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1 Introduction

The Sturm-Liouville theory plays an important role in solving many mathematical physics
problems [1]. Such research is motivated by the theory of heat and mass transfer, or vibrat-
ing string problems when the string is loaded additionally with point masses (see [2, 3];
see also the references therein). When using Fourier’s method for heat transfer problems,
it becomes necessary to solve a related Sturm-Liouville problem in which the separation
constant plays the role of a spectral parameter (or eigenparameter). In the case of inhomo-
geneous materials and composite walls, the Sturm-Liouville equation has variable and not
necessarily continuous coefficients, so that transmission conditions across the interfaces
should be added in the problem. Heat conduction problems in composite walls have been
analysed by several researchers [4—6]. In all of these works, the temperature distribution
of composite walls involving two or more layers are investigated spectrally and the results
are formulated by the eigenvalues and eigenfunctions of the auxiliary spectral problem. In
[7], the presence of an infinite number of eigenvalues has been shown and an asymptotic
formula has been obtained for the eigenvalues of the spectral problem for the temperature
distribution in composite walls. The problem in that work included a two-layer composite
wall consisting of different materials, having a common contact surface. Physically, we can
say that the problem in the present paper is derived from a heat conduction problem of
a three-layer composite wall consisting of two interfaces that are located symmetrically.
Thus we add transmission conditions at these interfaces i.e. at the points of discontinuity
to the problem.
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Eigenvalue problems have been studied by some authors in the continuous case; see [8—
10]. In recent years, there were also some studies on the discontinuous eigenvalue prob-
lems [11-19] and construction of Green’s functions for discontinuous Sturm-Liouville
problems which contain an eigenparameter under one or two boundary conditions
(14, 16].

We consider the following Sturm-Liouville problem:
T(y) ==y +qx)y=21y, x€l, (1)
with an eigenparameter dependent on a boundary condition:

B,(y) := Biy(a) + By (a) = ()
By(y) := Aoy y(b) — aéy/(b)) + (ary(b) — a2y (b)) = 0, (3)

and coupled transmission conditions at the points of discontinuity, 6_, and 6,,:

T_o(y) :=y(0-c+) — (1)(0-c=) + 12y (6-c=)) = O, (4)
T (y) =y (0-6+) — (11y(0-c=) + 5y (6_c-)) = 0, (5)
Toe(y) := y(0rc+) — (my(Orc=) + 12y (6:c-)) = 0, (6)

T, (9) =y (0rc+) — (0(01c=) + 15Y (6:6-)) = O, (7)

where I := [a,0_,) U (0_;,0,.) U (0,4, b]; 0 € (a,b) and
0<e<min{f —a,b-6}, (8)
A is a spectral parameter; g(x) is a given real valued function which is continuous in [, 6_,),

(6_¢,6..) and (0., b] and has finite limits g(0_.%), g(0..%); Bi» o, o), s 1 niy M (E=1,2)
are real numbers such that |8;| + | 82| # 0 and

p :=det a o >0
o1 Oy ’

Di=det(" ") 50, Dy=det(™ ) >0
ICas mom

Also for convenience we will use the notations 64,%+ := (0 & ¢) £ 0.

)

We introduce a new Sturm-Liouville problem w1th discontinuities which are defined
depending on a parameter in the neighborhood of an interior point of 8. ¢ is a parameter
controlling the variation of the neighborhood process and by using the variation of this pa-
rameter, it is possible to determine points of discontinuity. Thus, the points of discontinu-
ity can be placed anywhere. Accordingly, they can be called ‘moving discontinuity points’
In the special case, when our problem is not with an eigenparameter in the boundary con-
dition and discontinuities are d; = d and dy = w — d in the interval [0, 7], was derived in
11, 12].
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The main aim of the present work is to present moving discontinuity points, to empha-
sise some of the distinguishing properties of such problems from the ones of discontin-
uous Sturm-Liouville problems, and to study the spectral properties of the problem. To
achieve our aim we extend some classic results of Sturm-Liouville theory to the new mov-
ing discontinuous case. First, we define a linear operator A in a suitable Hilbert space H
such that the eigenvalues of the problem (1)-(7) coincide with those of A and construct
a special fundamental system of solutions. Then we obtain the asymptotic formulae for
the eigenvalues and the corresponding eigenfunctions depending on the parameter ¢ and
construct Green’s function for the problem (1)-(7). Finally, an illustrative example, which
shows how to determine discontinuities for different values ofz, is given.

2 An operator formulation

In this section we will introduce the special inner product in the Hilbert space L;(a, b) & C
and a symmetric linear operator A is defined in this Hilbert space in such a way that the
problem (1)-(7) can be considered as the eigenvalue problem of this operator.

Definition1 We define a Hilbert space H of two component vectors by H := Ly(a,b) ® C
with the inner product:

O_¢ _ 1 Oe B 1 b B
(U, Vg := /ﬂ u(x)v(x) dx + D_1 /9_5 u(x)v(x) dx + b, /H+£ u(x)v(x) dx

1
pD1D;

+ hk, (10)

where U = (”hx)), V= (V(,f)) € H, u(x),v(x) € Ly(a,b) and h, k € C.

