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Abstract

We investigate the value distribution of difference operator for meromorphic
functions. In addition, we study the sharing value problems related to a
meromorphic function f (z) and its shift f (z + c).

1 Introduction and main results
A meromorphic function means meromorphic in the whole complex plane. We

assume that the reader is familiar with standard symbols and fundamental results of

Nevanlinna Theory [1]. As usual, the abbreviation CM stands for “counting multiplici-

ties”, while IM means “ignoring multiplicities”, and we denote the order of mero-

morphic function f by s (f). For a non-constant meromorphic function f and a set S of

complex numbers, we define the set E(S, f) = ∪aÎS{z|f(z) - a = 0}, where a zero of f - a

with multiplicity m counts m times in E(S, f).

We define difference operator as Δcf = f (z + c) - f (z), where c is a non-zero con-

stant. In particular, we denote by S (f) the family of all meromorphic functions a (z)

that satisfy T(r, a) = S(r, f) = o(T(r, f)), where r ® ∞ outside a possible exceptional set

of finite logarithmic measure. For convenience, we set Ŝ(f) := S(f) ∪ {∞}.

The difference Nevanlinna theory and its applications to the uniqueness theory have

become a subject of great interest [2-4], recently. With these fundamental results, Heit-

tokangas et al. considered a meromorphic function f (z) sharing values with its shift f(z

+ c), we recall a key result from [5].

Theorem A [[5], Theorem 2]. Let f be a non-constant meromorphic function of finite

order, let c Î ℂ, and let a, b, c Î Ŝ(f) be three distinct periodic functions with period c.

If f (z) and f (z + c) share a, b CM and c IM, then f (z) = f (z + c) for all z Î ℂ.

Recently, Yang and Liu and one of the present authors [6] considered the case F = fn,

where f is a meromorphic function, assuming value sharing with F and F (z + c):

Theorem B [[6], Theorem 1.4]. Let f be a non-constant meromorphic function of

finite order, n ≥ 7 be an integer, let c Î ℂ, and let F = fn. If F (z) and F (z + c) share a

Î S(f)\{0} and ∞ CM, then f (z) = ωf (z + c), for a constant ω that satisfies ωn = 1.

Next, we consider the problem that related to the Theorem B, and have the follow-

ing result, where a is a periodic function with period c. However, our proof is different

to the one in [6].

Theorem 1.1. Let f be a non-constant meromorphic function of finite order, let c Î ℂ,

and let a Î S(f) \ {0} be a periodic function with period c. If f (z)n and f(z + c)n share a
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and ∞ CM, and n ≥ 4 is an integer, then f (z) = ωf (z + c), for a constant ω that satis-

fies ωn = 1.

Remarks.

(1) Theorem 1.1 is not true, if a = 0. This can be seen by considering f (z) = ez
2 .

Then f (z)n and f (z + c)n share 0 and ∞ CM, however, f (z) ≠ ωf (z + c), where n is

a positive integer.

(2) Theorem 1.1 does not remain valid when n = 1. For example, f (z) = ez + 1 and

f (z + c) = ez+c + 1, where c ≠ 2πi. Clearly, f(z) and f (z + c) share 1 and ∞ CM,

however, f (z) ≠ ωf (z + c) for ωn = 1. Unfortunately, we have not succeeded in

reducing the condition n ≥ 4 to n ≥ 2 in Theorem 1.1, and we also cannot give a

counterexample when n = 2, 3 at present.

(3) We give an example to show that the restriction of finite order in Theorem 1.1

cannot be deleted. This can be seen by taking f (z) = ee
z
,nec = −1 . Then f (z)n and

f (z + c)n share 1 and ∞ CM, however, f(z) ≠ ωf (z + c), where n is a positive

integer.

In 1976, Gross asked the following question [[7], Question 6]:

Question. Can one find (even one set) finite sets Sj (j = 1, 2) such that any two

entire functions f and g satisfying E(Sj, f) = E(Sj, g) (j = 1, 2) must be identical?

Since then, many results have been obtained for this and related topics (see [8-11]).

We recall the following result given by Yi [9].

Theorem C [[9], Theorem 1]. Let S1 = {ω | ωn + aωn-1 + b = 0}, where n ≥ 7 is an

integer, a and b are two non-zero constants such that the algebraic equation ωn + aωn-

1 + b = 0 has no multiple roots. If f and g are two entire functions satisfying E(S1, f) =

E(S1, g), then f = g.

