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1 Introduction
Inequalities for polynomials have been a classical object of studies for more than one
century. Modern expositions can be found in books and surveys [–] and []. Recently
weighted analogues of classical polynomial inequalities were considered (see, for instance,
[, ] and []). Other ways of generalizations are in replacing the domain of polynomials by
more complicated (disconnected) sets and (or) in considering polynomials inmore general
Chebyshev systems. The main goal of the paper is to give simple proofs of weighted ana-
logues of Bernstein-type inequalities on several intervals. They are inspired by weighted
Bernstein-type inequalities from Section ., E. in []. It turns out that for disconnected
sets similar ideas allow to write down weighted versions with an explicit constant.
Throughout the paper, we use the notations

P(C)
n =

{
p : p(x) =

n∑
k=

akxk ,ak ∈R(C)

}
()

for the set of algebraic polynomials and

T (C)
n =

{
t : t(x) =

a


+
n∑
k=

(ak coskx + bk sinkx),ak ,bk ∈R(C)

}
()

for the set of trigonometric polynomials with real (complex) coefficients; as a weight w,
we consider an arbitrary continuous positive function on a suitable set, ‖ · ‖ is the uniform
norm on this set.
The first theorem is a weighted analogue of the Bernstein-type inequality on several

intervals.

Theorem  Let E be a set consisting of a finite number l ≥  of disjoint intervals, E =⋃l
j=[aj,bj] ⊂ [, ], a < b < a < · · · < bl , then there exists n depending on w and E such
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that

∣∣∣∣∣p′
n(x)w(x)

√√√√ l∏
j=

∣∣(x – aj)(x – bj)
∣∣
∣∣∣∣∣ ≤ n‖pnw‖E , x ∈ E ()

for every polynomial pn ∈ PC
n , n≥ n.

Next result is aweighted version of the Bernstein-type inequality for trigonometric poly-
nomials on several intervals.

Theorem  Let w be any function which is continuous and positive on

E =
l⋃
j=

[θj–, θj]� [, π ], θ < θ < · · · < θl < θl+ = θ + π ()

and

S(θ ) =
l∏
j=

sin

(
θ – θj



)
. ()

Then there exists n depending on w and E such that

∣∣t′n(θ )w(θ )√∣∣S(θ )∣∣∣∣ ≤ n‖tnw‖E , θ ∈ E ()

for every polynomial tn ∈ TC
n , n ≥ n. Inequality () is sharp in the sense that it is not

possible to replace n in () by n( – ε) for arbitrary ε > .

Now let  < α < π , and let

Kα =
{
eiθ | θ ∈ [–α,α]

}
()

be the circular arc on the unit circle of central angle α and with a midpoint at . Next
result is a weighted version of the inequality from [].

Theorem  With the above notations and for any continuous positive function w, there
exists n depending on w and α such that

∣∣p′
n
(
eiθ

)
w

(
eiθ

)∣∣
√∣∣∣∣sin

(
θ – α



)
sin

(
θ + α



)∣∣∣∣ ≤ n‖pnw‖Kα , θ ∈ [–α,α] ()

for every polynomial pn ∈ PC
n , n≥ n.

Next we recall the definition of the harmonic measure ω(z,G,D) of a set G ⊂ ∂D at a
point z ∈D relative to the domain D,

ω(z,G,D) =

π

∫
G

∂

∂n
gD(ζ , z)|dζ |, ()
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where gD(ζ , z) is the Green function of the domain D and n is the exterior normal at ζ

(see, for example, []).
Our last result is an extension of Rusak’s inequality [, p.] to the case of several in-

tervals.

Theorem  Let rn be a complex-valued algebraic fraction

rn(x) =
xn + bxn– + · · · + bn√|ρν(x)|

, ()

where b, . . . ,bn ∈C, ρν(x) =
∏ν∗

j=(x– xj)νj is a real polynomial of degree ν which is positive
on E =

⋃l
j=[aj–,aj], a < a < · · · < al satisfying the condition

∣∣rn(x)∣∣ ≤ , x ∈ E, ()

and γ (x) is a differentiable function on E. Then the estimate

∣∣(rn(x)γ (x))′∣∣ ≤
√(

ϕ′
n(x)

)
γ (x) + γ ′(x), x ∈ int(E) ()

is valid. Here

ϕn(x) =
π



(
(n – ν)E(∞,x) +

ν∗∑
j=

νjE(xj,x)

)
, ()

E(z,x) = ∂
∂x (ω(z, [a,x]∩E,C\E)). If x is not a multiple root of γ (x), then the equality sign

is valid only for algebraic fractions

rn(x)≡ ε cosϕn(x), |ε| =  ()

at the points x satisfying

(
γ (x) sinϕn(x)

)′ =  ()

in the case when

(n – ν)ω
(∞, [ak–,ak],C\E)

+
ν∗∑
j=

νjω
(
xj, [ak–,ak],C\E)

= qk , ()

where qk ∈ N, k = , . . . , l.

Remark  A Markov-type inequality, which is obtained by a similar method, was an-
nounced in the conference [].