For a function u(x), which is defined on I and has finite limits #(6_, %) := lim,_,¢_, 1 u(x),
u(0,¢ %) := lim, g, 4 u(x), by u)(x) (i = 1,4) we denote the function

u(x), X € [61,9_5), M(9—£+)r x=0_,
Uua) (x) = Uueo) (x) =
u(9_8—), X = 9—5! u(x), PAS (6—8’9+8)r
M(x): X € (‘9—5» 9+£), u(9+g+), X = 9+£,
u(3)(x) := u(a)(x) :=
M(9+£_)’ X = 0+s’ M(x); S (9+£: b];

which are defined on I = [a,60_.], I = [0_,0..] and I3 = [0,., D], respectively.
For convenience we will use the notations

R(u) = onu(b) — ol (B),  R'(u) = o|u(b) — oyl (b). (11)

Definition 2 We define a linear operator A : D(A) — H by

4 u(x) ~ T(u) 12)
Rw))] \-Rw))’

where the domain D(A) of the linear operator A is defined as the set of all U = (1';,((’2))

which satisfies the conditions (i) T(u#) € La(a, b), (ii) u;)(-), ”Ei)(') are absolutely continuous
functions in I; (i = 1,2, 3), (iii) B,(#) = 0, (iv) Tae(u) = T’ () = 0.

Page 3 of 20
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Now we can rewrite the problem (1)-(7) in the operator form as AU = AU where U =
(#2) € D(A).

The eigenvalues and eigenfunctions of the problem (1)-(7) are defined as the eigenvalues
and the first components of the corresponding eigenelements of the operator A, respec-

tively.
Lemma 1 The operator A in H is symmetric.

Proof For U,V € D(A),

0 Ore b
(AU, V)y = /a t(u)v(x) dx + 1%1 /65 T(u)v(x) dx + DllDz /;ﬂ T(u)v(x) dx

1
pD1D,

R(u)R (v). (13)
By two partial integrations, we obtain

1
(AU, Vg = (U, AV )y + W(u,v;0_.—) — W(u,v;a) + EW(u,Tl; 0,c—)
1

1 1 1
— — W, v;0_s+) + —— W (u,v;b) — W (u,v;0,0+)
D, DD, DD,
1
- R(u)R (v) — R (u)R(V)), 14
leDz(()() (W)R(¥)) (14)

where, as usual, by W (u, v;x) we denote the Wronskian of the functions u(x) and v(x):

W (u,v;x) = ulx)v (x) — u' (x)v(x).
Since u and v satisfy (2), it follows that

W(u,v;a) =0, (15)
from (4)-(7), we get

W (u,V;0_s+) = Dy W (1, 7, 0_s—), (16)

W(u,v;0,6+) = Do W (1, V;0,45—). (17)
Further, from (11) it is easy to verify that

RW)R' (V) = R (u)R(v) = pW (u,V; b). (18)
Finally, substituting (15)-(18) into (14), we have

(AU, V) = (U, AV )n,
so A is symmetric. 0

Corollary 1 All eigenvalues of the problem (1)-(7) are real.
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3 Construction of fundamental solutions
We will define the two solutions

¢—8,)» (x)! X € [6{, 6_8), X—S,)L(x)’ X € [6{, 6—8)7
®s (%) = ¢8,)» (%), x € (0, 04e), X (x) = Xe,k(x)» x € (0-¢,04c), (19)
¢+S,A(x): x € (04, b], X+£,A(x)r x € (046, b],

of (1) as follows: Let ¢_ ; (x) = ¢_.(x, A) be the solution of (1) on [a,6_,], which satisfies the

initial conditions

y@) =P ¥(a)=-pu. (20)

By virtue of Theorem 1.5 in [20], after defining this solution, we define the solution
e (%) = ¢e(x, 1) of (1) on [0_,0,.] by means of the solution ¢_; ; (x) by the nonstandard
initial conditions

J’(@—s +) = M1d_e s (0_e—) + /L2¢/_5,)‘(9—s_):

y,(e—e"’) = Mi¢—s,k(9—5_) + I’L/2¢/_g,k(9—5_)'

(21)

After defining this solution, we may define the solution ¢,.;(x) = ¢,.(x,1) of (1) on
[04¢,b] by means of the solution ¢, ; (x) by the nonstandard initial conditions

y(0+s +) = n1¢8,k(9+£_) + U2¢é,)\ (0+8_))

y/(0+a+) = 77;¢8,A(9+s_) + n/2¢;,x(9+s_)o

(22)

Hence, ¢, (x) = ¢(x, A) satisfies of (1), (2) and (4)-(7) on I.
Analogously, first we define the solution x,. (%) = x4 (%, A) on [0,,, b] by the initial con-
ditions

y(b) = ayh + oz, ¥ (b) = ajA + ay. (23)

