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Abstract
We establish Lyapunov-type inequalities for a system involving one-dimensional
(pi ,qi)-Laplacian operators (i = 1, 2). Next, the obtained inequalities are used to derive
some geometric properties of the generalized spectrum associated to the considered
problem.
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1 Introduction
In this paper, we are concerned with the following system involving one-dimensional
(pi, qi)-Laplacian operators (i = , ):

(S) :

⎧
⎨

⎩

–(|u′(x)|p–u′(x))′ – (|u′(x)|q–u′(x))′ = f (x)|u(x)|α–|v(x)|βu(x),

–(|v′(x)|p–v′(x))′ – (|v′(x)|q–v′(x))′ = g(x)|u(x)|α|v(x)|β–v(x)

on the interval (a, b), under Dirichlet boundary conditions

(DBC) : u(a) = u(b) = v(a) = v(b) = .

System (S) is investigated under the assumptions

α ≥ , β ≥ , pi ≥ , qi ≥ , i = , ,

and

α

p + q
+

β

p + q
= . ()

We suppose also that f and g are two nonnegative real-valued functions such that (f , g) ∈
L(a, b) × L(a, b). We establish a Lyapunov-type inequality for problem (S)-(DBC). Next,
we use the obtained inequality to derive some geometric properties of the generalized
spectrum associated to the considered problem.
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The standard Lyapunov inequality [] (see also []) states that if the boundary value
problem

⎧
⎨

⎩

u′′(t) + q(t)u(t) = , a < t < b,

u(a) = u(b) = ,

has a nontrivial solution, where q : [a, b] →R is a continuous function, then

∫ b

a

∣
∣q(t)

∣
∣dt >


b – a

. ()

Inequality () was successfully applied to oscillation theory, stability criteria for periodic
differential equations, estimates for intervals of disconjugacy, and eigenvalue bounds for
ordinary differential equations. In [] (see also []), Elbert extended inequality () to the
one-dimensional p-Laplacian equation. More precisely, he proved that, if u is a nontrivial
solution of the problem

⎧
⎨

⎩

(|u′|p–u′)′ + h(t)|u|p–u = , a < t < b,

u(a) = u(b) = ,

where  < p < ∞ and h ∈ L(a, b), then

∫ b

a

∣
∣h(t)

∣
∣dt >

p

(b – a)p– . ()

Observe that for p = , () reduces to (). Inequality () was extended in [] to the following
problem involving the ϕ-Laplacian operator:

⎧
⎨

⎩

(ϕ(u′))′ + w(t)ϕ(u) = , a < t < b,

u(a) = u(b) = ,

where ϕ : R → R is a convex nondecreasing function satisfying a � condition. In [],
Nápoli and Pinasco considered the quasilinear system of resonant type

⎧
⎨

⎩

–(|u′(x)|p–u′(x))′ = f (x)|u(x)|α–|v(x)|βu(x),

–(|v′(x)|q–v′(x))′ = g(x)|u(x)|α|v(x)|β–v(x)
()

on the interval (a, b), with Dirichlet boundary conditions

u(a) = u(b) = v(a) = v(b) = . ()

Under the assumptions p, q > , f , g ∈ L(a, b), f , g ≥ , α,β ≥ , and

α

p
+

β

q
= ,
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it was proved (see [], Theorem .) that if ()-() has a nontrivial solution, then

α+β ≤ (b – a)
α
p′ + β

q′
(∫ b

a
f (x) dx

) α
p
(∫ b

a
g(x) dx

) β
q

, ()

where p′ = p
p– and q′ = q

q– . Some nice applications to generalized eigenvalues are also
presented in []. Different generalizations and extensions of inequality () were obtained
by many authors. In this direction, we refer the reader to [–] and the references therein.
For other results concerning Lyapunov-type inequalities, we refer the reader to [–]
and the references therein.

2 Lyapunov-type inequalities
A Lyapunov-type inequality for problem (S)-(DBC) is established in this section, and some
particular cases are discussed.

