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Abstract

We consider a hybrid projection method for finding a common element in the fixed
point set of an asymptotically quasi-j-nonexpansive mapping and in the solution set
of an equilibrium problem. Strong convergence theorems of common elements are
established in a uniformly smooth and strictly convex Banach space which has the
Kadec-Klee property.
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1. Introduction and Preliminaries
Let E be a real Banach space, E* the dual space of E and C a nonempty closed convex

subset of E. Let f be a bifunction from C × C to ℝ, where ℝ denotes the set of real

numbers.

In this paper, we consider the following equilibrium problem. Find p Î C such that

f (p, y) ≥ 0, ∀y ∈ C. (1:1)

We denote EP(f) the solution set of the equilibrium problem (1.1). That is,

EP(f ) = {p ∈ C : f (p, y) ≥ 0 ∀y ∈ C}.

Given a mapping Q : C ® E*, let

f (x, y) = 〈Qx, y − x〉 ∀x, y ∈ C.

Then p Î EP(f) if and only if p is a solution of the following variational inequality

problem. Find p such that

〈Qp, y − p〉 ≥ 0 ∀y ∈ C. (1:2)

Numerous problems in physics, optimization and economics reduce to find a solu-

tion of (1.1) (see [1-4]). Let T : C ® C be a mapping.

The mapping T is said to be asymptotically regular on C if for any bounded subset K

of C,
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lim sup
n→∞

{||Tn+1x − Tnx|| : x ∈ K} = 0.

The mapping T is said to be closed if for any sequence {xn} ⊂ C such that

lim
n→∞ xn = x0

and

lim
n→∞ Txn = y0,

then Tx0 = y0.

A point x Î C is a fixed point of T provided Tx = x. In this paper, we denote F(T)

the fixed point set of T and denote ® and ⇀ the strong convergence and weak conver-

gence, respectively.

Recall that the mapping T is said to be nonexpansive if

|Tx − Ty|| ≤ ||x − y|| ∀x, y ∈ C.

T is said to be quasi-nonexpansive if F(T) ≠ Ø and

||x − Ty|| ≤ ||x − y|| ∀x ∈ F(T), ∀y ∈ C.

T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1, ∞)

with kn ® 1 as n ® ∞ such that

||Tnx − Tny|| ≤ kn||x − y|| ∀x, y ∈ C, ∀n ≥ 1.

T is said to be asymptotically quasi-nonexpansive if F(T) ≠ Ø and there exists a

sequence {kn} ⊂ [1, ∞) with kn ® 1 as n ® ∞ such that

||x − Tny|| ≤ kn||x − y|| ∀x ∈ F(T), ∀y ∈ C,∀n ≥ 1.

The class of asymptotically nonexpansive mappings was introduced by Goebel and

Kirk [5] in 1972. They proved that if C is nonempty bounded closed and convex then

every asymptotically nonexpansive self-mapping T on C has a fixed point in uniformly

convex Banach spaces. Further, the fixed point set of T is closed and convex.

Recently, many authors considered the problem of finding a common element in the

set of fixed points of a nonexpansive mapping and in the set of solutions of the equili-

brium problem (1.1) based on iterative methods in the framework of real Hilbert

spaces; see, for instance [4,6-14] and the references therein. However, there are few

results presented in Banach spaces.

In this paper, we will consider the problem in a Banach space. Before proceeding

further, we give some definitions and propositions in Banach spaces.

Let E be a Banach space with the dual E*. We denote by J the normalized duality

mapping from E to 2E* defined by

Jx = {f ∗ ∈ E∗ : 〈x, f ∗〉 = ||x||2 = ||f ∗||2},

where 〈•,•〉 denotes the generalized duality pairing.

A Banach space E is said to be strictly convex if ||x + y
2

|| < 1 for all x, y Î E with ||

x|| = ||y|| = 1 and x ≠ y. It is said to be uniformly convex if limn®∞ ||xn - yn|| = 0 for

any two sequences {xn} and {yn} in E such that ||xn|| = ||yn|| = 1 and
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lim
n→∞

∥∥∥xn + yn
2

∥∥∥ = 1.

Let UE = {x Î E : ||x|| = 1} be the unit sphere of E. Then the Banach space E is said

to be smooth provided

lim
t→0

||x + ty|| − ||x||
t

(1:3)

exists for each x, y Î UE. It is said to be uniformly smooth if the limit (1.3) is

attained uniformly for x, y Î UE. It is well known that if E is uniformly smooth, then J

is uniformly norm-to-norm continuous on each bounded subset of E. It is also well

known that if E is uniformly smooth if and only if E* is uniformly convex.