Again, after defining this solution, we define the solution x.;(x) = x.(x,A) of (1) on
[6_¢,6..] by the initial conditions

1 !
Wb = 3 (M Xrea Oret) = M2X e (Brst))s

| (24)
y,(9+9_) = D_z(_rliX+a,)L(9+£+) + 771)(18,)\(9+s+))o

After defining this solution, we define the solution x_.;(x) = x_.(x,A) of (1) on [a,0_,]
by the initial conditions

1
y6--) = o (145 X (0—e+) — pa X} 5, (6-c+)),
' (25)

/ 1 / i
y 0-_—) = E(_,UQXS,A(Q—E"') + MIXS,A(9—6+))'
1

Hence, x;.(x) = x (x, A) satisfies of (1), (3) and (4)-(7) on I.
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Let us consider the Wronskians

W(d’is,)u Xis,A;x) = (p:ts,)» (x)X;/tg,A (x) - ¢;:5,A (x) ETH (x)r

W(¢£,)u Xes x) = e (%) Xg/‘,)\ (x) - ¢;,)\ (%) Xe (%),

which are independent of x € I; (i = 1,2, 3) and entire functions where I; (i = 1,2, 3). After a
short calculation we see that D1 Dyw_. (1) = Dyw, (1) = w,¢(1). Now we may introduce the
characteristic function w()) as

00)= 00 = 5rx00) - 0.0, (26)
1 2

Corollary 2 The zeros of the functions w_.(A), w (1) and w,(1) coincide.
Theorem 1 The eigenvalues of the problem (1)-(7) are the zeros of the function w(A).

Proof Let w(ig) = 0. Then W(¢_; 1y, X—¢,19; %) = 0 and therefore the functions ¢_, ,, (x) and
X—e, (%) are linearly dependent, i.e. x_;;,(%) = ki¢_¢, (%), x € [a,6_.] for some k; # 0.
From this, it follows that x,,(x) satisfies also the first boundary condition (2), so x;,(x)
is an eigenfunction for the eigenvalue A,.

Now let y(x, o) be any eigenfunction correspond to eigenvalue 1¢, but w(1g) # 0. Then
the pair of the functions (¢_¢(-), x_¢(-)), (Pe(-), xe(-)) and (P4e(-), x+e(-)) would be linearly
independent on I; (i = 1,2, 3), respectively. Therefore y(x, Ao) may be represented as

1Pt (%) + C2 X600 (%), x € [a,0¢),
y(x’ do) = CB¢£,A0 (x) T C4 Xe,ng (x), X € (9—87 6+s)’ (27)

CS¢+£,)L0 (%) + c6 X+e,ho (%), x€ (b, b],
where at least one of the constants ¢; (i = 1, 6) is not zero. Considering the equations

B, (y(x,20)) =0,  By(¥(x,%0)) =0,

T:te (J/(x, )‘0)) =0, T/ig (y(x: )"0)) =0

(28)

as a system of linear equations of the variables ¢; (i = 1,6) and taking (21), (22), (24) and
(25) into account, it follows that the determinant of this system is

0 w_g(Xo) 0 0 0 0

De o (0_e+) Xeho (0_e+) ¢s 0 (0_e+) —Xeho (0_c+) 0 0

¢é)~0 (0_e+) Xg,,)LO (0_e+) g)LO (0_¢+) _Xé,xo (0_c+) 0 0
0 0 ¢+e 0 (CI) X+e,h0 (0sc+) _¢+8,A0 (6,6+) —X+e,h0 (CI)
0 0 ¢+g A0 () X.:.gy)LO (01c+) _¢./+5’A_O (01e+) _X:-s,ko (CI)
0 0 0 0 w.e(Ao) 0

= —w_¢ (Ao)we (ho)w?, (Lo) # 0.

Therefore, the system has only the trivial solution ¢; = 0 (i = 1,6). Thus we get a contra-
diction, which completes the proof. g
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4 Asymptotic approximate formulae
Now we will derive asymptotic formulae of the eigenvalues and eigenfunctions in a way
similar to the techniques of [9, 20] and [13, 15].

Lemma 2 Let ¢ (x) be the solution of equation (1) defined in Section 3, and let ). = s*. Then
the following integral equations hold for k = 0 and k = 1:

(b(_ks),k(x) = Ba(cos(s(x — a)))(k) - %(sin(s(x - zz)))(k)

W1 / ' sin(s(x — 1)) “q(6)p_c..(¢) dt, (29)

N

N () = (11605 (0_c—) + pag ., (0_e—)) (cos(stx - 0.)))©

+ %(uiqu (0-e=) + ., , (6-e—)) (sin(s(x — 0-,)))
1 / ’ (sin(s(x - £))) ©q@Oe (1) dt, 30)
S 0_¢

¢i]2)\ (x) = (771¢s,,\ (06—) + 772¢;,A (9+8_)) (COS (S(x - 9+s)))(k)

