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1 Introduction
For f € L,[0,1] the Bernstein-Durrmeyer operators are given by

n 1
M) =40 Y poss) [ pustef (O
k=0 0

where p, x(x) = (Z)xk (1 —x)"* (¢f [1, 2] and [3, 4] for more integral type operators). The
rate of convergence and the inverse theorem for M, (f, x) and their combination have been
investigated in [5]. Recently Sablonniére (cf. [6, 7]) introduced a family of operators, so-
called quasi-interpolants. Many quasi-interpolants of different operators were studied (e.g.
[8-12]).

In the following IT; denotes the space of algebraic polynomials of degree at most j. Be-
cause M, is an automorphism of IT,, M, and its inverse M;l can be expressed as linear
differential operators with polynomial coefficients in the forms M, = Z]’LO ,3;’(96)17 and
Mt = Z;l:o ozl.”(x)D/, where D° = id, D = d%. The polynomials /' (x) € I1; are expressed
explicitly in terms of shifted Jacobi polynomials (c¢f. [6, 9, 12]) as

[j/2]
() = Y (<D XTI 5(m); s,
s=0

where X =x(1-x), (n);j=n(n-1)---(n+j-1),and

j-2s ., .
(s,5) _ ]—S J—S$ _Y-2s—i,d
]j_ZS(x)—g( . )(I__zs_i)(x 1y 2y,
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Now we give the definition of left Bernstein-Durrmeyer quasi-interpolants (cf. [6, 9, 12]):

MP(f,x) = el D My(f,x) = Y o (@)M,i(f, %), 1.1)
j=0

=0
where M,,; = D'M,,. It is well known that o§j(x) = 1, MY isexacton T1,, i.e. MY p = p for all
pell,0<r<n.

For M,(fH)(f ,x) the global approximation equivalent theorem has been obtained in [9]
as follows.
Theorem [9] Letf € L,[0,1],1<p <00, p(x) = /x(1—x%),n>4r,r e N,0 < <1, then

IMEy—f], - 0() & wZ(0,-0().

Here

P’

B3 f) = S (-1 <Z )/(x +sh/2 - k).

k=0

At = sup [ 45,/
0<h<t

This is Ditzian-Totik modulus of smoothness, it is equivalent to K-functional

K(f¢), = inf {Ilf —gll,+2]e’e”],}, (1.2)

geWs(p)

where W*(¢) =: {g € L, [0, 1,g5 Y € A.C.o1), l¢°g® llp < oo} It was proved that i, (f, ), ~
K (f,8°)p, i.e. there exists A > 0 such that (cf: [13])

A5 (f,0), < K5 (F,8), < Ay (f, ). (1.3)

The strong converse inequality is an important problem of operator approximation the-
ory. The strong converse inequalities for various operators have been investigated in sub-
sequent papers (e.g. [14, 15]). In most of these results the second order moduli of smooth-
ness w?p (f, t), were used. The intention of this paper is to prove a strong converse inequality
of type B for the quasi-interpolants M\ by using high order modulus. To this end we
have to prove several key lemmas presented in Section 2. Application of these lemmas
enables us to prove our main result in Section 3.

Throughout this paper C denotes a positive constant independent of # and x not nec-
essarily the same at each occurrence.

2 Lemmas

In this section we give some lemmas.
Lemma 2.1 (¢f. [9,10]) Forj>1,r € N, we have
)| < Cn88(x),  |D'e(x)| <CnT 87 (), 1)

_ 1 1
where 8,(x) = ¢(x) + = ~ max{p(x), 7-}.
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Lemma2.2 LetE, =[},1-1],¢(@) = VA= 2).f € W (g) and Rora(f, %) = 55 [ (¢~
w)¥ F@r D () du, then we have, for 1 < p < 0o,

||M512r—1) (Rzm(f, -,x),x) ||5n < Cn’r’% ||(p2r+1f(2r+1) “p‘ (2.2)

Proof Let yr(u) = * M (u)f**V(u), G(x) = M(l//, x) = sup, | A L f | ()| dul, i.e. G(x) is the
maximal function of ¥. Noting that (cf [7

J+i k
Ppnil] < CZ(w(x))

i
X Pnk(x), x€E,

we have, for x € E,,,

Jj+i n i

DM, (f,%)| = |My;(f,%)| < C Z( ) ank

i=0

——x |6lk

where a;(n) = (n +1) folpy,,k(t)f(t) dt. So, for x € E,,,

M2 (Rora (f ), %) |

2r-1
< Z|af(x)| |Mn,j(R2r+1(f’ ‘,x)’x)|
j=0
2r-1 j+i on i
=C2k ")’Z< o) 2Pt | o
2r-1

=: CZ[,
j=0

where @i (n) = (”2—;)1, folp,,,k(t) fxt(t — u)? P (u) dudt. Using (9.6.1) in [13], we have

|ax(n)| = Pn k(¢ )‘/ (tz:ﬂ > (w)f*r D (w) du| d

<5 )f - () Gw) / PaslO)le — 5

Hence by Holder’s inequality, we have, for x € E,,,

[+l n

o' ()~ WZ( ) ank(x)

