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Abstract

Using a developed co-precipitation method, we synthesized spherical Fe3O4 nanoparticles with a wide nonlinear
absorption band of visible radiation. Optical properties of the synthesized nanoparticles dispersed in an optically
transparent copolymer of methyl methacrylate with styrene were studied by optical spectroscopy and z-scan
techniques. We found that the electric polarizability of Fe3O4 nanoparticles is altered by low-intensity visible
radiation (I ≤ 0.2 kW/cm2; λ = 442 and 561 nm) and reaches a value of 107 Å3. The change in polarizability is
induced by the intraband phototransition of charge carriers. This optical effect may be employed to improve the
drug uptake properties of Fe3O4 nanoparticles.
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Background
Magnetite (FeO*Fe2O3, or Fe3O4) nanoparticles, and ma-
terials based on them, have been successfully used to
solve applied problems in biology and magneto-optics.
Pronounced superparamagnetic [1-4] and ferromagnetic
[5] properties at room temperature enable the use of
these nanoparticles in magnetic resonance imaging [6-9]
and biosensing [9] as well as in drug delivery and
drug uptake applications [8-13]. Because they possess
magneto-optical properties [14,15], Fe3O4 nanoparticles
have also been used to develop tunable filters [16,17]
and optical switches [18,19] that operate under magnetic
fields.
In fact, Fe3O4 nanoparticles have been examined for

the presence of unique magnetic properties because
magnetite is a narrow-gap semiconductor [20-22] and
the optical properties of other semiconductor nano-
particles have been thoroughly studied. Currently, there
are several experimental and theoretical works dedicated
to studying the optical properties of both bulk magnetite
[23-26] and its nanoparticles [27-29]. However, some
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specific optical properties of Fe3O4 nanoparticles (in
particular, the effects of electric polarizability on their
biological activity, conductivity, ferroelectricity, and
electro-optical properties) as well as the nature of these
properties remain virtually unexplored.
In this paper, we demonstrate that Fe3O4 nanoparticles

exhibiting a wide nonlinear absorption band of visible
radiation (1.7:3.7 eV) are able to significantly change
their electric polarizability when exposed to low-
intensity visible radiation (I ≤ 0.2 kW/cm2). The ob-
served change in polarizability was induced by the
intraband phototransition of nanoparticle charge car-
riers, and polarizability changes were orders of magni-
tude greater than those of semiconductor nanoparticles
and molecules [30,31].

Experiments
Synthesis of nanoparticles
There are several techniques for the synthesis of Fe3O4

nanoparticles with an arbitrary shape and size and for
their dispersal in different matrices [4,5,11,12,27,29,32-36].
In this study, we synthesized nanoparticles using co-
precipitation method [1,2,13-15,37,38], dispersed them in
monomeric methyl methacrylate with styrene (MMAS),
and polymerized this composition using pre-polymerization
method.
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Figure 1 The developed co-precipitation method. (a) The synthesis of Fe3O4 nanoparticles with a monolayer of oleic acid by the developed
co-precipitation method and (b) the composite MMAS + Fe3O4 preparation.

Figure 2 Nanoparticle size. The average hydrodynamic diameter
of the synthesized nanoparticles (15 nm) dispersed in hexane was
determined by dynamic light scattering method (Zetasizer Nano ZS,
Malvern, UK) at a laser wavelength of 532 nm.
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In the first step (Figure 1a), Fe3O4 nanoparticles were
synthesized by co-precipitation of soluble salts of ferrous
and ferric ions with an aqueous ammonia solution:
FeSO4*7H2O + 2FeCl3*6H2O + 8NH3*H2O ↔ Fe3O4 +
6NH4Cl + (NH4)2SO4 + 20H2O.
Oleic acid (in a mass ratio of 0.7:1 with the formed

Fe3O4) was added to a 0.5% solution of iron salts
(FeSO4/FeCl3 = 1:2.2 molar ratio) in 0.1 M HCl. The
aqueous solution of iron salts was heated to 80°C,
followed by the addition of concentrated aqueous am-
monia (20% excess). The solution was heated and stirred
for an hour.
Stabilized nanoparticles were then extracted from the

aqueous phase into a nonpolar organic solvent hexane at
a ratio of 1:1. The organic layer containing the iron
oxide Fe3O4 was separated from the aqueous medium.
The sample was centrifuged for 15 min (6,000 rpm) to
remove larger particles. Excess acid was removed with
ethanol.
The size of the nanoparticles was determined by dy-

namic light scattering method (Zetasizer Nano ZS,
Malvern, UK). Measurements were conducted in hexane
with a laser wavelength of 532 nm. The average hydro-
dynamic diameter of the synthesized nanoparticles was
15 nm, as illustrated in Figure 2.