1
+ ;(ni‘ba,k (0—) + 77/2¢;,)L(9+s_)) (sin(s(x - 9+s)))(k)

+ 1 /9 * (sin(s(x - t)))(k>q(t)¢+glk(t) dt. )

s
Proof For proving it is enough to substitute s>¢_, ;(t) + ¢, (@), 2o (t) + ¢, ,(t) and

$2Pron(t) + ¢7, ,(t) instead of q(£)p_¢,.(£), q(£)¢pe,.(¢) and g(£)¢.. 1 (¢) in the integral terms
of (29), (30) and (31), respectively, and integrate by parts twice. O

Lemma 3 Let A = s*. Ims = £. Then the function ¢; (x) has the following asymptotic repre-
sentations for || — oo, which hold uniformly for x € I; (i = 1,2, 3):

¢, (%) = Ba(cos(sx - ))) ™ + O(lsf* 1169, (32)
¢ (x) = —spaBa sin(s(6_. — a)) (cos(s(x = 0_,))) " + O(|s[*e16-9), (33)
¢%. () = 2 ama o sin(s(0_. — a)) sin(s(0,c — 6_)) (cos(s(x — 6,)))

+ O(|S|k+le\él(x—a)), (34)

fOI" :32 7!0’

60, (@) = _%(Sm(s(x_ a)))(k) + O(Js[F2el16-0), (35)
¢ (x) = — 2 1 cos(s(6- — a)) (cos(s(x - 9_5)))(1() +O(Is|elf1=2), (36)
(pi]?,)\ (x) =SU2 772,31 Cos (5(9—2 - 61)) sin (S(9+5 - 0—8 )) (COS(S(x - 9+£)))(k)

+ O(|s|ke‘£|("’”)), (37)

for B> =0.
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Proof These formulae can be proven similar to Titchmarsh’s proof [20] and also the tech-
niques in [13, 15]. O

Lemma 4 Let A = s%. Ims = £. Then the characteristic function w(\) has the following
asymptotic representations:
Case 1. If B2 #0, ay, # 0, then

o)) = §° Baath j1ana sin (s(9_5 - a)) sin (s(9+8 —0_.)) sin(s(b - 6,.))

1
DD,
+O([s|*e! b)), (38)
Case 2. If B2 #0, ay = 0, then

w(A) =

D.D; s* Baoy pamy sin(s(6- — a)) sin(s(0ss — 0_;)) cos(s(b - 6,.))

+O(Is?el10-), (39)

Case3.If B, =0, ay #0, then

w()) = s* Bray pan cos(s(0—, — a)) sin(s(0ye — 6_,)) sin(s(b - 6..))

DD,
+ O(|s|36|e‘(b’”)). (40)

Case 4. If B, =0, a) =0, then

w(A) = 33,3101{#2 2 cos(s(9_8 — a)) sin(s(0+5 - 9_8)) cos(s(b - 9+8))

DD,
+ O(|s|2e|“(b_“)). (41)

Proof The proof is immediate by substituting (34) and (37) into the representation

1
w(X) = DiD, {(re] + 1) Boc,(B) - (hety + a2) ., (B) ). O

Corollary 3 The eigenvalues of the problem (1)-(7) is bounded from below.

We are now ready to find the asymptotic approximation formulae for the eigenvalues of
the problem (1)-(7). Since the eigenvalues coincide with the zeros of the entire functions
(1), it follows that they have no finite accumulation point. Moreover, all eigenvalues are
real and bounded below by Corollaries 1 and 3. Therefore, we may renumber them as Ay <
A1 < Ay < ---, which are counted according to their multiplicity. Below we shall denote
$2= Ay
Theorem 2 The problem (1)-(7) has a precisely denumerable number of real eigenvalues,
whose behaviour may be expressed by the three sequences {A,}, {A,} and {\} with the
following asymptotics representations for n — 0o:
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Case 1. If B2 #0, oy, # 0, then
S/z(n_l)ﬂ+ol , S//=ﬂ+ol,
" (0 -a) n " (Ohe —0-) n
(42)
w  (n=2)m 0 1
S = (b-6.) ’ n)
Case 2. If B, #0, ay = 0, then
S/:(n_l)n+o l , S”:ﬂ‘l'o l>,
" (0= —a) n " (0 —0-0) n
(43)
w_ (n=1/2)7 L0 1
o = (b_9+6) n .
Case3.IfB,=0,a, #0, then
S/:M+Ol’ s//:m+ol’
g (9—6 - ﬂ) n " (9+£ - 9—5) n
(44)
sV = (n = +0 =
. (b—04) n)
Case 4.If B, =0, ) =0, then
5,27(n—1/2)7r+o 1 , s”:—(n_l)ﬂ +0 1 ,
" (0_c —a) n (0 —0-) n
(45)

w_ (n=1/2)7 1
S, = B0 +O<n).