En

5l < 6@, - —x

1
X (n+ 1)/ Pui()|t — x| de
0

p

o () x)Z( )lﬂ(ipnk(x)(f—x)ﬂ)m
k=0 , n

- 1 12 En
X (an,k(x)(l’l + 1) / pn,k(t)(t _ x)4~r+2 dt)
k=0 0

<[,

p
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From (9.4.14) in [13] and (6.4) in [5], we have, for x € E,,

p 90\ 172 ;
(Zl%k(@(% —x) ) <c? (?C),
k=0

n 1 172 2r+1(x)
> o)+ D) [ puate-n2ae) <P,
k=0 0 na
Together with (2.1) and the fact that
|[e@, < Colle
we obtain (2.2). O
Lemma 2.3 For n > 2r, we have
MV ((t - %) %)
_ rly-r 2r @n)! 2r 1
=(-1) (x)zr( e (x)0<;>
2 22
" i (x) a7 (%) 1
+(2r)! <b2, >+ by e +b prs) 1+0 ) (2.3)

where b}’ are uniformly bounded in n and independent of x.

Proof First we note M p =p for all p € Iy, so we have
M) ((t-x)*,x) =0,
then
ME((t = %), x) = ME D ((t = %), %) = a5, (X) My, (£ - %), %).
Therefore we have
M (2r-1) ((t x)? ,x) = —ozg’r(x)M,,,gr((t —x)zr,x). (2.4)

Using (¢f [5))

n-2r

an 2rk(x)/ Pn+2rk+2r(t)f @n) (t) dt,

(n+1)n

M%) = ——7——
nrlf:%) (n—2r)! n+2r)‘

we have

w o\ (n+1)1n!(2r)! ~ l
M,,,Z,((t—x) ,x) = —(n 2 (2r)!(1 + O<n>>

Therefore

M (=07, %) = —2n)as, (%) <1 + 0(%» (2.5)
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Also we have (cf. (3.11) in [10])

A C)) L9 (%)
ol (x) = bl @H%;T+n+@wﬂ,

2r 2r

where b are uniformly bounded in 7 and independent of .
By Theorem 4.2 and Table 2 in [7] we know that lim, n"a}, (x) exists and

(1)@ (x) .

h}gn n'”o(;‘r(x) = 2"(r')

(2.6)

(2.7)

With this relation and (2.6), we get the representation of the coefficient ! in (2.6), i.e.

Ly

llznb, =0

From (2.5)-(2.8) we get (2.3).

Lemma 2.4 Forf € W (), 1<p < oo, we have
||(p2r+1D2r+1 (M22r71)f) ”p < Cﬁ||¢27(2') Hp'

Proof By (2.6) in [5] one has, for x € [0,1], 1 < p < 00, 1,5 € Ny = N U {0},

[85(e)® DM (f )|, <

2r £(2r) H .

So we have

” (p2r+m (x)

ﬁn < Cn% ||§02rf(2r) ,

Using (2.1) and (2.10), we have

2r-1 En
@ @)D"l ()M, (f, %)
j=0 p
j E,
2r+1\, "
Z Z 2”1 ( . ) (Dla;l (x))Mn,2r+1+j—i(f; x)
j=0 i=0 p
2r-1 j
<3 |0 wn T g )M,
j=0 i=0

< cyalg s,

(2.8)

O

(2.9)

(2.10)

(2.11)

Since (92! (x)D* ! MZ 7 (f, x))? are polynomials, we can use a result of the weight poly-

nomial approximation [13], Theorem 8.4.8, translating the interval [-1,1] to [0, 1] to obtain

the estimate

En

’

”( 2r+1D2r+1(M(2r 1) )) ” [0.1] <M||( 2r+1D2r+1(M2r 1)f))2 ,

where M does not depend on x. From (2.11) and (2.12) we obtain (2.9).

(2.12)

O

Page 5 of 9
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Lemma 2.5 ((4.2) in [9]) Forf € L,[0,1],1 < p < oo, we have
l* D (MZVf) ], < CHlIf 1 (2.13)
Lemma 2.6 Forf € W¥*(p), we have

(—l)Hl(pzr(x) )

(2r-1) _ _
M) ) - 5
1 1 2 2r-2
= o(;)wzr(x)f(zr)(x) + (bgrﬁ + bgr—l(flg_ficl) Tt b:l+1(pnr—+1(x)>
x f@(x) <1 + O(%)) + M Ry (f - %), %), (2.14)

where {b},_,,..., ..} are uniformly bounded in n and independent of x.

Proof By Taylor’s formula we expand f as follows:

(t _ x)2r

F@O =f@) +(E—x)f () + -+ 2 £ (x) + Ry i (1, %),
r)!

where Ry, (f, £,%) = 5y [, (6 = ) f "D (u) du.
2r-1

Noting M Vp = p for all p € Ty, (cf. [7]), we obtain

(t _x)2r

(2r-1) _ _ (2r-1)
M72(f, %) — f(x) = M, ( 2,

yx>/(2r) (x) + quzr_l) (R2r+1 (fy % x)y x) .
Using Lemma 2.3 we obtain (2.14). O

3 Main result
Using the lemmas in Section 2 we are able to prove the following main result, which is the
strong converse inequality for left Bernstein-Durrmeyer quasi-interpolants of type B.