Composite preparation
The second step (Figure 1b) focused on obtaining a solid
composite based on Fe3O4 nanoparticles and MMAS.
The organic solvent containing nanoparticles and mono-
mers (methyl methacrylate with styrene) was subjected
to stirring and ultrasonic homogenization. To prevent
nanoparticle aggregation during the polymerization
process, we used the pre-polymerization method at 75°C
because the nanoparticles had different affinities to the
monomer and polymer.
Finally, the composite was synthesized in situ by radical

polymerization. The polymerization of methyl methacryl-
ate with styrene (in the mass ratio of 20:1) proceeded for
over 10 h (in a temperature gradient mode that progressed
from 55°C to 110°C) in the presence of benzoyl peroxide
(10−3 mol/L).
The obtained solid composites had 0.001%, 0.003%,

0.005%, and 0.01% volume concentrations of Fe3O4

nanoparticles in MMAS. Importantly, the synthesized
Fe3O4 nanoparticles generally had a thick layer of
acids [36,39] surrounding them to prevent aggregation
of the nanoparticle. In our case, the synthesized Fe3O4



Figure 3 Absorbance spectra for the MMAS and Fe3O4 nanoparticle array. The optical absorbance spectra for pure MMAS and Fe3O4

nanoparticle arrays with 0.001%, 0.003%, 0.005%, and 0.01% volume concentrations.

Figure 4 z-Scan results for the MMAS. (a) Curves for z-scans with
open (circle) T(I) and closed (square) Tpv(I) apertures at radiation
wavelengths of 442 nm (red points, 60 W/cm2) and 561 nm (blue
points, 133 W/cm2) for the MMAS sample (L = 2.7 mm). (b) Profilometer
images for the beam waists ω0.
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nanoparticles had a monolayer of oleic acid that allowed
the nanoparticles to exhibit their specific optical properties.

UV–vis spectroscopy
Room-temperature optical absorbance spectra of pure
MMAS (Figure 3, black curve) and of the composites
were obtained using a Varian Cary 5000I spectropho-
tometer (Agilent Technologies, Santa Clara, CA, USA)
over the wavelength range of 300 to 1,500 nm. These
spectra allowed the derivation of the absorbance spectra
for Fe3O4 nanoparticle arrays (Figure 3, color curves).
Figure 3 shows the absorbance values (Abs) and the ab-
sorption coefficients (α = (Abs × ln 10)/l, where l = 7.95 mm
is the length of the composite) measured at a maximum
radiation intensity of 1 μW/cm2.

z-Scan experiments
Because they have absorption bands of 380 to 650 nm,
Fe3O4 nanoparticles should exhibit an optical response
upon external radiation with wavelengths in this band
[40]. To detect the optical response of the nanoparticles
contained in the composite (0.005% nanoparticle volume
concentration), we used the standard z-scan technique
[41]. This technique enabled the analysis of changes in
the absorption coefficient Δα(I) and refractive index Δn(I)
of the composite and pure MMAS, which were induced
by weak optical radiation with different intensities 0 to
0.14 kW/cm2.
For radiation sources, we used semiconductor lasers

of continuous wave (cw) radiation with wavelengths of
442 nm (blue) and 561 nm (yellow) providing maximal
intensities of 0.07 and 0.14 kW/cm2. Lenses with focal
lengths of 75 mm provided the beam waists ω0 = 102
and 110 μm for blue and yellow radiation (Figure 4b).
The length (L) of experimental samples of the MMAS
and the composite was 2.7 mm (inset in Figure 3).
Because the Rayleigh range z0 = πnω2 / λ exceeded 10 cm,
the calculation of Δα and Δn was performed using the for-
mulae [40,41]:

Δα Ið Þ ¼ 2
ffiffiffi
2

p
ΔΤ Ið Þ
L

;

Δn Ið Þ ¼ γI ¼ λΔΤpv Ið Þ � αþ Δα Ið Þð Þ
0:812π 1−Sð Þ0:27 1−e− αþΔα Ið Þð ÞLð Þ ;

8>><
>>:

ð1Þ

where ΔT(I) (Figure 4a) and ΔTpv(I) (Figure 5b) were the
integral transmitted intensity and the normalized



Figure 5 z-Scan results for the composite. Curves for z-scans with
open (circle) T(I) and closed (square) Tpv(I) apertures at radiation
wavelengths of 442 nm (a) (red points, 19 W/cm2; blue points,
54 W/cm2) and 561 nm (b) (red points, 40 W/cm2; blue points,
93 W/cm2) for the composite sample (L = 2.7 mm) containing Fe3O4

nanoparticle with a 0.005% volume concentration.