Proof We will only consider the first case. By applying the well-known Rouche theorem
on a sufficiently large contour, it follows that (i) has the same number of zeros inside the
contour as the leading term in (38). Hence, if Ay <] <A} <--- are the zeros of w(1) and

2 _ g
s, =X, we have

(n-Dm
s, = +6,, (46)
(9—9 - “)
for sufficiently large #n, where |5, | < 2(9%5—@' By using (38) we have §;, = O(%), which com-

pletes the proof for the first formula of Case 1. The proof for the other cases are similar. (]

Then from (32)-(37) (for k = 0) and the above theorem, the asymptotic behaviour of the
eigenfunctions of the problem (1)-(7) is given by:
Case 1.1f B, #0, ay, # 0, then

Brcos(GE (x— ) + O(2), x€la6.),

¢)Jn (x) = O(l); RS (9—5r 8+8)1
od), x € (0,¢,b],

Page 9 of 20
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¢A;; (x) =

Dy (%)

Case 2.1f B, #0, a} = 0, then

éu, (x) =

by (x) =

Oy (%)

Case 3.1f B, =0, ay, # 0, then

by, (%) =

¢x;§ (x) =

Page 10 of 20

B cos(%(x—a)) + O(l), x € la,0_,),
Gy M Br sin(Gl T (6 — a)) cos( 2 (x — 60-)
+0(1), % € (0-e,0se),
o(3), % € (04e, D],
B2 cos(((l:’ 92)”) (x—a))+O(2), x€la,0-),
f” % 102 o sin( =22 (0 — @) cos({=2%5 (x — 0_)
o), % € (0-e,0se),
(4= M) 1> B sin((=25 (0 — @) sin( G225 (0, — 0)
x cos(§=2% (x - 0,)) + O(n), € (6s, b.
Brcos(f(x—a) + O(2), x€lab),
o), %€ (6-c,6.0),
o(3), x € (0, b],
B cos( (x a)) + O( ), x € [a,6_),
(;g_;_s s sin( gy (6-e — @) cos( 225 (x = 6-.))
+0(), x € (0-¢,04e),
o(3), x € (0, D],
B cos(%(x - a)) + O(l), x € [a,0_),
G5 oo sin( G2 (0-c - @) cos((GH2T (x = 6-.))
+0(), x € (0_¢,0,¢),
(G202 105, B, sin(G25 6 — a)) sin( G225 (6, - 6.))
x cos(YA2E (x — 0,)) + O(n), € (01, ).
_/?L(fifz)“ sm( Al (v —a) + O(5), x€lab),
o(3), % € (0-e,0se),
o), € (b,0.],
-4 ((i*jl)e ) s1n(( (f’;lgi)(x —a))+ O(nlz), x € [a,0_),
— 1By cOs( G5 (6 — @) cos(22y (x — 6..))
+0(3), x € (6-¢,6.e),
o), x € (b,0.],
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—% sin( ((b Lz )(x a)) + O(nl), x € la,b_,),
oy cos( (0, - @) cos( YT (x - 6.,))
(bkg’ (x) = + O(_); RS (9—879+E))
= Mzﬂﬂ?z cos( =56 — a)) sin(§55 (6,0 — 6.))
X cos( (x 9_5)) +0(1), x € (b,0,.].

Case 4.1f B = 0, a, = 0, then

Ol sin(UA2E (v - a) + O(), x€[a6.),
¢, (¥) = 1 O(3), x € (0_e,0.e),
O(]-)x X € (b7 0+E]’
—Aeestee) sin( i (v - @) + OCh), x€la,0.),
— 1By cos( G2 (6 — @) cos(iy (x — 6.,))
$i () = (et
+0(b), %€ (0-e,0se),
o), x € (b,0.c],
e sin(G225 (e - @) + O(5), xelab.),
— 1121 cos ({25 (6 — @) cos( G2 (x - 6.)
¢)\Z’ (%) = + O(—), x € (0_,040),
<th lg/i waBin cos( th 19/2)7T (9— - a)) Sin( (Zlb_,lglf?; (0se — 9—8))
x cos(YA2% (x - 0.)) + O(1), x € (b,6,).

All these asymptotic formulae hold uniformly for x € I.

5 Green's function

Let F = (f (;)) be a continuous function. To study the completeness of the eigenelements of
A, and hence the completeness of the eigenfunctions (1)-(7), we derive Green’s function
of the problem (1)-(7) as well as the resolvent of A. Indeed let A € C not be an eigenvalue
of A and consider the inhomogeneous problem

AM-AY=F, xe€l, (47)

where 1 is the identity operator and Y = ( ) € D(A). Since

(A—A)Y =4 y&)\ _ [0 ) _ ([ (48)
') -R(y) h)

we have

()L - T))’(x) :f(x)) xel, (49)
AR (y) + R(y) = h. (50)
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Now we can represent the general solution of homogeneous differential equation (1),

appropriate to (49) in the following form:

C1P—e. (%) + 2 X_e (%), x€a,0-),
Y A) = | c3Pen(®) + caxen(®),  x € (0, 0se),

CS¢+£,A(x) + 66X+s,k(x); % € (64, b],

in which ¢; (i = 1,6) are arbitrary constants. By applying the method of variation of the
constants, we shall search the general solution of the non-homogeneous linear differential

equation (49) in the following form:

105, M)_e . (%) + Co(%, A) x_ep (%), x€[a,0-),
Y A) = 1 e A e () + cald M) xep (), X € (-, 0s0), (51)
5 (% Ao (%) + €6(%, A) X (%), % € (6,4, b],

where the functions c;(x, A) (i = 1, 6) satisfy the linear system of equations

1 (% M) P_e . (%) + 5 (%, 1) X0 (%) = O,

forx € [a,6_,), (52)
oy (6, M@, 5 (%) + ¢y, M) x5 (%) = f (%),
3%, A) e (%) + € (%, A) xe 0 (%) = O, for x € (6-0,0,.), (53)
(% ), 5 (%) + ey, M) x5 () = f (%),
Cs (x, )\)¢+€,k(x) +Cg (%, )&)X+a,k (x)=0, for x € (0_,, b] (54)

5 M@l (%) + ¢, M) x5 () = f (%),

Since A is not an eigenvalue and w_.(A) # 0, w.(1) # 0 and w,(A) # 0, each of the linear

systems in (52)-(54) has a unique solution, which leads to

[
) = - lm / Keon OO dt + (0,
ol 2) = 1(” / b-er(OF (©)dt + cs(0),

[
it 1) = o / Ken (OF Ot + 30,

e xx (55)

calx, 1) = o) ), G, (O (£) dt + ca(R),

b
sl 2) = 1@) f oon (OF Ot + c5(0),
o6 2) = T pren(OF O dt + o),

Wyg ()‘) O4c
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where c;(1) (i = 1, 6) are arbitrary constants. Substituting (55) into (51), we obtain the so-

lution of (49),
erl) [Ty ep O () de+ 28 [Y o (Of (D dt
+ (M) (%) + ca(A) x e, A( ) x € la,b_),
e (x) rOie . d Xs A(x 3 d
ey | o DI g Of @) dt+ 22D [ g (0f (¢)dt (56)
+ ¢3(A)Pe (%) + ca(A) xe, A(x) x € (0_¢,04¢),
Leerld) [V Of O dt + 223 [ g (0f (1) d
+C5 (k)¢+s,)\ (x) + Ce ()\)X+8,A(x): PAS (9+sr b]
Then from (2), (50) and (4)-(7), we get
1 01 b
a) = — /9 Ko Ode+ — [ g @des —,
(%) ()") = 0:
1 b
()= o /9 st s s
[ (57)
i) = — / b (O (1) dt
h
cs(A) = o)’
0_¢ O+e
colh) = 0 / b-atf©de s —o [ oerodr
Substituting (57) and (26) into (56), then (56) can be written as
Geeald) (0o y o (Of (O de+ D [T (Of () dt
+ ";;;&) Y Xea(Of (£)dt
+ DQTDF;&,(;L) _/;9+F Xeen(O)f (£)dt + DlDzw(k)d) e (%), x € [a,0_),
S8 [1 xep (O (B) b + L2 [F s (E)f (1)t
Yor) =1 228 e (f (0 dt (58)
+ Dj’,g;,j(a) Jo XeerOF Ot + 5pes@),  xE€(0-00.0),
eer B [0y ea (O (@)t + 220 [ L (0f (6)
+ Lead [ (OF () dt
+ L [ g (OF () At + s b (), % € (B0, b).
Then (58) can be rewritten in the form
0—¢ 1 O+e
y(x,X) = / Gx, A )f () dt + — Gx, t; A)f (¢) dt
a Dl 0_¢
b ] h;.(x)
+ DiD, /@w G, 6 )f (1) dt + DilDza)(A)’ (59)
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where
() x (%)
, A<t<x<bx#0_,0.:t#0_.,0,.,
Glo )=, o T 7 OesOuei 700,00 (60)
%, a<x=<t=< b:x 7{0—810+£;t7{0—819+£:
is the Green’s function of the problem (1)-(7).
Hence, we have
Y =(I-A)'F
) ( [ G snf(@)de+ & [ G s (O dt + 55 [, Gl A f () dt + %)
R'(y)

the resolvent operator of the problem (1)-(7).

6 Example

We indicate in this example the effect on determining the discontinuities of different val-
ues of 6 and ¢. For each value of 6 and ¢, we shall display the characteristic function and
give the first five eigenvalues of the problem.

Example Consider the boundary value problem

' = (61)
y(=2)=0, (62)
Ay(4)-y'(4) =0, (63)
y(6-c+) = 2y(0c-), (64)
Y (0-c+) =y(0-c-) + 27y (0¢-), (65)
y(O:e+) = 27 9(0.-), (66)
Y (Ore+) = y(Ore=) + 29/ (0,0, (67)

where I = [-2,4].
Let A = s%. The eigenvalues of the problem (61)-(67) are the squares of the zeros of the
characteristic function of (1), given by

o) = s {cos(s(é_g + 2)) cos(s(9+g - 9_8)) cos(s(4 - 8+8))

- % sin(s(6-¢ +2)) sin(s(60e — 6_,)) cos(s(4 - 6..))