Recall that a Banach space E has the Kadec-Klee property [15-17], if for any

sequence {xn} ⊂ E and x Î E with xn ⇀ x and ||xn|| ® ||x||, then ||xn - x|| ® 0 as n

® ∞. It is well known that if E is a uniformly convex Banach space, then E has the

Kadec-Klee property.

As we all know that if C is a nonempty closed convex subset of a Hilbert space H

and PC : H ® C is the metric projection of H onto C, then PC is nonexpansive. This

fact actually characterizes Hilbert spaces and consequently, it is not available in more

general Banach spaces. In this connection, Alber [18] recently introduced a generalized

projection operator ΠC in a Banach space E which is an analogue of the metric projec-

tion in Hilbert spaces.

Next, we assume that E is a smooth Banach space. Consider the functional defined

by

φ(x, y) = ||x||2 − 2〈x, Jy〉 + ||y||2 for x, y ∈ E. (1:4)

Observe that, in a Hilbert space H, (1.4) is reduced to j(x, y) = ||x-y||2 , x, y Î H.

The generalized projection ΠC : E ® C is a mapping that assigns to an arbitrary point

x Î E the minimum point of the functional j(x, y), that is, �Cx = x̄, where x̄ is the

solution to the minimization problem

φ(x̄, x) = min
y∈C

φ(y, x).

The existence and uniqueness of the operator ΠC follows from the properties of the

functional j(x, y) and strict monotonicity of the mapping J (see, for example,

[15,17-19]). We know that ΠC = PC in Hilbert spaces. It is obvious from the definition

of function j that

(||y|| − ||x||)2 ≤ φ(y, x) ≤ (||y|| + ||x||)2 ∀x, y ∈ E. (1:5)

Remark 1.1. Let E be a reflexive, strictly convex and smooth Banach space. Then for

x, y Î E, j(x, y) = 0 if and only if x = y. It is sufficient to show that if j(x, y) = 0 then

x = y. From (1.5), we have ||x|| = ||y||. This implies that 〈x, Jy〉 = ||x||2 = ||Jy||2. From

the definition of J, we have Jx = Jy. Therefore, we have x = y (see [15,17]).

Let C be a nonempty closed convex subset of E and T a mapping from C into itself.

A point p in C is said to be an asymptotic fixed point of T [20] if C contains a

sequence {xn} which converges weakly to p such that

lim
n→∞ ||xn − Txn|| = 0.
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The set of asymptotic fixed points of T will be denoted by F̃(T).

A mapping T from C into itself is said to be relatively nonexpansive [21-23] if

F̃(T) = F(T) �= ∅ and

φ(p,Tx) ≤ φ(p, x)

for all x Î C and p Î F(T).

The mapping T is said to be relatively asymptotically nonexpansive [24] if

F̃(T) = F(T) �= ∅ and there exists a sequence {kn} ⊂ [1, ∞) with kn ® 1 as n ® ∞ such

that

φ(p,Tnx) ≤ knφ(p, x)

for all x Î C, p Î F(T) and n ≥ 1. The asymptotic behavior of a relatively nonexpan-

sive mapping was studied in [21-23].

The mapping T is said to be j-nonexpansive if

φ(Tx,Ty) ≤ φ(x, y)

for all x, y Î C.

The mapping T is said to be quasi-j-nonexpansive [25-27] if F(T) ≠ ∅ and

φ(p,Tx) ≤ φ(p, x)

for all x Î C and p Î F(T).

The mapping T is said to be asymptotically j-nonexpansive if there exists a sequence

{kn} ⊂ [1, ∞) with kn ® 1 as n ® ∞ such that

φ(Tnx,Tny) ≤ knφ(x, y)

for all x, y Î C.

The mapping T is said to be asymptotically quasi-j-nonexpansive [27,28] if F(T) ≠ ∅
and there exists a sequence {kn} ⊂ [0, ∞) with kn ® 1 as n ® ∞ such that

φ(p,Tnx) ≤ knφ(p, x)

for all x Î C, p Î F(T) and n ≥ 1.

