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Abstract
In this paper, we introduce and investigate a new subclassMK (k)(β ,γ ) of
meromorphic close-to-convex functions. For functions belonging to the class
MK (k)(β ,γ ), we obtain some coefficient inequalities and a distortion theorem. The
results presented here would unify and extend some recent work of Wang et al. (Appl.
Math. Lett. 25:454-460, 2012).
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1 Introduction
Let � be the class of functions f of the form:

f (z) =

z
+

∞∑
n=

anzn, (.)

which are analytic in the punctured open unit disk U∗ = {z ∈ C :  < |z| < } =U \ {}.
Let P denote the class of functions p given by

p(z) =  +
∞∑
n=

pnzn (z ∈U), (.)

which are analytic and convex in U and satisfy the condition �(p(z)) >  (z ∈U).
A function f ∈ � is said to be in the class MS∗(α) of meromorphic starlike functions of

order α if it satisfies the inequality

�
(
zf ′(z)
f (z)

)
< –α

(
z ∈U∗;  ≤ α < 

)
.

In addition, a function f ∈ � is said to be in the classMC ofmeromorphic close-to-convex
functions if it satisfies the inequality

�
(
zf ′(z)
g(z)

)
< 

(
z ∈U∗; g ∈MS∗() =MS∗).

Recently, Srivastava et al. [] (see also [, ]) introduced and studied the class MS∗
s of

meromorphic starlike functions with respect to symmetric points, which satisfies the con-
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�
(

zf ′(z)
f (z) – f (–z)

)
< 

(
z ∈U∗).

More recently, Wang et al. [] discussed a class MK of meromorphic close-to-convex
functions, that is, a function f ∈ � is said to be in the classMK if it satisfies the inequality

�
(

f ′(z)
g(z)g(–z)

)
> 

(
z ∈U∗),

where g ∈MS∗(  ).
Let f (z) = z + az + · · · be analytic in U . If there exists a function g ∈ S∗(  ), such that

∣∣∣∣ zf ′(z)
g(z)g(–z)

+ 
∣∣∣∣ <

∣∣∣∣ zf ′(z)
g(z)g(–z)

–  + γ
∣∣∣∣ (z ∈U),

then we say that f ∈ Ks(γ ),  ≤ γ < , where S∗(  ) denotes the usual class of starlike func-
tions of order /. The function classKs(γ ) was introduced and studied recently by Kowal-
czyk and Les-Bomba [] (see also [–]).
For two functions f and g analytic in U , we say that the function f (z) is subordinate to

g(z) in U , and we write f (z) ≺ g(z) (z ∈ U) if there exists a Schwarz function w(z), analytic
in U with w() =  and |w(z)| ≤ , such that f (z) = g(w(z)) (z ∈ U). In particular, if the
function g is univalent in U , then we have f () = g() and f (U) ⊂ g(U) (see, for example,
[]).
Motivated essentially by the above mentioned function classes MK and Ks(γ ), we now

introduce a new classMK (k)(β ,γ ) of meromorphic functions.

Definition  LetMK (k)(β ,γ ) denote the class of functions in � satisfying the inequality

∣∣∣∣z–kf ′(z)
gk(z)

+ 
∣∣∣∣ < β

∣∣∣∣z–kf ′(z)
gk(z)

+ γ – 
∣∣∣∣ (

z ∈U∗;  < β ≤ ;  ≤ γ < 
)
, (.)

where g ∈ MS∗( k–k ), k ≥ , is a fixed positive integer and gk(z) is defined by the following
equality:

gk(z) =
k–∏
v=

ε–vg
(
εvz

) (
εk = 

)
. (.)

We note that MK ()(, ) = MK (see []), so the class MK (k)(β ,γ ) is a generation of the
classMK .

