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Abstract
Blow-up and global existence for the non-local reaction diffusion problem with time
dependent coefficient under the Dirichlet boundary condition are investigated. We
derive the conditions on the data of problem (1.1) sufficient to guarantee that
blow-up will occur, and obtain an upper bound for t∗. Also we give the condition for
global existence of the solution.
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1 Introduction
In this work, we consider the following non-local reaction diffusion problem with time
dependent coefficient under the Dirichlet boundary condition

⎧⎪⎨
⎪⎩
ut =�u +

∫
�
up dx – k(t)uq, x = (x,x, . . . ,xN ) ∈ �, t ∈ (, t∗),

u(x, t) = , x ∈ ∂�, t ∈ (, t∗),
u(x, ) = u(x)≥ , x ∈ �,

(.)

where � ⊂ RN is a bounded domain with a smooth boundary ∂�, � is the Laplace op-
erator, and t∗ is the possible blow-up time. By the maximum principle, it follows that
u(x, t) ≥  in the time interval of existence. The coefficient k(t) is assumed to be non-
negative. The particular case of k = const of problem (.) has already been investigated
by many authors, in [, ], they studied the question of blow-up for the solution, and in
[–], they derived lower bounds for blow-up time under different boundary conditions.
To deal with problem (.) with time dependent coefficient, we make the assumption on
the parameters p and q, that is, p = q > .
The motivation of this article comes from the work of Payne and Philippin in [], where

they investigated the blow-up phenomena of the solution of the following problem

⎧⎪⎨
⎪⎩
ut =�u + k(t)f (u), x = (x, . . . ,xN ) ∈ �, t ∈ (, t∗),
u(x, t) = , x ∈ ∂�,
u(x, ) = u(x), x ∈ �,

(.)

©2013 Ahmed et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194677899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.boundaryvalueproblems.com/content/2013/1/239
mailto:ifti_cqu@hotmail.com
http://creativecommons.org/licenses/by/2.0


Ahmed et al. Boundary Value Problems 2013, 2013:239 Page 2 of 6
http://www.boundaryvalueproblems.com/content/2013/1/239

where � is a bounded sufficiently smooth domain in RN , N ≥ , and the coefficient k(t) is
assumed nonnegative or strictly positive depending on the situation.
In next, we employ a method used by Kaplan in [] to obtain a condition, which leads

to blow-up at some finite time and also leads to an upper bound for the blow-up time. In
Section , we derive the condition on the data of problem (.) sufficient to guarantee the
global existence of u(x, t).

2 Conditions for blow-up in finite time t∗

Let λ be the first eigenvalue, and let φ be the associated eigenfunction of the Dirichlet-
Laplace operator defined as

�φ = –λφ, φ > ,x ∈ �; φ = ,x ∈ ∂�, (.)∫
�

φ dx = . (.)

Let the auxiliary function η(t)

η(t) :=
(|�| – k(t)

) 
q–

∫
�

uφ dx (.)

defined in (, t∗), where u(x, t) is the solution of (.) and q > .
We assume that for all t ∈ (, t∗),

|�| > k(t) > ,
–k′(t)

|�| – k(t)
≥ β , max

x∈�
φ|�| ≤ , (.)

for some constant β , and

γ := λ –
β

q – 
. (.)

We deduce from (.) and (.) that

η′(t) ≥ β

q – 
η(t) +

(|�| – k(t)
) 
q–

∫
�

φ

[
�u +

∫
�

uq dx – k(t)uq
]
dx

= –γ η(t) +
(|�| – k(t)

) 
q–

(∫
�

uq dx – k(t)
∫

�

φuq dx
)

≥ –γ η(t) +
(|�| – k(t)

) 
q–

((


maxx∈� φ
– k(t)

)∫
�

φuq dx
)

≥ –γ η(t) +
(|�| – k(t)

) q
q–

∫
�

φuq dx. (.)

Furthermore, using (.) and Hölder’s inequality, we get

∫
�

φudx ≤
(∫

�

φuq dx
) 

q
. (.)

Combining (.) and (.), we get

η′(t) ≥ –γ η(t) + ηq(t), t ∈ (
, t∗

)
. (.)
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By integrating (.), we get

(
η(t)

)–q ≤ 
(t) :=

{
((η())–q – 

γ
)eγ (q–)t + 

γ
, γ �= ,

(η())–q + ( – q)t, γ = .
(.)

If 
(T) =  for some T > , then η(t) blows up at time t∗ < T. This result is summarized
in the following theorem.

Theorem  Let u(x, t) be the solution of problem (.). Then the auxiliary function η(t)
defined in (.) blows up at time t∗ < T with

T :=

⎧⎨
⎩


γ (q–) log(–


γ ((η())–q– 

γ )
) if  < γ (η())–q < ,


(q–)(η())q–

if γ ≤ .
(.)