Theorem 3.1 Letf € L,[0,1],1<p <00, p(x) = v/x(1 —x), n > 4r, r € N, then there exists
a constant k such that, for | > kn,

r 1 < £ ’ r-1)¢ (2r-1) _
ot (rg5) =c(5) vy sl + a2 =11,),

Proof To prove our result at first we estimate K-functional Kj’(f ,n™"),. We choose the
function

g= I(}?V—l) (I<;52r_1)_f) = I(}f(ZV—l)f"

By the definition of the K-functional and the boundedness of KV(,ZH) (cf. [7], p-243, (3.2)
in [9]), we have

K (fon™), < If =gl + 7" o™,

— Hf _ Mﬁ(Zr—l)pr +n" || ¢2VD2)” (Mi(Zr—l)f‘) Hp
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< |V—M(,,2r_1)f“p + “M}(fr—l)f‘_Mﬁ(Zr—l)f'”p
+un’ || (p2rD2r (Mﬁ(Zr—l)f) ”p

< CHf _ MLZr—l)f”p +u" ”(erDZr (Mz(2r—l)f) ”p

Therefore we only need to estimate ¢ g = 2 D> (M2*""f). We recall Lemma 2.6

with g = MHD f in place of f and / in place of # to obtain

( 1)r+1(p2r(x)

M ) —gl) - o e @)

L\ oy o ¢*(x) )
=o(l—,)<p2 (g™ () + (bé,lz, Brpr G+ + bl

Xg(Zr)(x) <1 + O(%)) 2r Y (R2r+1(g’ ’x) x) (3~1)

For x € E,,, np*(x) > 1. So we have

1 B nr(er(x) @2r) E l n @2r)
2r ernr(er(x)g (x) » <l / ||¢ H ’
o % (x) 1 (g)"ln e
[2r1 Pr-1yr-1p2r-2(x) . r\7 Y8y (32)
P72 (x) 22 )H ne¥ (x) 1) () F - 1( )” 2 o (21) ”
Jr+l lr+1n(p2(x) » - 4 :
By Lemma 2.2 we have
”M;zr—l) (R2r+1(g, ,,x)’x) in < Cl—r—% ||(02r+1g(2r+1) ”p (3.3)
Combining (3.1)-(3.3), we obtain
1 ” 2r (2r) ||En
271 (r") p
< | Vg-el, +of 7 )¢,
(5 () i),
+CrIl7) T Tty + @
+Cl 3 ||¢2r+1g(2r+1) ”p‘ (3.4)

Next we estimate the first term and the last term of the right side in (3.4). By the bound-
edness of M(,,zrfl)f we have

”MZr lg gH _ ”MZr 1) (Mfl(zr—l)f) _Mi(Zr—l)f”p

< [P MG - MEUp) |+ | (M0 - )
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M0 <, U = ME0f ]+ (M0 - M),
< C(|m V=11, + 17 0f =£1,)- (3.5)

Using (2.9) and (2.13), we obtain

”(p2r+l (2r+1) ” — ||(p2r+1D2r+1 (M5(2r—1)f) ||
p p
< C\/E ” (erDZr (M(Zr—l)f') H
< C\/_ ||(p2rD2r MZ(Zr l)f’) H + ”(erDZr(M (2r-1) ( 5127—1)]( _f)) ”p)

= V("] + WM 0f = £1),)- (3.6)

Therefore with (3.4)-(3.6) we get

2rlr(r‘ ||(p ||

<C(Im0f =1, + |07 =11,)

ce(2) s, (2) e,
r r-1
+Cl’[(};> +(;> +~~+?+0(1)] ||g02’g(2’)||p. (3.7)

Since p¥'g?) = * D (M2*"Vf) are polynomials, for the same reason as (2.12) we have

En

©@r) ”[01] <M|| 2rg (2r) ; (3.8)

le*g

where M does not depend on #n. Hence by (3.7) and (3.8) we obtain

1
20 (r)

||(p2rg(2r) ”p

M “ 2r (2r)||En
- 2’[’ () p

< cm(|aazr ), o i =1, ) v cn(§) o r -,

n\" ()" no(n\? 2 (2r)
+Cer[<l) +<7> +~~~+7+(7> +o(1)}||<p g ||p. (3.9)

We now choose [ > kn with k large enough such that

e[ (7Y (" "~ " (”% 1) 1 (3.10)
zr[(!) *(7> et 7) e }—W '

By (3.9) and (3.10) we get

1
227l (r1)

o™, = cllmebr 1, + |70 =], }-
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Therefore
KJ(fon™), < Clf =M 0f |, +n7" | 0¥e®],

N .
<l -z pl, + € £) (ay 11, + a2 -1,

n
/AW r—
<) (=t =11, + s ~11,)

With (1.3) we obtain

2 1 AY (2r-1) (2r-1)
(1. 35) =e(5) Umer=rl, ety =11,
The proof is complete. O
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