Afterwards, Fang and Lahiri [12] got the result for meromorphic functions.

Theorem D [[12], Theorem 1]. Let S1 be defined as Theorem C and S2 = {∞}.

Assume that f and g are two meromorphic functions satisfying E(Sj, f) = E (Sj, g) for j =

1,2. If f has no simple poles and n ≥ 7, then f = g.

Next, we give a difference analog of Theorem D that replacing g with f (z + c), and

obtain the following result.

Theorem 1.2. Let S1 be defined as Theorem C and S2 = {∞}. Assume that f is a mero-

morphic function of finite order satisfying E(Sj, f) = E(Sj, f (z + c)) for j = 1,2. If n ≥ 6

and N(r, f ) < n−3
n−1T(r, f ) + S(r, f ) , then f (z) = f (z + c) for all z Î ℂ.

We investigate the value distribution of difference polynomials of meromorphic

(entire) functions. Let f be a transcendental meromorphic function, and let n be a posi-

tive integer. Concerning to the value distribution of fnf“, Hayman [[13], Corollary to

Theorem 9] proved that fnf’ takes every non-zero complex value infinitely often if n ≥

3. Mues [[14], Satz 3] proved that f2f’ - 1 has infinitely many zeros. Later on, Bergwei-

ler and Eremenko [[15], Theorem 2] showed that ff’ - 1 has infinitely many zeros also.

As an analog result in difference, Laine and Yang [16] investigated the value distribu-

tion of difference products of entire functions, and obtained the following:
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Theorem E [[16], Theorem 2]. Let f be a transcendental entire function of finite

order, and let c be a non-zero complex constant. Then for n ≥ 2, f (z)nf (z + c) assumes

every non-zero value a Î ℂ infinitely often.

In a recent article, one of the present authors considered the value distribution of f

(z)n (f(z) - 1) f (z + c), the result may be stated as follows:

Theorem F [[17], Theorem 1]. Let f be a transcendental meromorphic function of

finite order s(f), let a ≠ 0 be a small function with respect to f, and let c be a non-zero

complex constant. If the exponent of convergence of the poles of f satisfies

λ( 1f ) < σ (f )and n ≥ 2, then f (z)n (f - 1) f (z + c) - a has infinitely many zeros.

In this article, we replace f (z + c) with Δcf, and consider the value distribution of f

(z)n(f(z) - 1)Δc f. We get the following results:

Theorem 1.3. Let f be a transcendental meromorphic function of finite order s(f) and
Δcf ≠ 0, let a ≠ 0 be a small function with respect to f, and let c be a non-zero complex

constant. If the exponent of convergence of the poles off satisfies λ( 1f ) < σ (f )and n ≥ 3,

then f (z)n (f - 1)Δcf - a has infinitely many zeros.

Corollary 1.4. Let f be a transcendental entire function of finite order and Δcf ≠ 0, let

a ≠ 0 be a small function with respect to f, and let c be a non-zero complex constant.

Then for n ≥ 3, f (z)n(f - 1)Δcf - a has infinitely many zeros.

In particular, if a is a non-zero polynomial in Corollary 1.4, then Corollary 1.4 can

be improved.

Theorem 1.5. Let f be a transcendental entire function of finite order and Δcf ≠ 0, let

a be a non-zero polynomial, and let c be a non-zero complex constant. Then for n ≥ 2, f

(z)n (f - 1)Δ cf - a has infinitely many zeros.

2 Preliminary lemmas
Lemma 2.1. [[4], Theorem 2.1] Let f be a meromorphic function of finite order, and let

c Î ℂ and δ Î (0, 1) . Then

m
(
r,
f (z + c)
f (z)

)
+m

(
r,

f (z)
f (z + c)

)
= o

(
T(r, f )
rδ

)
= S(r, f ).

Chiang and Feng have obtained similar estimates for the logarithmic difference [[3],

Corollary 2.5], and this study is independent from [4].

Lemma 2.2. [[4], Lemma 2.3] Let f be a meromorphic function of finite order and c Î
ℂ. Then for any small function a Î S (f) with period c,

m
(
r,

�cf
f − a

)
= S(r, f ).