In the following we use several auxiliary results.

Lemma  [] Consider any algebraic fraction

rn(x) =
xn + bxn– + · · · + bn√

ρν(x)
, ()
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where b, . . . ,bn ∈ R, and ρν(x) =
∏ν∗

j=(x – xj)νj is a real polynomial of degree ν which is
positive on E = [a,a]∪ · · · ∪ [al–,al] ⊂R, a < · · · < al . Then

(
r′(x)
ϕn(x)

)

+ r(x)≤ ‖r‖C(E), ()

where ϕn(x) is given by ().

For further reference, it is convenient to give a particular case of a version of Lemma 
from [].

Lemma  The following inequality holds for any trigonometric polynomial tn ∈ Tn and
θ ∈ int(E), E is a real compact subset of [, π ]:

(
t′n(θ )

nπE (∞, θ )

)

+ tn(θ ) ≤ ‖tn‖E . ()

Here,

E (z,x) =
∂

∂x
ω

(
z,�E ∩ {

eiθ : infE ≤ θ ≤ x
}
,C\�E

)
, ()

and �E = {eiθ : θ ∈ E}.

Lemma  [, ] The following assertions are equivalent.
. The trigonometric polynomial τN deviates least from zero on

E = [θ, θ]∪ · · · ∪ [θl–, θl], θ < θ < · · · < θl with respect to the sup-norm among all
trigonometric polynomials of degree N/ with leading coefficients cosψ and sinψ , i.e.,

max
θ∈E

∣∣τN (θ )∣∣ = inf
cj ,dj∈R

max
θ∈E

∣∣∣∣∣cosψ cos
N


θ + sinψ sin
N


θ

+
N/�∑
j=

cj cos
N – j


θ + dj sin

N – j


θ

∣∣∣∣∣ ()

has the maximal possible number of extremum points on E .
. For every j = , . . . , l, the equilibrium measures of the arcs �j = {eiθ : θ ∈ [θj–, θj]} are

positive rational numbers.More precisely,

Nω(∞,�j,C\�E ) = q(N)
j , q(N)

j ∈N, j = , . . . , l. ()

. There is a real trigonometric polynomial σN– l

of order N – l

 such that for a constant
AN > ,

τ 
N (θ ) – S(θ )σ 

N– l

(θ ) = A

N , ()

where S(θ ) is given by ().
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If any of those assertions is valid, then
(a) the numbers q(N)

j are equal to the number of zeros of τN (θ ) on Ej = [θj–, θj],
j = , . . . , l;

(b) the polynomial τN may also be written in terms of E (z,x) as

τN (θ ) = ANε cos

(
π

∫
E∩[θ,θ ]

NE (∞, ζ )dζ

)
, θ ∈ E , ()

where ε ∈ {–, }.

Lemma  [] The density of the equilibrium measure from (), E = [θ, θ] ∪ · · · ∪
[θl–, θl], θ < θ < · · · < θl is given by

E (∞, θ ) =

π

|Q(θ )|√|S(θ )| , ()

where Q(θ ) =
∏l

j= sin(
θ–ξj
 ), and ξj ∈ [θj, θj+], j = , . . . , l, θj+ := θ + π , are uniquely

determined by

∫ θj+

θj

Q(θ )√|S(θ )| dζ = , j = , . . . , l. ()

Proof We want to present here a different proof of the lemma which uses the representa-
tions of extremal polynomials in ().
() Suppose firstly ω(∞,�j,C\�E ) =

pj
N , pj ∈ N, j = , . . . , l. Then by Lemma  the func-

tion

τN (θ ) = cos

(
π

∫
E∩[θ,θ ]

NE (∞, ζ )dζ

)
, θ ∈ E ()

is a real trigonometric polynomial of order N . If we take a derivative, we get

τ ′
N (θ ) =NQ(θ )

N–l∏
j=

sin
θ – βj


, ()

where βj, j = , . . . , N – l, are zeros of σN– l

(θ ) and there is a real trigonometric polynomial

σN– l

of order N – l

 such that

τ 
N (θ ) – S(θ )σ 

N– l

(θ ) = . ()

Hence

σN– l

(θ ) = c

N–l∏
j=

sin
θ – βj


=
sin(π

∫
E∩[θ,θ ] NE (∞, ζ )dζ )√|S(θ )| . ()

Moreover, τN (θ ) has a maximal number of deviation points, and inner zeros of its deriva-
tive coincide with zeros of σN– l


(θ ), and τN has one zero ξj at each gap (θj, θj+), j = , . . . , l.

http://www.journalofinequalitiesandapplications.com/content/2013/1/487
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Hence

τ ′
N (θ ) = ±N

sin(π
∫
E∩[θ,θ ] NE (∞, ζ )dζ )√|S(θ )| Q(θ )

= – sin
(

π

∫
E∩[θ,θ ]

NE (∞, ζ )dζ

)
πNE (∞, θ ), ()

so we have

E (∞, θ ) =

π

|Q(θ )|√|S(θ )| . ()