Theorem . If (S)-(DBC) admits a nontrivial solution (u, v) ∈ C[a, b] × C[a, b], then

[

min

{
p

(b – a)p– ,
q

(b – a)q–

}] α
p+q

[

min

{
p

(b – a)p– ,
q

(b – a)q–

}] β
p+q

≤
(




∫ b

a
f (x) dx

) α
p+q

(



∫ b

a
g(x) dx

) β
p+q

. ()

Proof Let (u, v) ∈ C[a, b] × C[a, b] be a nontrivial solution to (S)-(DBC). Let (x, y) ∈
(a, b) × (a, b) be such that

∣
∣u(x)

∣
∣ = max

{∣
∣u(x)

∣
∣ : a ≤ x ≤ b

}

and

∣
∣v(y)

∣
∣ = max

{∣
∣v(x)

∣
∣ : a ≤ x ≤ b

}
.

From the boundary conditions (DBC), we can write that

u(x) =
∫ x

a
u′(x) dx –

∫ b

x

u′(x) dx,

which yields


∣
∣u(x)

∣
∣ ≤

∫ b

a

∣
∣u′(x)

∣
∣dx.

Using Hölder’s inequality with parameters p and p′
 = p

p– , we get


∣
∣u(x)

∣
∣ ≤ (b – a)


p′



(∫ b

a

∣
∣u′(x)

∣
∣p dx

) 
p

,
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that is,

p

(b – a)p–

∣
∣u(x)

∣
∣p ≤

∫ b

a

∣
∣u′(x)

∣
∣p dx. ()

Similarly, using Hölder’s inequality with parameters q and q′
 = q

q– , we get

q

(b – a)q–

∣
∣u(x)

∣
∣q ≤

∫ b

a

∣
∣u′(x)

∣
∣q dx. ()

By repeating the same argument for the function v, we obtain

p

(b – a)p–

∣
∣v(y)

∣
∣p ≤

∫ b

a

∣
∣v′(x)

∣
∣p dx ()

and

q

(b – a)q–

∣
∣v(y)

∣
∣q ≤

∫ b

a

∣
∣v′(x)

∣
∣q dx. ()

Now, multiplying the first equation of (S) by u and integrating over (a, b), we obtain

∫ b

a

∣
∣u′(x)

∣
∣p dx +

∫ b

a

∣
∣u′(x)

∣
∣q dx =

∫ b

a
f (x)

∣
∣u(x)

∣
∣α

∣
∣v(x)

∣
∣β dx. ()

Multiplying the second equation of (S) by v and integrating over (a, b), we obtain

∫ b

a

∣
∣v′(x)

∣
∣p dx +

∫ b

a

∣
∣v′(x)

∣
∣q dx =

∫ b

a
g(x)

∣
∣u(x)

∣
∣α

∣
∣v(x)

∣
∣β dx. ()

Using (), () and (), we obtain

∣
∣u(x)

∣
∣α

∣
∣v(y)

∣
∣β

∫ b

a
f (x) dx ≥ p

(b – a)p–

∣
∣u(x)

∣
∣p +

q

(b – a)q–

∣
∣u(x)

∣
∣q ,

which yields

∣
∣u(x)

∣
∣α

∣
∣v(y)

∣
∣β

∫ b

a
f (x) dx ≥ min

{
p

(b – a)p– ,
q

(b – a)q–

}
(∣
∣u(x)

∣
∣p +

∣
∣u(x)

∣
∣q).

