)

2
Btz v

+f(), teZ.

Consequently, « is a lower function to (1.1).
Further, we can choose x; € (0,%() such that

1 1/ H 1/
X1 (W(t) - Vl’lw) + O'(t) My < (xl—H> - <m> , te [1, T]Z, (3.7)

and put

H 1/
'B(t):<x1GT+F) +x1(w(t) —my) +o(t) —m, forteZ.
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Then B € E, and in view of (3.1) and (3.2), we have

A*B(t—1) = x Hg(t) — (le + §>h(t) +f(t), tel. (3.8)

Moreover, according to (3.4) and (3.7),

H 1/ 1 1/
7t — fort e 7. .
(x1GH+F) =pO)= (le> orte (39)

Now (3.8) and (3.9) imply

o) _ o)
pr(t) BH0)

A?B(t-1) < f@), tel. (3.10)

Consequently, B is an upper function to (1.1).
Moreover, (3.6) and (3.9) imply

at) < B) forte(l,T]y.
Thus, the assertion follows from Lemma 2.1. O

Remark 3.1 Note that for every g € E such that ZST:1 q(s) = 0, the periodic solution v of
the equation

A*v(t-1)=q(t) forte[LTlz

v(0) = v(T), Av(0) = Av(T)

is given by the Green formula

t-1 T
v(t)=c—- % |:Z(T —t)sq(s) + Z (T - s)q(s):|, (3.11)
s=1 s=t

where ¢ € R. Therefore, the periodic functions w and ¢ with properties (3.1) and (3.2)
exist and, moreover, are unique up to a constant term, the value of which has no influence
on the validity of the condition (3.3). A similar observation can be made in relation to the
formulations of the theorems given below.

Theorem 3.2 Let 1>y, H >0, G >0, F = 0 and functions w,o € E be such that the equal-
ities (3.1) and

Ao(t-1)=f(t) fortel (3.12)
are fulfilled, and let there exist x € (0, +00) such that

1 1/ 1 1/
xo(w(t) - mw) +to(t)-m, < (xo—G> - (xo—H) , tell,T]z (3.13)

where m,, and m, are defined by (3.4). Then the problem (1.1) has at least one positive
T-periodic solution.
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Proof Note that the inequality A > u implies

1\~ 1\ Y
lim | — -\ —= = +00.
x—0+ \ wH xG

Therefore, analogously to the proof of Theorem 3.1, one can show that there exist lower
and upper functions «, 8 satisfying «(t) < B(t), t € Z. Consequently, the assertion follows

from Lemma 2.1. g

Corollary3.1 LetA > u,H >0, G >0, and let w € E be such that (3.1) is fulfilled. Moreover,

let
HE (@0 o A
= - —
Mw —my S 1+u < * M) M ’ (3.14)
G \A+ )2 @+ p)n
where m,, is given by (3.4) and
M,y =max{w(t):t € [1,T)z}. (3.15)
Then the problem (1.2) has at least one positive T-periodic solution.
Proof In order to apply Theorem 3.2, put f =0, then o = 0. Take
o A
Gn ((1 + ,u))L) A=t
X0 = .
°T g\ ou
Then (3.14) implies (3.13), and thus the assertion follows from Theorem 3.2. a

Corollary 3.2 Let A > u, H > 0 and G > 0. Moreover, suppose that

G1+)\ 4 A-pt (1 +)”)/’L 1+ A —u A=
Hi = (f) ((1 + u)k) ((1 + M)/\) ' 310

Then the problem (1.2) has at least one positive T-periodic solution.

Proof By Lemma 2.2, it is easy to verify that
T
MW —my < ZGH

Now the assertion follows directly from Corollary 3.1. O

To illustrate this latter result, we have selected a concrete physical model studied in [16].
The dynamics of a trapless 3D Bose-Einstein condensate with variable scattering length is

ruled by the equation

Q  a(t)Q

2 - =
Au(t-1)= e + i

(3.17)
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where Q;, Q, are positive parameters and a(t) models the s-wave scattering length, which
is assumed to vary T-periodically in time. A negative a(f) corresponds to attractive inter-
actions between the elementary particles. Then the existence of a positive periodic solu-
tion of (3.17) is interpreted as a bounded state of the condensate without external trap.
Equation (3.17) is a particular case of (1.2) with u = 3, A = 4. Then a direct consequence of
Corollary 3.2 is the existence of a T-periodic solution of (3.17) for any a € E with a(f) <0,
t € [1, T]z, such that

T 4 516 15 576
4Q°TS (16 T

> als)| = Q14 (—) ~10.5315-1 .

1 Q \15 2

Corollary 3.3 Let H >0, F >0, o € E be such that (3.2) is fulfilled, and let

(M, —my)'F < H, (3.18)
where m,, is defined by (3.4) and

M, = max{a(t) 1tell, T]Z}.
Then the problem (1.3) has at least one positive T-periodic solution.

Proof The assertion follows from Theorem 3.1 with G = 0. g

Corollary 3.4 Let H >0, F >0, and let

T \*
(37) F=n
4
Then the problem (1.3) has at least one positive T-periodic solution.

Proof By Lemma 2.2, in view of F > 0, we have
T
My —my < ZH.

Now the assertion follows from Corollary 3.3 in a trivial way. d
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