Remark 1.2. The class of (asymptotically) quasi-j-nonexpansive mappings is more

general than the class of relatively (asymptotically) nonexpansive mappings which

requires the restriction: F(T) = F̃(T). In the framework of Hilbert spaces, (asymptoti-

cally) quasi-j-nonexpansive mappings is reduced to (asymptotically) quasi-nonexpan-

sive mappings (cf. [29-32]).

We assume that f satisfies the following conditions for studying the equilibrium pro-

blem (1.1).

(A1): f(x, x) = 0∀x Î C;

(A2): f is monotone, i.e., f(x, y) + f(y, x) ≤ 0∀x, y Î C;

(A3): lim supt↓0 f (tz + (1 - t)x, y) ≤ f(x, y)∀x, y, z Î C;

(A4): for each x Î C, y a f(x, y) is convex and weakly lower semi-continuous.

Recently, Takahashi and Zembayshi [33] considered the problem of finding a
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common element in the fixed point set of a relatively nonexpansive mapping and in

the solution set of the equilibrium problem (1.1) (cf. [32]).

Theorem TZ. ([33]) Let E be a uniformly smooth and uniformly convex Banach

space and let C be a nonempty closed convex subset of E. Let f be a bifunction from C

× C to ℝ satisfying (A1)-(A4) and let T be a relatively nonexpansive mapping from C

into itself such that F(T) ∩ EP(f) ≠ Ø. Let {xn} be a sequence generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = x ∈ C,
yn = J−1(αnJxn + (1 − αn)JTxn),

un ∈ Csuch that f (un, y) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Hn = {z ∈ C : φ(z, un) ≤ φ(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx − Jxn〉 ≥ 0},
xn+1 = �Hn∩Wnx

(1:6)

for every n ≥ 0, where J is the duality mapping on E, {an} ⊂ [0, 1] satisfies

lim inf
n→∞ αn(1 − αn) > 0

and {rn} ⊂ [a, ∞) for some a > 0. Then {xn} converges strongly to ∏F(T)∩EP(f) x, where

∏F(T)∩EP(f) is the generalized projection of E onto F (T) ∩ EP (f ).

Very recently, Qin et al. [25] further improved Theorem TZ by considering shrinking

projection methods which were introduced in [34] for quasi-j-nonexpansive mappings

in a uniformly convex and uniformly smooth Banach space.

Theorem QCK. [25]Let C be a nonempty closed convex subset of a uniformly convex

and uniformly smooth Ban ach space E. Let f be a bifunction from C × C to ℝ satisfying

(A1)-(A4) and let T : C ® C be a closed quasi-j-nonexpansive mappings such that

F = F(T) ∩ EP(f ) �= ∅. Let {xn} be a sequence generated in the following manner:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E chosen arbitrarily,
C1 = C,
x1 = �C1x0,
yn = J−1(αnJxn + (1 − αn)JTxn),

un ∈ C such that f (un, y) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = �Cn+1x0,

(1:7)

where J is the duality mapping on E and {an} is a sequence in [0, 1] satisfying

lim inf
n→∞ αn(1 − αn) > 0

and {rn} ⊂ [a, ∞) for some a > 0. Then {xn} converges strongly to �Fx0.

In this paper, we considered the problem of finding a common element in the fixed

point set of an asymptotically quasi-j-nonexpansive mapping which is an another gen-

eralization of asymptotically nonexpansive mappings in Hilbert spaces and in the solu-

tion set of the equilibrium problem (1.1). The results presented this paper mainly

improve the corresponding results announced in [33].

In order to prove our main results, we need the following lemmas.

Lemma 1.3. [18]Let C be a nonempty closed convex subset of a smooth Banach space

E and x Î E. Then x0 = ∏Cx if and only if
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〈x0 − y, Jx − Jx0〉 ≥ 0 ∀y ∈ C.

Lemma 1.4. [18]Let E be a reflexive, strictly convex and smooth Banach space, C a

nonempty closed convex subset of E and x Î E. Then

φ(y,�Cx) + φ(�Cx, x) ≤ φ(y, x) ∀y ∈ C.

Lemma 1.5. Let E be a strictly convex and smooth Banach space, C a nonempty

closed convex subset of E and T : C ® C a quasi-j-nonexpansive mapping. Then F(T)

is a closed convex subset of C.

Proof. Let {pn} be a sequence in F(T ) with pn ® p as n ® ∞. Then we have to prove

that p Î F(T) for the closedness of F(T). From the definition of T, we have

φ(pn,Tp) ≤ φ(pn, p),

which implies that j(pn, Tp) ® 0 as n ® ∞. Note that

φ(pn,Tp) = ||pn||2 − 2〈pn, J(Tp)〉 + ||Tp||2.