In this paper, we prove that the class MK (k)(β ,γ ) is a subclass of meromorphic close-
to-convex functions. Moreover, we provide some coefficient inequalities and a distortion
theorem for functions in the class MK (k)(β ,γ ). Our results unify and extend the corre-
sponding results obtained by Wang et al. [].
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2 Main results
First of all, we give two meaningful conclusions about the class MK (k)(β ,γ ). The proof
of Theorem  below is much akin to that of Theorem  in [], so we choose to omit the
details involved.

Theorem  A function f ∈MK (k)(β ,γ ) if and only if there exists g ∈ MS∗( k–k ) such that

–
z–kf ′(z)
gk(z)

≺  + ( – γ )βz
 – βz

(
z ∈U∗). (.)

Remark  From Theorem , we know that

�
(
z–kf ′(z)
gk(z)

)
< 

(
z ∈U∗), (.)

because of �( +(–γ )βz–βz ) >  (z ∈U∗).

Lemma Let ϕi ∈MS∗(αi),where  ≤ αi <  (i = , , . . . ,k–).Then for k– ≤ ∑k–
i= αi < k,

we have

zk–
k–∏
i=

ϕi(z) ∈MS∗
( k–∑

i=

αi – (k – )

)
.

Proof Since ϕi ∈ MS∗(αi) (i = , , . . . ,k – ), by the definition of meromorphic starlike
functions, we have

�
(
zϕ′

(z)
ϕ(z)

)
< –α, �

(
zϕ′

(z)
ϕ(z)

)
< –α, . . . , �

(
zϕ′

k–(z)
ϕk–(z)

)
< –αk–. (.)

We now let

F(z) = zk–ϕ(z)ϕ(z) · · ·ϕk–(z). (.)

Differentiating (.) with respect to z logarithmically, we easily get

zF ′(z)
F(z)

=
zϕ′

(z)
ϕ(z)

+
zϕ′

(z)
ϕ(z)

+ · · · + zϕ′
k–(z)

ϕk–(z)
+ (k – ). (.)

From (.) together with (.), we obtain

�
(
zF ′(z)
F(z)

)
= �

(
zϕ′

(z)
ϕ(z)

)
+�

(
zϕ′

(z)
ϕ(z)

)
+ · · · +�

(
zϕ′

k–(z)
ϕk–(z)

)
+ (k – )

< –
k–∑
i=

αi + (k – ) = –

( k–∑
i=

αi – (k – )

)

by noting that  ≤ ∑k–
i= αi – (k – ) < , which implies that

F(z) = zk–
k–∏
i=

ϕi(z) ∈MS∗
( k–∑

i=

αi – (k – )

)
.

The proof of Lemma  is thus completed. �
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Theorem  Let g(z) = 
z +

∑∞
n= bnzn ∈MS∗( k–k ), then zk–gk(z) ∈ MS∗.

Proof From (.), we know

zk–gk(z) = zk–
k–∏
v=

ε–vg
(
εvz

)
= zk–

k–∏
v=

ε–v

[


εvz
+

∞∑
n=

bn
(
εvz

)n]

= zk–
k–∏
v=

[


εvz
+

∞∑
n=

bnε(n–)vzn
]
. (.)

Since g(z) = 
z +

∑∞
n= bnzn ∈ MS∗( k–k ), by Lemma  and (.), we can easily get the asser-

tion of Theorem . �

Remark  From Theorem  and the inequality (.), we see that if f ∈ MK (k)(β ,γ ), then
f (z) is a meromorphic close-to-convex function. So, MK (k)(β ,γ ) is a subclass of the class
MC of meromorphic close-to-convex functions.

Next, we give some coefficient inequalities for functions belonging to the class
MK (k)(β ,γ ).

Theorem  Let f (z) = 
z +

∑∞
n= anzn and g(z) = 

z +
∑∞

n= bnzn be analytic in U∗. If for
 < β ≤  and  ≤ γ < , we have

∞∑
n=

n( + β)|an| +
∞∑
n=

(
β| – γ | + 

)|Bn| ≤ β( – γ ), (.)

where the coefficients Bn (n = , , . . .) are given by (.), then f ∈ MK (k)(β ,γ ).