Now equality () follows from the representation (). Uniqueness of ξj ’s follows from
the uniqueness of extremal trigonometric polynomials in Lemma .
()Using density of the systems of l arcs satisfyingω(∞,�j,C\�E ) ∈Q, j = , . . . , l, among

all systems of l arcs (see, for instance, [, ] and references therein), we obtain the
lemma. �

2 Proofs
Proof of Theorem  First consider tn ∈ Tn. By theWeierstrass approximation theorem, for
any η > , there is qk ∈ Tk such that

w(θ ) ≤ qk(θ )∏l
j= | sin( θ–ξj

 )|
≤ ( + η)w(θ ), θ ∈ E , ()

where ξj are given by () in Lemma . Hence

∣∣t′n(θ )w(θ )∣∣S(θ )∣∣/∣∣ ≤
∣∣∣∣t′n(θ )qk(θ ) |S(θ )|/∏l

j= | sin( θ–ξj
 )|

∣∣∣∣
≤

∣∣∣∣(tnqk)′(θ ) |S(θ )|/∏l
j= | sin( θ–ξj

 )|

∣∣∣∣
+

∣∣∣∣tn(θ )q′
k(θ )

|S(θ )|/∏l
j= | sin( θ–ξj

 )|

∣∣∣∣, ()

and, using Lemmas  and , we have

∣∣t′n(θ )w(θ )∣∣S(θ )∣∣/∣∣ ≤ (n + k)‖tnqk‖E + ‖tn‖Ek‖qk‖E

≤ (n + k)( + η)‖tnw‖E
∥∥∥∥∥

l∏
j=

sin

(
θ – ξj



)∥∥∥∥∥
E

+

m
( + η)‖tnw‖E‖w‖E

∥∥∥∥∥
l∏
j=

sin

(
θ – ξj



)∥∥∥∥∥
E

≤ n‖tnw‖E
[
 + η +

k
n
( + η) +


mn

( + η)‖w‖E
]

×
∥∥∥∥∥

l∏
j=

sin

(
θ – ξj



)∥∥∥∥∥
E

, ()
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where m := min{w(θ ) : θ ∈ E}. Now, for every tn ∈ Tn and ε > , provided η >  is suffi-
ciently small, n≥ n such that ε ≥ η + (+η)

n (k + 
m‖w‖E ), we get

∣∣t′n(θ )w(θ )∣∣S(θ )∣∣/∣∣ ≤ n( + ε)‖tnw‖E
∥∥∥∥∥

l∏
j=

sin

(
θ – ξj



)∥∥∥∥∥
E

, ()

and because of ‖∏l
j= sin(

θ–ξj
 )‖E < , we obtain, for sufficiently small ε > ,

∣∣t′n(θ )w(θ )√∣∣S(θ )∣∣∣∣ ≤ n‖tnw‖E . ()

The case of tn ∈ TC
n is proved then similarly to the proof of [, Corollary ..]. The theorem

is sharp even for the case w ≡ . Namely, we cannot replace the multiplier n by n( – ε)
with any ε >  in the right-hand side of ().
Take E = [–α,α],  < α < π . Then we have S(θ ) = sin( θ–α

 ) sin( θ+α
 ), ξ = π and

∣∣∣∣sin
(

θ – ξj



)∣∣∣∣ =
∣∣∣∣cos

(
θ



)∣∣∣∣. ()

Consider

tn(θ ) = cos

(
n arccos

(
sin θ


sin α



))
. ()

Take θ = θn =  arcsin(sin α
 sin

π
n ), then

∣∣t′n(θn)∣∣ = n
cos θn

√|S(θn)|
()

and

∣∣t′n(θn)√∣∣S(θn)∣∣∣∣ = n cos
θn


> n( – ε) ()

for sufficiently large n such that

sin
π

n
<

ε

sin α

. ()

�

Proofs of Theorems  and  are quite analogous and they use related inequalities from
[, ].

Proof of Theorem  Firstly we consider the case when the numerator pn(x) has real coef-
ficients. Put rn(x) = cosw = cos(arccos rn(x)); using Lemma , we obtain

∣∣(rn(x)γ (x))′∣∣ = ∣∣∣∣ sinwr′n(x)γ (x) – rn(x)
+ coswγ ′(x)

∣∣∣∣
≤

√
sinw + cosw

[
(r′n(x))γ (x)
 – rn(x)

+ γ ′(x)
] 



≤
√(

ϕ′
n(x)

)
γ (x) + γ ′(x). ()
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The validity of the estimate for complex-valued algebraic fractions is proved by the same
trick as in [, Corollary ..]. Equality sign in the last inequality in () is valid only for
the function rn(x) ≡ ε cosϕn(x), |ε| =  if () holds [, ]. Equality sign in the second
inequality in () then holds only for the same function at those points where

– sinϕn(x)
ϕ′
n(x)γ (x)

=
cosϕn(x)

γ ′(x)
. ()

Equality () is equivalent to (γ (x) sinϕn(x))′ = . �
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