Letting n ® ∞ in the above equality, we see that j(p, Tp) = 0. This shows that p =

Tp.

Next, we show that F(T) is convex. To end this, for arbitrary p1, p2 Î F (T), t Î (0,

1), putting p3 = tp1 + (1 - t)p2, we prove that Tp3 = p3. Indeed, from the definition of

j, we see that

φ(p3,Tp3) = ||p3||2 − 2〈p3, J(Tp3)〉 + ||Tp3||2
= ||p3||2 − 2〈tp1 + (1 − t)p2, J(Tp3)〉 + ||Tp3||2
= ||p3||2 − 2t〈p1, J(Tp3)〉 − 2(1 − t)〈p2, J(Tp3)〉 + ||Tp3||2
≤ ||p3||2 + tφ(p1, p3) + (1 − t)φ(p2, p3) − t||p1||2 − (1 − t)||p2||2
= ||p3||2 − 2〈tp1 + (1 − t)p2, Jp3〉) − ||p3||2
= ||p3||2 − 2〈p3, Jp3〉 − ||p3||2
= 0.

This implies that p3 Î F (T ). This completes the proof.

Now we will improve the above Lemma 1.6 as follows.

Lemma 1.6. Let E be a uniformly smooth and strictly convex Banach space which has the

Kadec-Klee property, C a nonempty closed convex subset of E and T : C ® C a closed and

asymptotically quasi-j-nonexpansive mapping. Then F(T) is a closed convex subset of C.

Proof. It is easy to check that the closedness of F(T) can be deduced from the closed-

ness of T. We mainly show that F(T) is convex. To end this, for arbitrary p1, p2 Î F(T),

t Î (0, 1), putting p3 = tp1 + (1 - t)p2, we prove that Tp3 = p3.

Indeed, from the definition of j, we see that

φ(p3,Tnp3) = ||p3||2 − 2〈p3, J(Tnp3)〉 + ||Tnp3||2
= ||p3||2 − 2〈tp1 + (1 − t)p2, J(Tnp3)〉 + ||Tnp3||2
= ||p3||2 − 2t〈p1, J(Tnp3)〉 − 2(1 − t)〈p2, J(Tnp3)〉 + ||Tnp3||2
= ||p3||2 + tφ(p1,Tnp3) + (1 − t)φ(p2,Tnp3) − t||p1||2 − (1 − t)||p2||2
≤ ||p3||2 + kntφ(p1, p3) + kn(1 − t)φ(p2, p3) − t||p1||2 − (1 − t)||p2||2
= (kn − 1)

(
t||p1||2 + (1 − t)||p2||2 − ||p3||2

)
.
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This implies that

lim
n→∞ φ(p3,Tnp3) = 0.

From (1.5), we see that

lim
n→∞ ||Tnp3|| = ||p3||. (1:8)

It follows that

lim
n→∞ ||J(Tnp3)|| = ||Jp3||. (1:9)

This shows that the sequence {J(Tnp3)}is bounded. Note that E* is reflexive; we may,

without loss of generality, assume that J(Tnp3) ⇀ e* Î E*. In view of the reflexivity of

E, we have J(E) = E*. This shows that there exists an element e Î E such that Je = e*.

It follows that

φ(p3,Tnp3) = ||p3||2 − 2〈p3, J(Tnp3)〉 + ||Tnp3||2
= ||p3||2 − 2〈p3, J(Tnp3)〉 + ||JTnp3||2

Taking lim infn® ∞ on the both sides of above equality, we obtain that

0 ≥ ||p3||2 − 2〈p3, e∗〉 + ||e∗||2
= ||p3||2 − 2〈p3, Je〉 + ||Je||2
= ||p3||2 − 2〈p3, Je〉 + ||e||2
= φ(p3, e).

This implies that p3 = e, that is, Jp3 = e*. It follows that J(Tnp3) ⇀ Jp3 Î E*.

In view of the Kadec-Klee property of E* and (1.9), we have

lim
n→∞ ||J(Tnp3) − Jp3|| = 0.