—4cos (S(G_g + 2)) sin (s(0+8 - 8_8)) sin(s(4 - 9+5))

—sin(s(0_ +2)) cos(s(0,c — 6_¢)) sin(s(4 - 9+5))}
+ 5{5 cos(s(G_g + 2)) cos(s(0+g - 9_8)) sin(s(4 - 6+8))

- Z sin(s(6-¢ + 2)) sin(s(6, — 6_,)) sin(s(4 - 6..))
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+ % cos(s(6—e +2)) sin(s(6, — 6_;)) cos(s(4 — 6..))
+ sin(s(e_g + 2)) cos(s(@+£ - 9_8)) cos(s(4 - 9%))}

+ %cos(s(é_ +2)) sin(s(0e — 0_,)) sin(s(4 - 6..))
— 4 cos(s(0_ +2)) cos(s(0,e — 6_.)) cos(s(4 — 6,.))
)

+ % sin(s(0_¢ +2)) sin(s(0,¢ — 6—¢)) cos(s(4 — 6,.)

1
— = cos(s(6_ +2)) sin(s(0sc — 0_¢)) cos(s(4 — 0,.))
s
=0. (68)
(1) Let 0 = -1 be an interior point in I = [-2,4]. From (8), we get 0 < & < 1.

(i) If & = 1/4, then the points of discontinuity are 6_, = —5/4 and 0,, = —3/4. Equation
(68) is then reduced to

2 3 1 19 1 . /3 yal 19
w()) =s”{cos| —s ) cos| =s ) cos| —s | — —sin| —s | sin{ =s ) cos[ —s
4 2 4 4 4 2 4
3 (1 . (19 . (3 1 . (19
—4cos| —s | sin| =s ) sin[ —s ) —sin| —s | cos| =s | sin{ —s
<4> (2) (4> (4) (2> (4>
3 1 . (19 3 . /(3 (1 . (19
+s15cos| —s ) cos| =s ) sin| —s | — —sin{ —s ) sin[ =s | sin[ —s
4 2 4 4 4 2 4
9 3 (1 19 . (3
+ =cos| —s | sin| =s ) cos| —s | +sin| —s ] cos —s cos
2 4 2 4 4
3 3\ . /1Y . /19 3
+ —cos| —s ) sin{ =s ) sin| —s ) —4cos| —s ) cos| =s ] cos
2 <4> (2) <4) <4> () (
1 3 19 1 3
+ —sin sin — ——cos —s ) sin —s cos
2 4 2 4 4

The graph of the characteristic function for ¢ = 1/4 is displayed in Figure 1.

,.1>

,.p
\_/v_,_,

(69)

(ii) If € = 1/2, then the points of discontinuity are 6_, = —3/2 and 0,, = —1/2. Equation
(68) is then reduced to

o) = s {cos(%s) cos(s) cos<gs> — % sin(%s) sin(s) cos(gs>
1 . . (9 (1 . (9
- 4cos<—s) sin(s) sm(—s) - sm(—s) cos(s) sm(—s) }
2 2 2
1 . (9 3. (1 . . (9
+ s{Scos(—s) cos(s) sm(—s) - = sm(—s) sin(s) sm(—s)
2 2 4 2 2
9 1) . 9 (1 9
+ = cos(—s) sin(s) cos(—s) + sm(—s> cos(s) cos(—s) }
2 2 2 2 2
3 1 . . (9 1 9
+ = cos(—s) sin(s) sm(—s) - 4cos<—s) cos(s) cos(—s)
2 2 2 2 2

\}
[\®)

\S]



Hira and Altinisik Boundary Value Problems (2015) 2015:237

Page 16 of 20

The first five eigenvalues of the

2.035327247

5 example for @ =—1and €=1/4
Index s value A eigenvalue

0 = : i : 1. 02610566719  0.06815058594

v 2. 0.7799388712 0.60830464281

. 3. 1.138883414 1.29705543068
4. 1.499700311 2.24910102281
5.

-4

4.14255700238

Figure 1 The graph of the characteristic function for # = -1 and

e=1/4.

IS

)

The first five eigenvalues of the
/\ example for § =—1and €=1/2
05 1 ! E 25 Index s value

A eigenvalue

2 1.