3 Condition for global existence
In this section, our argument makes use of the following Sobolev-type inequality

(∫
�

v dx
)/

≤ �

(∫
�

|∇v| dx
)/

, � =
.–/

π
, (.)

valid in R for a nonnegative function v that vanishes on ∂�. In this section, our results
restricted to R for proof of (.), see [].
We consider the auxiliary function σ (t) defined as

σ (t) :=M–(|�| – k(t)
)n ∫

�

un(p–) dx, t ∈ (
, t∗

)
, (.)

with

M :=
(|�| – k()

)n ∫
�

un(q–) dx, (.)

we assume that for all t ∈ (, t∗),

|�| > k(t) > ,
–k′(t)

|�| – k(t)
< β , (.)

for some constant β . In (.)-(.), n is subjected to restrictions

n(q – ) ≥ , n >


. (.)

For convenience, we set

v(x, t) = un(q–), (.)

and compute

σ ′(t) = n
–k′(t)

|�| – k(t)
σ (t) + n(q – )M–(|�| – k(t)

)n
×

∫
�

un(q–)–
[
�u +

∫
�

uq dx – k(t)uq
]
dx (.)
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with ∫
�

un(q–)–�udx = –
n(q – ) – 
n(q – )

∫
�

|∇v| dx, (.)

due to (.), we obtain

σ ′(t) ≤ nβσ (t) –
[n(q – ) – ]

n(q – )
(|�| – k(t)

)nM–
∫

�

|∇v| dx

+ n(q – )M–(|�| – k(t)
)n[|�|

∫
�

v+

n dx – k(t)

∫
�

v+

n dx

]

= nβσ (t) –
[n(q – ) – ]

n(q – )
(|�| – k(t)

)nM–
∫

�

|∇v| dx

+ n(q – )M–(|�| – k(t)
)n+ ∫

�

v+

n dx. (.)

By using Hölder’s inequality,

∫
�

v+

n dx ≤

(∫
�

v dx
)(n–)/n(∫

�

v dx
)/n

, (.)

and Sobolev-type inequality (.), we obtain

(|�| – k(t)
)n+ ∫

�

v+

n dx

≤ (|�| – k(t)
)n+(∫

�

v dx
)(n–)/n(∫

�

|∇v| dx
)/n

�/n

= �/nM(n–)/nσ (n–)/n
((|�| – k(t)

)n+ ∫
�

|∇v| dx
)/n

, (.)

where � is defined in (.). Joining (.) and (.), we obtain

σ ′(t)

≤ nβσ (t) –
[n(q – ) – ]

n(q – )
M–(|�| – k(t)

)n∫
�

|∇v| dx

+ n(q – )�/nM/nσ (n–)/n
(
M–(|�| – k(t)

)n∫
�

|∇v| dx
)/n

= nβσ (t) + n
(

λ–M–(|�| – k(t)
)n∫

�

|∇v| dx
)/n

×
{
λ/n(q – )�/nσ (n–)/nM/n –

[n(q – ) – ]
n(q – )

× λ

(
M–(|�| – k(t)

)n
λ–

∫
�

|∇v| dx
)(n–)/n}

(.)

with arbitrary λ �= . Choosing λ := λ, the first eigenvalue of problem (.), we have

∫
�

|∇v| dx ≥ λ

∫
�

v dx, (.)
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by the Rayleigh principle. By using (.) in the last factor of (.), we obtain

σ ′(t) ≤ nβσ (t) + n
(

λ
–M–(|�| – k(t)

)n∫
�

|∇v| dx
)/n

×
{
λ

/n(q – )�/nσ (t)(n–)/nM/n –
[n(q – ) – ]

n(q – )
λσ (t)(n–)/n

}

= nβσ (t) + nσ (t)/n × σ (t)(n–)/n
{
ωσ (t)/n – (μ + β)

}
, (.)

with

ω = λ
/n(q – )�/nM/n, μ =

[n(q – ) – ]
n(q – )

λ – β . (.)

Suppose that β is small enough to satisfy the condition

μ > , (.)

and that initial data is small enough to satisfy the condition

ω –μ < . (.)

Then either ω(σ (t))/n –μ remains negative for all time, or there exists a first time t such
that

ω
(
σ (t)

)/n –μ = . (.)

Then we obtain the differential inequality

σ ′(t) ≤ nσ (t)
{
ω

(
σ (t)

)/n –μ
} ≤ , t ∈ (, t). (.)

Integrating this differential inequality, we obtain

σ (t)≤
{(

 –
ω

μ

)
eμt +

ω

μ

}–n

, t > . (.)

This result is summarized in the next theorem.

Theorem  Let � be a bounded domain in R, and assume that the data of problem (.)
satisfy conditions (.), (.), (.). Then the auxiliary function σ (t) defined in (.) sat-
isfies (.), and u(x, t) exists for all time t > .
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