Note that J-1 : E* ® E is demi-continuous, we see that Tn p3 ⇀ p3. By virtue of the

Kadec-Klee property of E and (1.8), we have Tnp3 ® p3 as n ® ∞. Hence

TTnp3 = Tn+1p3 → p3

as n ® ∞. In view of the closedness of T, we can obtain that p3 Î F (T). This shows

that F(T) is convex. This completes of proof

Lemma 1.7. [35,36]Let E be a smooth and uniformly convex Banach space and let

r >0. Then there exists a strictly increasing, continuous and convex function g : [0, 2r]

® R such that g(0) = 0 and

||tx + (1 − t)y||2 ≤ t||x||2 + (1 − t)||y||2 − t(1 − t)g(||x − y||)

for all x, y Î Br = {x Î E : ||x|| ≤ r} and t Î [0, 1].

Lemma 1.8. Let C be a closed convex subset of a smooth, strictly convex and reflexive

Banach space E. Let f be a bifunction from C × C to ℝ satisfying (A1)-(A4). Let r >0

and x Î E. Then we have the followings.

(a): ([1]) There exists z Î C such that

f (z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.
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(b): (Refs. [25,33]) Define a mapping Tr : E ® C by

Srx =
{
z ∈ C : f (z, y) +

1
r
〈y − z, Jz − Jx〉, ∀y ∈ C

}
.

Then the following conclusions hold:

(1): Sr is single-valued;

(2): Sr is a firmly nonexpansive-type mapping, i.e., for all x, y Î E,

〈Srx − Sry, JSrx − JSry〉 ≤ 〈Srx − Sry, Jx − Jy〉

(3): F(Sr) = EP)(f);

(4): Sr is quasi-j-nonexpansive;
(5): j(q, Srx) + j(Srx, x) ≤ j (q, x), ∀q Î F(Sr);

(6): EP(f) is closed and convex.

2. Main Results
Theorem 2.1. Let E be a uniformly smooth and strictly convex Banach space which has the

Kadec-Klee property and C a nonempty closed convex subset of E. Let f be a bifunction from

C × C to ℝ satisfying (A1)-(A4) and T : C ® C a closed and asymptotically quasi-j-nonex-
pansive mapping. Assume that T is asymptotically regular on C and F = F(T) ∩ EF(f )is

nonempty and bounded. Let {xn} be a sequence generated in the following manner:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E chosen arbitrarily,
C1 = C,
x1 = �C1x0,
yn = J−1(αnJxn + (1 − αn)JTnxn),

un ∈ C such that f (un, y) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + (kn − 1)Mn},
xn+1 = �Cn+1x0,

where Mn = sup{φ(z, xn) : z ∈ F}for each n ≥ 1, {an} is a real sequence in [0, 1] such

that lim infn® ∞ an(1 - an) > 0, {rn} is a real sequence in [a, ∞), where a is some posi-

tive real number and J is the duality mapping on E. Then the sequence {xn} converges

strongly to �Fx0, where �Fis the generalized projection from E onto F .

Proof. First, we show that Cn is closed and convex by induction on n ≥ 1. It is obvious

that C1 = C is closed and convex. Suppose that Cm is closed and convex for some integer

m. For z Î Cm, we see that j(z, um) ≤ j(z, xm) + (km -1)Mm is equivalent to

2〈z, Jxm − Jum〉 ≤ ||xm||2 − ||um||2 + (km − 1)Mm.

It is easy to see that Cm+1 is closed and convex. This proves that Cn is closed and

convex for each n ≥ 1. This in turn shows that
∏

Cn+1
x0 is well defined. Putting

un = Srn yn, we from Lemma 1.8 see that Srn is quasi-j-nonexpansive.
Now, we are in a position to prove that F ⊂ Cn for each n ≥ 1. Indeed, F ⊂ C1 = C is

obvious. Suppose that F ⊂ Cm for some positive integer m. Then, ∀w ∈ F ⊂ Cm, we have
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φ(w, um)+ = φ(w, Srmym)

≤ φ(w, ym)

= φ(w, J−1[αmJxm + (1 − αm)JTmxm])

= ||w||2 − 2〈w,αmJxm + (1 − αm)JTmxm〉
+ ||αmJxm + (1 − αm)JTmxm||2

≤ ||w||2 − 2αm〈w, Jxm〉 − 2(1 − αm)〈w, JTmxm〉 + αm||xm||2
+ (1 − αm)||Tmxm||2

= αmφ(w, xm) + (1 − αm)φ(w,Tmxm)

≤ αmφ(w, xm) + (1 − αm)kmφ(w, xm)

= φ(w, xm) + (1 − αm)(km − 1)φ(w, xm)

≤ φ(w, xm) + (km − 1)Mm,

(2:1)

which shows that w Î Cm+1. This implies that F ⊂ Cn for each n ≥ 1.