Lemma 2.3. [[3], Theorem 2.1] Let f be a meromorphic function of finite order s (f),

and let c be a non-zero constant. Then, for each ε > 0, we have

T(r, f (z + c)) = T(r, f (z)) +O(rσ (f )−1+ε) +O(log r).

Lemma 2.4. [[18], Theorem 2.4.2] Let f be a transcendental meromorphic solution of

f nA(z, f ) = B(z, f ),
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where A(z, f), B(z, f) are differential polynomials in f and its derivatives with small

meromorphic coefficients al, in the sense of m(r, al) = S(r, f) for all l Î I. If the deg(B

(z, f)) ≤ n, then m(r, A(z, f)) = S(r, f).

Lemma 2.5. Let f be a finite order entire function and Δcf ≠ 0, and let c be a non-

zero constant. Then

m(r, ff ′�cf ) ≥ T(r, f ) + S(r, f ).

Proof. Since f is an entire function with finite order, we deduce from Lemma 2.2 and

the Lemma of logarithmic derivative that

3T(r, f ) = T(r, f 3) = m(r, f 3) + S(r, f )

≤ m
(
r,

f 3

ff ′�cf

)
+m(r, ff ′�cf ) + S(r, f )

= m
(
r,

f 2

f ′�cf

)
+m(r, ff ′�cf ) + S(r, f )

≤ T
(
r,
f ′

f

)
+ T

(
r,

�cf
f

)
+m(r, ff ′�cf ) + S(r, f )

≤ 2N
(
r,
1
f

)
+m(r, ff ′�cf ) + S(r, f )

≤ 2T(r, f ) +m(r, ff ′�cf ) + S(r, f ).

Hence, we get

m(r, ff ′�cf ) ≥ T(r, f ) + S(r, f ). (1)

3 Proof of Theorem 1.1
Since f(z)n and f(z + c)n share a and ∞ CM, we obtain that

f (z + c)n − a(z + c)
f (z)n − a(z)

= eQ(z), (2)

where Q(z) is a polynomial. From Lemma 2.1, we know that T (r, eQ(z)) = m (r, eQ(z))

= S (r, f). Rewrite (2) as

f (z + c)n = eQ(z)(f (z)n − a(z) + a(z)e−Q(z)). (3)

Set

G(z) =
f (z)n

a(z)(1 − e−Q(z))
.

If eQ(z) ≢ 1, then we apply the Valiron-Mohon’ko theorem and the second main theo-

rem to G (z), and get

nT(r, f ) + S(r, f ) = T(r,G) ≤ N
(
r,

1
G

)
+N(r,G) +N

(
r,

1
G − 1

)
+ S(r,G)

≤ N
(
r,
1
f

)
+N(r, f ) +N

(
r,

1
f (z)n − a(z) + a(z)e−Q(z)

)
+ S(r, f )

≤ N
(
r,
1
f

)
+N(r, f ) +N

(
r,

1
f (z + c)

)
+ S(r, f )

≤ 2T(r, f ) + T(r, f (z + c)) + S(r, f ).

(4)
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Combining (4) with Lemma 2.3, we get

nT(r, f ) ≤ 3T(r, f ) +O(rσ (f )−1+ε) + S(r, f ),

which contradicts that n ≥ 4. Therefore, eQ(z) ≡ 1, that is, f (z)n = f (z + c)n, so we

have f (z) = ω f (z + c), for a constant ω with ωn = 1.

4 Proof of Theorem 1.2
From the assumption of Theorem 1.2, we get that

f (z + c)n + af (z + c)n−1 + b

f (z)n + af (z)n−1 + b
= eQ(z), (5)

where Q(z) is a polynomial. Applying Lemma 2.1, we obtain that T (r, eQ(z)) = m (r,

eQ(z)) = S (r, f). Rewrite (5) as

f (z + c)n + af (z + c)n−1 = eQ(z)
(
f (z)n + af (z)n−1 + b − b

eQ(z)

)
. (6)

If eQ(z) ≢ 1, applying the second main theorem for three small functions, we get

nT(r, f ) + S(r, f ) = T(r, f (z)n + af (z)n−1)

≤ N
(
r,

1

f (z)n + af (z)n−1

)
+N(r, f (z)n + af (z)n−1)

+N

(
r,

1

f (z)n + af (z)n−1 + b − b
eQ(z)

)
+ S(r, f )

≤ N(r, f ) +N
(
r,

1

f (z + c)n−1(f (z + c) + a)

)

+N
(
r,

1

f (z)n−1(f (z) + a)

)
+ S(r, f )

≤ 3T(r, f ) + 2T(r, f (z + c)) + S(r, f ).