0.2709330174

0.07340469992

) 2 0.7702371668 0.59326529312
3 1.018457109 1.03755488287
N 4. 1.532016416 2.34707429889
5 5 2.145931252 4.60502093831
-10
Figure 2 The graph of the characteristic function for # =-1 and e = 1/2.
1. /1 . 9 1 1 . 9
+ —sin| —s ) sin(s) cos| =s | — — cos| —s | sin(s) cos| =s
2 2 2 s 2 2
- 0. (70)

The graph of the characteristic function for ¢ =1/2 is displayed in Figure 2.
(2) Let 0 = 1 be midpoint of the interval I = [-2,4]. From (8), we get 0 < & < 3.
(i) If € = 1, then the points of discontinuity are _, = 0 and 6, = 2. Equation (68) is then

reduced to
2 3 21 . 2
w(A) = 574 cos®(2s) — T cos(2s) sin“(2s)

21 3
+ s{ > sin(2s) cos(2s) — 2 sin3(2s)}

1
+2cos(2s) sin?(2s) — 4 cos(2s) — = sin(2s) cos?(2s)
s

=0.

(71)
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The graph of the characteristic function for ¢ =1 is displayed in Figure 3.
(ii) If € = 3/2, then the points of discontinuity are 6_, = —1/2 and 0,, = 5/2. The equation

(68) is then reduced to
17
w(}) = s> {6052(35) -3 sin2(3s)}

3 3 3 9 3
+ 54 = sin(6s) — = sin(3s) sin?{ =s | + = sin(3s) cos? [ =s
2 4 2 2 2

3 1 3
+ sin®(3s) — 4 cos(3s) cos? (55) — ~sin(3s) cos? <§s)
s

=0.

The graph of the characteristic function for ¢ = 3/2 is displayed in Figure 4.

(3) Let 6 = 3 be an interior point in I = [-2,4]. From (8), we get 0 < & < 1.
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(72)

The first five eigenvalues of the
example for #=1and £=1

Index s value

A eigenvalue

o ' 1. 04439983843
2 0.6133209855
3 0.8755920178
4. 1.616108763
5 1.966219173

0.19713500926
0.37616263125
0.76666138164
2.61180753385
3.86601783627

Figure 3 The graph of the characteristic functionforf =1and e =1.

~

Index s value

4
, The first five eigenvalues of the
/,\ example for @ =1and £€=3/2
DS 15 2 \5

A eigenvalue

1. 0.4435345662

2. 06557676735
N 3. 0.9624055743
8 4. 1393625374

0 5. 2086718272

0.19672291141
0.43003124161
0.92622448944
1.94219168306
4.3543931467

Figure 4 The graph of the characteristic function for @ =1 and & = 3/2.
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(i) If & = 1/4, then the points of discontinuity are 6_, = 11/4 and 6, = 13/4. Equation (68)
is then reduced to

el 2o (o3]S (o)
() (2] ()1 )
(2o ()2)- T ()3
o)) s o))
o))t 2o )

323t

= 0. (73)

|
S
Ny

,.1;

The graph of the characteristic function for ¢ = 1/4 is displayed in Figure 5.

(ii) If € = 1/2, then the points of discontinuity are 0_, = 5/2 and 6,, = 7/2. Equation (68)
is then reduced to

_ g 2 TV 2 Lain( 2s) s 1
w(A) =s {cos(zs) cos(s) cos( s) 2 31n(2s) sin(s) cos( s)
9 . (1 . (9 (1
- 4cos(—s> sin(s) sm(—s) - s1n(—s> cos(s) sm(—s) }
2 2 2
9 a! 3. .(9). (1
+ s{Scos(—s) cos(s) sm(—s) - = sm(—s) sin(s) sm(—s)
2 2 4 2 2
9 9\ . 1 . (9 1
+ = cos(—s) sin(s) cos(—s) + sm(—s) cos(s) cos<—s> }
2 2 2 2 2

N
\S]

N

The first five eigenvalues of the
example for § =3 and £=1/4

05 ¥ 5 2 25 Index s value A eigenvalue

1. 0.3110225636 0.09673503507

o

0.7732373959 0.59789607042
0.9811690591 0.96269272254
1.487288784 2.21202792701
1.828959916 3.34509437433

“nok »N

Figure 5 The graph of the characteristic function for @ =3 and & = 1/4.
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//\\
[
. / \\ The first five eigenvalues of the
/ \ example for =3 and £€=1/2
/ \ -
/ \ Index s value A eigenvalue
5 /
/ |
/’ | 1. 0.3246740673 0.10541324998
N / \
/N / \ 2. 07617213160  0.58021936325
T/ e A R \” 3. 1048127971 109857224359
’// ’ \ 4 1.450323795 2.10343911034
st/ {[ 5. 1.783204637 3.17981877742
Figure 6 The graph of the characteristic function for =3 and ¢ = 1/2.

3 9 . (1 9 1
+ —cos| —s ) sin(s)sin| —=s | — 4 cos| =s | cos(s) cos| —s
2 2 2 2 2
1. /9 . 1 1 9 . 1
+ = sin| =s ) sin(s) cos{ =s ) — - cos| =s | sin(s) cos| =s
2 2 2 s 2 2

- 0. (74)

The graph of the characteristic function for ¢ = 1/2 is displayed in Figure 6.
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