Proof Suppose that

Gk(z) = zk–gk(z). (.)

By Theorem , we know that Gk ∈MS∗. Hence, equality (.) can be written as

Gk(z) = zk–gk(z) =

z
+

∞∑
n=

Bnzn ∈MS∗. (.)

To prove f ∈MK (k)(β ,γ ), it suffices to show that

∣∣∣∣
zf ′(z)
Gk (z)

+ 
zf ′(z)
Gk (z)

+ γ – 

∣∣∣∣ < β ,

where Gk is given by (.). From (.), we know that

β( – γ ) –
∞∑
n=

nβ|an| –
∞∑
n=

β| – γ ||Bn| ≥
∞∑
n=

n|an| +
∞∑
n=

|Bn| > . (.)
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Now, by the maximum modulus principle, we deduce from (.), (.) and (.) that

∣∣∣∣
zf ′(z)
Gk (z)

+ 
zf ′(z)
Gk (z)

+ γ – 

∣∣∣∣ =
∣∣∣∣

∑∞
n= nanzn+ +

∑∞
n= Bnzn+∑∞

n= nanzn+ –
∑∞

n=( – γ )Bnzn+ – ( – γ )

∣∣∣∣
<

∑∞
n= n|an| +∑∞

n= |Bn|
( – γ ) –

∑∞
n= n|an| –∑∞

n= | – γ ||Bn| ≤ β .

This evidently completes the proof of Theorem . �

Theorem  Let f (z) = 
z +

∑∞
n= anzn ∈MK (k)(β ,γ ). Then

 +
∞∑
n=

n( – βeiθ )
( – γ )βeiθ

anzn+ +
∞∑
n=

 + ( – γ )βeiθ

( – γ )βeiθ
Bnzn+ �= 

(
z ∈U∗;  < θ < π

)
, (.)

where the coefficients Bn (n = , , . . .) are given by (.).

Proof Suppose that f ∈MK (k)(β ,γ ). Then we know that

–
zf ′(z)
Gk(z)

�=  + ( – γ )βeiθ

 – βeiθ
(
z ∈ U∗;  < θ < π

)
, (.)

where Gk is given by (.). After a simple computation, the inequality (.) is equivalent
to

zf ′(z)
(
 – βeiθ

)
+Gk(z)

(
 + ( – γ )βeiθ

) �= 
(
z ∈ U∗;  < θ < π

)
. (.)

By substituting (.) and (.) into (.), we obtain the desired assertion (.) of Theo-
rem .
Finally, we provide the following distortion theorem for the considered class of functions

MK (k)(β ,γ ). �

Theorem  If f ∈MK (k)(β ,γ ), then

( – r)( – ( – γ )βr)
r( + βr)

≤ ∣∣f ′(z)
∣∣

≤ ( + r)( + ( – γ )βr)
r( – βr)

(|z| = r;  < r < 
)
. (.)

Proof If f ∈ MK (k)(β ,γ ), then there exists a function g ∈ MS∗( k–k ) such that (.) holds
true. It follows from Theorem  that the function Gk given by (.) is a meromorphic
starlike function. Hence, we have (see [])

( – r)

r
≤ ∣∣Gk(z)

∣∣ ≤ ( + r)

r
(|z| = r;  < r < 

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/164
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Let us define p(z) by

–
zf ′(z)
Gk(z)

= p(z)
(
z ∈U∗), (.)

where

p(z) ≺  + ( – γ )βz
 – βz

.

Then, by using a similar method as in [, p.], we have

 – ( – γ )βr
 + βr

≤ ∣∣p(z)∣∣ ≤  + ( – γ )βr
 – βr

(|z| = r;  < r < 
)
. (.)

Thus, from (.), (.) and (.), we readily get the inequality (.). The proof of The-
orem  is thus completed. �
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