(7)

Combining (4.3) with Lemma 2.3, we get

nT(r, f ) ≤ 5T(r, f ) +O(rσ (f )−1+ε) + S(r, f ),

which contradicts n ≥ 6. Hence, eQ(z) ≡ 1, we conclude by (5) that

f (z + c)n + af (z + c)n−1 = f (z)n + af (z)n−1. (8)

Set G(z) = f (z)
f (z+c) . If G (z) is non-constant, then we have from (8)

f (z) = −aG(Gn−1 − 1)
Gn − 1

= −a
Gn−1 + · · · + G
Gn−1 + · · · + 1

. (9)

Making use of the standard Valiron-Mohon’ko lemma, we get from (9) that

T(r, f ) = (n − 1)T(r,G) + S(r, f ). (10)

Noting that n ≥ 6, we deduce that 1 is not a Picard value of Gn. Suppose that aj Î {ℂ

\ 1} (j = 1, 2,..., n - 1) are the distinct roots of equation hn - 1 = 0. Applying the second

main theorem to G, we conclude by (9) that
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(n − 3)T(r,G) ≤
n−1∑
j=1

N
(
r,

1
G − aj

)
+ S(r,G) =N(r, f ). (11)

From (10) and (11), we get N(r, f ) ≥ n−3
n−1T(r, f ) + S(r, f ) , which contradicts the

assumption.

So G(z) is a constant, and we get f (z) = tf (z + c), where t is a non-zero constant.

From (8), we know t = 1, therefore, f = g.

5 Proof of Theorem 1.3
The main idea of this proof is from [[17], Theorem 1], while the details are somewhat

different. For the convenience of the reader, we give a complete proof.

Set F(z) = fn (z) (f(z) - 1)Δc f. Since f is a transcendental meromorphic function with

finite order s(f), we conclude by Lemma 2.3 that

T(r, F) ≤ T(r, f n(z)(f (z) − 1)) + T(r,�cf ) + S(r, f )

≤ (n + 2)T(r, f ) + T(r, f (z + c)) + S(r, f )

≤ (n + 3)T(r, f ) +O(rσ (f )−1+ε) + S(r, f ).

Thus, we get S(r, F) = o(T(r, f)) = S(r, f). Moreover, we get

T(r,�cf ) ≤ m(r,�cf ) +O
(
r
λ( 1f )+ε

)
+ S(r, f )

≤ m
(
r,

�cf
f

)
+m(r, f ) +O

(
r
λ( 1f )+ε

)
+ S(r, f )

≤ T(r, f ) +O
(
r
λ( 1f )+ε

)
+ S(r, f ).

(12)

On the other hand, we deduce by Lemma 2.2 that

(n + 2)T(r, f ) = T(r, f n+1(f − 1)) + S(r, f )

= m(r, f n+1(f − 1)) +O
(
r
λ( 1f )+ε

)
+ S(r, f )

≤ m
(
r,
f n+1(f − 1)

F

)
+m(r, F) +O

(
r
λ( 1f )+ε

)
+ S(r, f )

≤ T
(
r,

�cf
f

)
+m(r, F) +O

(
r
λ( 1f )+ε

)
+ S(r, f )

≤ m
(
r,

�cf
f

)
+N

(
r,
1
f

)
+m(r, F) +O

(
r
λ( 1f )+ε

)
+ S(r, f )

≤ T(r, f ) + T(r, F) +O
(
r
λ( 1f )+ε

)
+ S(r, f ).

Hence

(n + 1)T(r, f ) ≤ T(r, F) +O
(
r
λ( 1f )+ε

)
+ S(r, f ). (13)
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The second main theorem yields

T(r, F) ≤ N(r, F) +N
(
r,
1
F

)
+N(r,

1
F − a

) + S(r, F)

≤ N(r,
1

F − a
) +N

(
r,
1
f

)
+N

(
r,

1
f − 1

)

+N(r,
1

�cf
) +O

(
r
λ( 1f )+ε

)
+ S(r, f )

≤ N
(
r,

1
F − a

)
+ 2T(r, f ) + T(r,�cf ) +O

(
r
λ( 1f )+ε

)
+ S(r, f ).