Using the inequality

A + B ≥ 
√

A
√

B

with A = |u(x)|p and B = |u(x)|q , we get

min

{
p+

(b – a)p– ,
q+

(b – a)q–

}

≤ ∣
∣u(x)

∣
∣α– p+q


∣
∣v(y)

∣
∣β

∫ b

a
f (x) dx. ()

Similarly, using (), () and (), we obtain

min

{
p+

(b – a)p– ,
q+

(b – a)q–

}

≤ ∣
∣u(x)

∣
∣α

∣
∣v(y)

∣
∣β– p+q



∫ b

a
g(x) dx. ()
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Raising inequality () to a power e > , inequality () to a power e > , and multiplying
the resulting inequalities, we obtain

[

min

{
p+

(b – a)p– ,
q+

(b – a)q–

}]e[

min

{
p+

(b – a)p– ,
q+

(b – a)q–

}]e

≤ ∣
∣u(x)

∣
∣(α– p+q

 )e+αe ∣∣v(y)
∣
∣βe+(β– p+q

 )e
(∫ b

a
f (x) dx

)e(∫ b

a
g(x) dx

)e

.

Next, we take (e, e) any solution of the homogeneous linear system

⎧
⎨

⎩

(α – p+q
 )e + αe = ,

βe + (β – p+q
 )e = .

Using (), we may take

⎧
⎨

⎩

e = α,

e = β(p+q)
p+q

.

Therefore, we obtain

α+ β(p+q)
p+q

[

min

{
p

(b – a)p– ,
q

(b – a)q–

}]α[

min

{
p

(b – a)p– ,
q

(b – a)q–

}] β(p+q)
p+q

≤
(∫ b

a
f (x) dx

)α(∫ b

a
g(x) dx

) β(p+q)
p+q

.

Using again (), we get


[

min

{
p

(b – a)p– ,
q

(b – a)q–

}] α
p+q

[

min

{
p

(b – a)p– ,
q

(b – a)q–

}] β
p+q

≤
(∫ b

a
f (x) dx

) α
p+q

(∫ b

a
g(x) dx

) β
p+q

,

which proves Theorem .. �

As a consequence of Theorem ., we deduce the following result for the case of a single
equation.

Corollary  Let us assume that there exists a nontrivial solution of

⎧
⎨

⎩

–(|u′(x)|p–u′(x))′ – (|u′(x)|q–u′(x))′ = f (x)|u(x)| p+q
 –u(x), x ∈ (a, b),

u(a) = u(b) = ,

where p > , q > , f ≥ , and f ∈ L(a, b). Then

min

{
p

(b – a)p– ,
q

(b – a)q–

}

≤ 


∫ b

a
f (x) dx.



Jleli and Samet Journal of Inequalities and Applications  (2017) 2017:100 Page 6 of 9

Proof An application of Theorem . with

p = p = p, q = q = q, α =
p + q


, β = , v = u, g = f ,

yields the desired result. �

Remark  Taking f = h and q = p in Corollary , we obtain Lyapunov-type inequality ()
for the one-dimensional p-Laplacian equation.

Remark  Taking p = q = p and p = q = q in Theorem ., we obtain Lyapunov-type
inequality ().

3 Generalized eigenvalues
The concept of generalized eigenvalues was introduced by Protter [] for a system of lin-
ear elliptic operators. The first work dealing with generalized eigenvalues for p-Laplacian
systems is due to Nápoli and Pinasco []. Inspired by that work, we present in this section
some applications to generalized eigenvalues related to problem (S)-(DBC).

Let us consider the generalized eigenvalue problem

(S)λ,μ :

⎧
⎨

⎩

–(|u′(x)|p–u′(x))′ – (|u′(x)|q–u′(x))′ = λαw(x)|u(x)|α–|v(x)|βu(x),

–(|v′(x)|p–v′(x))′ – (|v′(x)|q–v′(x))′ = μβw(x)|u(x)|α|v(x)|β–v(x),

on the interval (a, b), with Dirichlet boundary conditions (DBC). If problem (S)λ,μ-(DBC)
admits a nontrivial solution (u, v) ∈ C[a, b] × C[a, b], we say that (λ,μ) is a generalized
eigenvalue of (S)λ,μ-(DBC). The set of generalized eigenvalues is called generalized spec-
trum, and it is denoted by σ .