On the other hand, it follows from Lemma 1.4 that

φ(xn, x0) = φ(�Cnx0, x0) ≤ φ(w, x0) − φ(w, xn) ≤ φ(w, x0),

for each w ∈ F ⊂ Cn and for each n ≥ 1. This shows that the sequence j(xn, x0) is
bounded. From (1.5), we see that the sequence {xn} is also bounded. Since the space is

reflexive, we may, without loss of generality, assume that xn ⇀ p. Not that Cn is closed

and convex for each n ≥ 1. It is easy to see that p Î Cn for each n ≥ 1. Note that

φ(xn, x0) ≤ φ(p, x0).

It follows that

φ(p, x0) ≤ lim inf
n→∞ φ(xn, x0) ≤ lim sup

n→∞
φ(xn, x0) ≤ φ(p, x0).

This implies that

lim
n→∞ φ(xn, x0) = φ(p, x0).

Hence, we have ||xn|| ® ||p|| as n ® ∞. In view of the Kadec-Klee property of E, we

obtain that xn ® p as n ® ∞.

Next, we show that p Î F(T). By the construction of Cn, we have that Cn+1 ⊂ Cn and

xn+1 =
∏

Cn+1
x0 ∈ Cn. It follows that

φ(xn+1, xn) = φ(xn+1,�Cnx0)

≤ φ(xn+1, x0) − φ(�Cnx0, x0)

= φ(xn+1, x0) − φ(xn, x0).

Letting n ® ∞, we obtain that j(xn+1, xn) ® 0. In view of xn+1 Î Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn) + (kn − 1)Mn.

It follows that

lim
n→∞ φ(xn+1, un) = 0. (2:2)

From (1.5), we see that

||un|| → ||p|| as n → ∞. (2:3)
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It follows that

||Jun|| → ||Jp|| as n → ∞. (2:4)

This implies that {Jun} is bounded. Note that E is reflexive and E* is also reflexive.

We may assume that Jun ® x* Î E*. In view of the reflexivity of E, we see that J(E) =

E*. This shows that there exists an x Î E such that Jx = x*. It follows that

φ(xn+1, un) = ||xn+1||2 − 2〈xn+1, Jun〉 + ||un||2
= ||xn+1||2 − 2〈xn+1, Jun〉 + ||Jun||2.

Taking lim infn®∞ the both sides of above equality yields that

0 ≥ ||p||2 − 2〈p, x∗〉 + ||x∗||2
= ||p||2 − 2〈p, Jx〉 + ||Jx||2
= ||p||2 − 2〈p, Jx〉 + ||x||2
= φ(p, x).

That is, p = x, which in turn implies that x* = Jp. It follows that Jun ® Jp Î E*. From

(2.4) and E* has the Kadec-Klee property, we obtain that

Jun − Jp → 0 as n → ∞.

Note that J-1 : E* ® E is demi-continuous. It follows that un ® p. From (2.3) and E

has the Kadec-Klee property, we obtain that

un → p as n → ∞. (2:5)

Note that

||xn − un|| ≤ ||xn − p|| + ||p − un||.

It follows that

lim
n→∞ ||xn − un|| = 0. (2:6)

Since J is uniformly norm-to-norm continuous on any bounded sets, we have

lim
n→∞ ||Jxn − Jun|| = 0. (2:7)

Let r = supn≥0{||xn||, ||T
nxn||}. Since E is uniformly smooth, we know that E* is uni-

formly convex. In view of Lemma 1.7, we see that

φ(w, un) = φ(w, Srnyn)

≤ φ(w, yn)

= φ(w, J−1[αnJxn + (1 − αn)JTnxn])

= ||w||2 − 2〈w,αnJxn + (1 − αn)JTnxn〉 + ||αnJxn + (1 − αn)JTnxn||2
≤ ||w||2 − 2αn〈w, Jxn〉 − 2(1 − αn)〈w, JTnxn〉 + αn||xn||2
+ (1 − αn)||Tnxn||2 − αn(1 − αn)g(||Jxn − JTnxn||)

= αnφ(w, xn) + (1 − αn)φ(w,Tnxn) − αn(1 − αn)g(||Jxn − JTnxn||)
≤ αnφ(w, xn) + (1 − αn)knφ(w, xn) − αn(1 − αn)g(||Jxn − JTnxn||)
≤ φ(w, xn) + (kn − 1)Mn − αn(1 − αn)g(||Jxn − JTnxn||).
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It follows that

αn(1 − αn)g(||Jxn − JTnxn||) ≤ φ(w, xn) − φ(w, un) + (kn − 1)Mn.