From (12) and above inequality, we get that

T(r, F) ≤ N
(
r,

1
F − a

)
+ 3T(r, f ) +O

(
r
λ( 1f )+ε

)
+ S(r, f ). (14)

Combining (13) and (14), we have

(n − 2)T(r, f ) ≤ N
(
r,

1
F − a

)
+O

(
r
λ( 1f )+ε

)
+ S(r, f ),

which is a contradiction to the fact that f is of order s (f) if F - a has finitely many

zeros. The conclusion follows.

6 Proof of Theorem 1.5
Suppose that fn(f - 1)Δc f - a admits finitely many zeros only. Then, there are two non-

zero polynomials P(z), Q(z) such that

f n(f − 1)�cf − a = P(z)eQ(z). (15)

Differentiating (15) and eliminating eQ(z), we obtain

(f n − f n−1)F(z, f ) = a′P(z) − aP∗(z) − P(z)f (z)n−1f ′(z)�cf , (16)

where

F(z, f ) = (n + 1)P(z)f ′(z)�cf + P(z)f (z)(�cf )′ − P∗(z)f (z)�cf

and P*(z) = P’(z) + P(z)Q’(z).

First, we conclude that a’P (z) - aP*(z) ≢ 0. Otherwise, if a’P(z) - aP*(z) = 0, by inte-

grating, then we have

a
P(z)

= AeQ(z),

where A is a non-zero constant. Hence, we get eQ(z) is a constant and

f n(z)(f (z) − 1)�cf = BP(z) + a, (17)

where B is a non-zero constant. Then, from Lemma 2.3 and (17), we obtain that

(n + 1)T(r, f ) ≤ 2T(r, f ) +O
(
rσ (f )−1+ε

)
+ S(r, f ),

which is a contradiction when n ≥ 2.
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If F(z, f) vanish identically, then

aP∗(z) + P(z)f (z)n−1f ′(z)�cf − a′P(z) ≡ 0. (18)

Rewrite (18), we get

f n−2ff ′(z)�cf =
a′P(z) − aP∗(z)

P(z)
,

hence

f n−2f 2f ′(z)
�cf
f

=
a′P(z) − aP∗(z)

P(z)
. (19)

Then, combining Lemmas 2.2, 2.4 and Equation (19), we conclude that

m(r, ff ′(z)�cf ) = S(r, f ),

which contradicts (1).

It remains to consider the case that F (z, f) ≢ 0. We rewrite (16) in the form that

(f (z)n+2 − f (z)n+1)
F(z, f )

f (z)2
= a′P(z) − aP∗(z) − P(z)f (z)n−1f ′(z)�cf (20)

and

f (z)n+1
(
(f (z) − 1)

F(z, f )

f (z)2

)
= a′P(z) − aP∗(z) − P(z)f (z)n−1 f

′(z)�cf

f (z)2
.

By Lemmas 2.2 and 2.4, we know that

m
(
r,
F(z, f )

f (z)2

)
= S(r, f )

and

m
(
r, (f (z) − 1)

F(z, f )

f (z)2

)
= S(r, f ).

As f (z) is entire, we get that the poles of F(z,f )
f (z)2

may be located only at the zeros of f

(z). If F(z,f )
f (z)2

has infinitely many poles, then from that a zero of f (z) with multiplicity t

should be a pole of t + 1 of F(z,f )
f (z)2

. Since n ≥ 2, we know that the left side of (20) must

have infinitely many zeros, which is a contradiction that a’P(z) - aP*(z) is a non-zero

polynomial. We get

N
(
r,
F(z, f )

f (z)2

)
= O(log r) and N

(
r, (f (z) − 1)

F(z, f )

f (z)2

)
= O(log r).

Hence

T
(
r,
F(z, f )

f (z)2

)
= S(r, f )
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and

T
(
r, (f (z) − 1)

F(z, f )

f (z)2

)
= S(r, f )

as well. Combining these two estimates, we obtain

T(r, f ) = S(r, f )

contradiction. This completes the proof of Theorem 1.5.
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