Figure 6 The values of changes in the absorption coefficient,
refractive index, and polarizability of Fe3O4 nanoparticles.
(a) The dependency of changes in the absorption coefficients Δα of
pure MMAS (circle) and Fe3O4 nanoparticle arrays (square and
rhombus) on the intensity of radiation with wavelengths of 442 nm
and 561 nm. (b) The dependency of changes in the refractive index
Δn and polarizability Δα (Å3) of Fe3O4 nanoparticle arrays on the
intensity of radiation with wavelengths of 442 nm (rhombus) and
561 nm (square); red dashed lines present the contribution of the
thermal effect of cw radiation on the change in the refractive index
(Equation 3), and blue dashed lines are theoretical approximations
based on the approach of free carrier absorption (Equation 4).
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transmittance between the peak and valley at different ra-
diation intensities, respectively; λ and α were the radiation
wavelength and absorption coefficient (Figure 3), respect-
ively, and S was the fraction of radiation transmitted by
the aperture without the sample, which was 0.184.
The experimental curves T(I) and Tpv(I), which con-

tain information about ΔT and ΔTpv, showed that only
the reverse saturable absorption of yellow radiation oc-
curred in pure MMAS (Figure 4a). In contrast, the com-
posite manifested the expected optical response: the
shape of the experimental curves T(I) and Tpv(I) indi-
cated the saturable absorption of visible radiation in the
composite and a negative change in its refractive index
(Figure 5), and the values of ΔT(I) and ΔTpv(I) increased
linearly with increasing intensities of blue (Figure 5a)
and yellow (Figure 5b) radiation.
The approximation of Tpv based on the theoretical

curves (solid lines in Figure 5) was performed using the
equation [42]:

T ¼ 1þ 2 −ρx2 þ 2x−3ρð Þ
x2 þ 9ð Þ x2 þ 1ð Þ ΔΦ ð2Þ
where the coupling factor ρ = Δα × λ / 4π × Δn and the
phase shift due to nonlinear refraction ΔΦ = 2π × Δn ×
Leff / λ had the following values: ρ = 0.09 and ΔΦ =
−0.23 and −0.5 for blue radiation with intensities of
0.019 and 0.054 kW/cm2 and ρ = 0.05 and ΔΦ = −0.7
and −1.45 for yellow radiation with intensities of 0.04
and 0.093 kW/cm2.

Discussion
The saturable absorption of visible radiation with inten-
sities less than 0.14 kW/cm2 in the composite and the
negative change in the refractive index were due to the
presence of Fe3O4 nanoparticles since pure MMAS
showed only the relatively weak reverse saturable ab-
sorption of yellow radiation. Therefore, the experimental
data ΔT(I) and ΔTpv(I) obtained for the composite could
be used to calculate the values of Δα(I) and Δn(I) for
Fe3O4 nanoparticle arrays (Equation 1), and these values
are listed in Figure 6.
Because the observed dependence of Δn on the radi-

ation intensity I (Figure 6b) for Fe3O4 nanoparticle ar-
rays could be considered a linear function, it can be
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assumed that Δn was caused by the thermal effect of the
radiation. We estimated the contribution of this effect to
the changes of the composite refractive index using the
equation [43]:

Δntherm ¼ ΔΕ � dn
dT

chcρd
; ð3Þ

where chc was the MMAS heat capacity (0.7 J/g·K), ρd
was the MMAS density (1.3 g/cm3), dn/dT was the
MMAS thermo-optic coefficient (−10−5 K−1), and ΔE
was the energy absorbed by the composite per unit vol-
ume per second. The thermal effect of cw low-intensity
radiation on the change in the refractive index (red
dashed lines in Figure 6b) was relatively small (not more
than 20% for blue radiation and 8% for yellow radiation).
Generally, the possibility of a nonthermal optical re-

sponse of the composite due to external optical radiation
is associated with the polarization of Fe3O4 nano-
particles in the external field E. Nanoparticle polariza-
tion occurs at the spatial separation of positive and
negative charges, i.e., at the electron transition to higher
allowed energy states (quantum number l ≠ 0). These
transitions should be accompanied by the absorption of
external radiation. In our case, we observed the absorp-
tion of radiation with wavelengths of 380 to 650 nm
(Figure 3). This absorption band consisted of three max-
ima (380, 480, and 650 nm), indicating the broadened
quantum-size states for the electrons in Fe3O4 nano-
particles. Because the bandgap of magnetite is rather
small (approximately 0.2 eV) [20-22], the conduction
and valence bands of the nanoparticles should be
coupled due to quantum-size effect [44]. Therefore, the
transitions of Fe3O4 nanoparticle electrons to higher en-
ergy states by the action of photons with energies of 2.3
eV (λ = 561 nm) and 2.6 eV (λ = 442 nm) can be consid-
ered intraband transitions. In turn, these transitions re-
sult in changes in the refractive index of the media as
follows [45-47]:

Δn Ið Þ ¼ −
e2λ2

8π2c2n0ε0me
Ne ð4Þ

where e was the electron charge, c was the speed of light,
ε0 was the electric constant, me was the electron mass,
and Ne was the concentration of excited electrons, which
depends on the number of photons in the beam or the
radiation intensity I.
Using Equation 4 to approximate the experimentally

observed behavior of Δn(I) (Figure 6b, blue dashed
lines), we estimated that the concentration of optically
excited electrons in Fe3O4 nanoparticles was approxi-
mately 1023 m−3, being the radiation intensity of less
than 0.14 kW/cm2.
The amplitude of the nanoparticle polarization is deter-
mined by |E| of the external field and the nanoparticle
susceptibility (χ) or polarizability (α) measured in cubic
angstrom. In turn, the change in the refractive index in-
duced by the radiation is associated with the change in
nanoparticle polarizability Δα (Å3) by classical relations
[48]. Therefore, we could calculate the values of Δα (Å3)
for Fe3O4 nanoparticle using the experimental values of
Δn(I) and the following equations (SI):

ε ¼ n2 Ið Þ−k2 Ið Þ ¼ 1þ χ

Δχ ¼ Δα Å
3

h i
⋅1030⋅N m−3½ �

(
ð5Þ

where ε was the real part of the dielectric constant, the
composite refractive index n(I) = n0 + Δn(I), and n0 was
the refractive index of pure MMAS (approximately 1.5).
The extinction coefficient k = αλ / 4π was significantly less
than n(I) and could be ignored; χ was the nanoparticle
susceptibility, and N was the nanoparticle concentration
(approximately 2.3 × 1019 m−3). Therefore, the values of
Δα (Å3) for Fe3O4 nanoparticle were calculated using the
formula Δα (Å3) ≈ 2n × Δn(I) × 1030 / N and are presented
in Figure 6b.
The obtained values for the changes in nanoparticle

polarizability are orders of magnitude greater than those
for semiconductor nanoparticles and molecules [30,31]
in extremely weak optical fields. In addition, the average
nanoparticle volume was approximately 2.2 × 106 Å3,
and the maximum value of Δα (Å3) was 9 × 106 Å3.
Thus, we can conclude that the nanoparticle polarization
should be formed by several optical intraband transitions
of nanoparticle electrons in weak optical fields.

Conclusions
We used the developed co-precipitation method to
synthesize spherical Fe3O4 nanoparticles covered with a
monolayer of oleic acid that possessed a wide nonlinear
absorption band of visible radiation 1.7 to 3.7 eV. The
synthesized nanoparticles were dispersed in the optically
transparent copolymer methyl methacrylate with styrene,
and their optical properties were studied by optical spec-
troscopy and z-scan techniques. We report that the elec-
tric polarizability of Fe3O4 nanoparticles changes due to
the effect of low-intensity visible radiation (I ≤ 0.2 kW/
cm2; λ = 442 and 561 nm) and reaches a relatively high
value of 107 Å3. The change in polarizability is induced
by the intraband phototransition of charge carriers and
can be controlled by the intensity of the visible radiation
used. This optical effect observed in magnetic nano-
particles may be employed to significantly improve the
drug uptake properties of Fe3O4 nanoparticles.
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