We assume that

α ≥ , β ≥ , pi ≥ , qi ≥ , i = , , w ≥ , w ∈ L(a, b),

and () is satisfied.
The following result provides lower bounds of the generalized eigenvalues of (S)λ,μ-

(DBC).

Theorem . Let (λ,μ) be a generalized eigenvalue of (S)λ,μ-(DBC). Then

μ ≥ h(λ), ()

where h : (,∞) → (,∞) is the function defined by

h(t) =

β

(
C

t
α

p+q
∫ b

a w(x) dx

) p+q
β

, t > ,

with

α
α

p+q C = 
[

min

{
p

(b – a)p– ,
q

(b – a)q–

}] α
p+q

×
[

min

{
p

(b – a)p– ,
q

(b – a)q–

}] β
p+q

.
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Proof Let (λ,μ) be a generalized eigenpair, and let u, v be the corresponding nontrivial
solutions. By replacing in Lyapunov-type inequality () the functions

f (x) = αλw(x), g(x) = βμw(x),

and using condition (), we obtain

M ≤ α
α

p+q λ
α

p+q β
β

p+q μ
β

p+q

∫ b

a
w(x) dx,

where

M =
[

min

{
p

(b – a)p– ,
q

(b – a)q–

}] α
p+q

[

min

{
p

(b – a)p– ,
q

(b – a)q–

}] β
p+q

.

Hence, we have

μ
β

p+q ≥ C

λ
α

p+q β
β

p+q
∫ b

a w(x) dx
,

which yields

μ ≥ 
β

(
C

λ
α

p+q
∫ b

a w(x) dx

) p+q
β

,

and the proof is finished. �

As consequences of the previous obtained result, we deduce the following Protter’s type
results for the generalized spectrum.

Corollary  There exists a constant ca,b >  that depends on a and b such that no point of
the generalized spectrum σ is contained in the ball B(, ca,b), where

B(, ca,b) =
{

x = (x, x) ∈R
 : ‖x‖∞ < ca,b

}
,

and ‖ · ‖∞ is the Chebyshev norm in R
.

Proof Let (λ,μ) ∈ σ . From (), we obtain easily that

λ
α

p+q μ
β

p+q ≥ C

β
β

p+q
∫ b

a w(x) dx
. ()

On the other hand, using condition (), we have

λ
α

p+q μ
β

p+q ≤ ∥
∥(λ,μ)

∥
∥

α
p+q

+ β
p+q∞ =

∥
∥(λ,μ)

∥
∥∞.

Therefore, we obtain

∥
∥(λ,μ)

∥
∥∞ ≥ ca,b,



Jleli and Samet Journal of Inequalities and Applications  (2017) 2017:100 Page 8 of 9

where

ca,b =
C

β
β

p+q
∫ b

a w(x) dx
.

The proof is finished. �

Corollary  Let (λ,μ) be fixed. There exists an interval J of sufficiently small measure such
that, if I = [a, b] ⊂ J , then there are no nontrivial solutions of (S)λ,μ-(DBC).

Proof Suppose that (S)λ,μ-(DBC) admits a nontrivial solution. Since C → +∞ as b – a →
+, where C is defined in Theorem ., there exists δ >  such that

b – a < δ �⇒ C
∫ b

a w(x) dx
> λ

α
p+q μ

β
p+q β

β
p+q .

Let J = [a, a + δ]. Hence, if I ⊂ J , we have

C

β
β

p+q
∫ b

a w(x) dx
> λ

α
p+q μ

β
p+q ,

which is a contradiction with (). Therefore, if I ⊂ J , there are no nontrivial solutions of
(S)λ,μ-(DBC). �

4 Conclusion
Lyapunov-type inequalities for a system of differential equations involving one-dimen-
sional (pi, qi)-Laplacian operators (i = , ) are derived. It was shown that such inequalities
are very useful to obtain geometric characterizations of the generalized spectrum associ-
ated to the considered problem.
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