On the other hand, we have

φ(w, xn) − φ(w, un) = ||xn||2 − ||un||2 − 2〈w, Jxn − Jun〉
≤ ||xn − un||(||xn|| + ||un||) + 2||w|| ||Jxn − Jun||.

It follows from (2.6) and (2.7) that

φ(w, xn) − φ(w, un) → 0 as n → ∞. (2:8)

In view of limn®∞ (kn-1) Mn = 0 and (2.8) and the assumption lim infn®∞ an (1 - an)

> 0, we see that

g(||Jxn − JTnxn||) → 0 as n → ∞.

It follows from the property of g that

||Jxn − JTnxn|| → 0 as n → ∞. (2:9)

Since xn ® p as n ®∞ and J : E ® E* is demi-continuous, we obtain that Jxn ® Jp

Î E*. Note that

|||Jxn|| − ||Jp||| = |||xn|| − ||p||| ≤ ||xn − p||.

This implies that ||Jxn|| ® ||Jp|| as n ® ∞. Since E* has the Kadec-Klee property,

we see that

||Jxn − Jp|| → 0 as n → ∞. (2:10)

Note that

||JTnxn − Jp|| ≤ ||JTnxn − Jxn|| + ||Jxn − Jp||.

From (2.9) and (2.10), we obtain at

lim
n→∞ ||JTnxn − Jp|| = 0. (2:11)

Note that J-1 : E* ® E is demi-continuous. It follows that Tnxn ® p. On the other

hand, we have

| ||Tnxn|| − ||p| || = | ||JTnxn|| − ||Jp|| | ≤ ||JTnxn − Jp||.

In view of (2.11), we obtain that ||Tnxn|| ® ||p|| as n ® ∞. Since E has the Kadec-

Klee property, we obtain that

lim
n→∞ ||Tnxn − p|| = 0. (2:12)

Note that

||Tn+1xn − p || ≤ ||Tn+1xn − Tnxn|| + ||Tnxn − p ||.

It follows from the asymptotic regularity of T and (2.12) that

lim
n→∞ ||Tn+1xn − p|| = 0.

That is, TTnxn - p ® 0 as n ® ∞: It follows from the closedness of T that Tp = p:
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Next, we show that p Î EF(f): From (2.1), we have

φ(w, yn) ≤ φ(w, xn) + (kn − 1)Mn. (2:13)

In view of un = Srn yn and Lemma 1.8, we obtain

φ(un, yn) = φ(Srnyn, yn)

≤ φ(w, yn) − φ(w, Srnyn)

≤ φ(w, xn) − φ(w, Srnyn) + (kn − 1)Mn

= φ(w, xn) − φ(w, un) + (kn − 1)Mn.

(2:14)

It follows from (2.8) that

φ(un, yn) → 0 as n → ∞.

From (1.5), we see that ||un|| - ||yn|| ® 0 as n ® ∞. In view of un ® p as n ® ∞,

we have

||yn|| − ||p|| → 0 as n → ∞. (2:15)

It follows that

||Jyn|| − ||Jp|| → 0 as n → ∞. (2:16)

Since E* is reflexive, we may assume that Jyn ® q*Î E*: In view of J(E) = E*, we see

that there exists q Î E such that Jq = q*. It follows that

φ(un, yn) = ||un||2 − 2〈un, Jyn〉 + ||yn||2
= ||un||2 − 2〈un, Jyn〉 + ||Jyn||2.

Taking lim infn®∞ the both sides of above equality yields that

0 ≥ ||p||2 − 2〈p, q∗〉 + ||q∗||2
= ||p||2 − 2〈p, Jq〉 + ||Jq||2
= ||p||2 − 2〈p, Jq〉 + ||q||2
= φ(p, q).

That is, p = q, which in turn implies that q* = Jp. It follows that Jyn ® Jp Î E*. From

(2.16) and E* has the Kadec-Klee property, we obtain that

Jyn − Jp → 0 as n → ∞.

Note that J-1 : E* ® E is demi-continuous. It follows that yn ® p. From (2.15) and E

has the Kadec-Klee property, we obtain that

yn → p as n → ∞. (2:17)

Note that

||un − yn|| ≤ ||un − p|| + ||p − yn||.

It follows from (2.5) and (2.17) that

lim
n→∞ ||un − yn|| = 0. (2:18)
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Since J is uniformly norm-to-norm continuous on any bounded sets, we have

lim
n→∞ ||Jun − Jyn|| = 0.

From the assumption rn ≥ a, we see that

lim
n→∞

||Jun − Jyn||
rn

= 0. (2:19)

In view of un = Srn yn, we see that

f (un, y) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C.

It follows from the condition (A2) that

||y − un|| ||Jun − Jyn||
rn

≥ 1
rn

〈y − un, Jun − Jyn〉 ≥ −f (un, y) ≥ f (y, un), ∀y ∈ C.

By taking the limit as n ® ∞ in the above inequality, we from conditions (A4) and

(2.19) obtain that

f (y, p) ≤ 0, ∀y ∈ C.

For 0 < t <1 and y Î C, define yt = ty + (1 - t)p. It follows that yt Î C, which yields

that f(yt, p) ≤ 0. It follows from conditions (A1) and (A4) that

0 = f (yt, yt) ≤ tf (yt, y) + (1 − t)f (yt, p) ≤ tf (yt, y).

That is,

f (yt, y) ≥ 0.

Letting t ↓ 0, from condition (A3), we obtain that f(p, y) ≥ 0 ∀y Î C: This implies

that p Î EP(f). This shows that p ∈ F = EP(f ) ∩ F(T).

Finally, we prove that p = �Fx0. From xn = �Cnx0, we see that

〈xn − z, Jx0 − Jxn〉 ≥ 0, ∀z ∈ Cn.

Since F ⊂ Cn for each n ≥ 1, we have

〈xn − w, Jx0 − Jxn〉 ≥ 0, ∀w ∈ F . (2:20)

Letting n ® ∞ in (2.20), we see that

〈p − w, Jx0 − Jp〉 ≥ 0, ∀w ∈ F .

In view of Lemma 1.3, we can obtain that xn = �Cnx0. This completes the proof.

Remark 2.2. Theorem 2.1 improves Theorem QCK in the following aspects:

(a) From a uniformly smooth and uniformly convex space to a uniformly smooth

and strictly convex Banach space which has the Kadec-Klee property;

(b) From a quasi-j-nonexpansive mapping to an asymptotically quasi-j-non-expan-
sive mapping.

From the definition of quasi-j-nonexpansive mappings, we see that every quasi-j-
nonexpansive mapping is asymptotically quasi-j-nonexpansive with the constant
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sequence {1}. From the proof of Theorem 2.1, we have the following results

immediately.

Corollary 2.3. Let E be a uniformly smooth and strictly convex Banach space which

has the Kadec-Klee property and C a nonempty closed convex subset of E. Let f be a

bifunction from C × C to ℝ satisfying (A1)-(A4) and T : C ® C a closed and quasi-j-
nonexpansive mapping. Assume that F = F(T) ∩ EF(f )is nonempty.

Let {xn} be a sequence generated in the following manner:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ E chosen arbitrarily,

C1 = C,

x1 = �C1x0,

yn = J−1(αnJxn + (1 − αn)JTxn),

un ∈ C such that f (un, y) +
1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = �Cn+1x0,

where {an} is a real sequence in [0, 1] such that lim infn®∞ an(1 - an) > 0, {rn} is a

real sequence in [a, ∞), where a is some positive real number and J is the duality map-

ping on E. Then the sequence {xn} converges strongly to �Fx0, where �Fis the general-

ized projection from E onto F .

Remark 2.4. Corollary 2.3 improves Theorem TZ in the following aspects.

(a) For the framework of spaces, we extend the space from a uniformly smooth and

uniformly convex space to a uniformly smooth and strictly convex Banach space

which has the Kadec-Klee property (note that every uniformly convex Banach

space has the Kadec-Klee property).

(b) For the mappings, we extend the mapping from a relatively nonexpansive map-

ping to a quasi-j-nonexpansive mapping (we remove the restriction F̃(T) = F(T),

where F̃(T) denotes the asymptotic fixed point set).

(c) For the algorithms, we remove the set “Wn“ in Theorem TZ.
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