
Araujo et al. Journal of Internet Services and Applications 2014, 5:7
http://www.jisajournal.com/content/5/1/7

RESEARCH ARTICLE Open Access

Replica placement to mitigate attacks on
clouds
Filipe Araujo1*, Serhiy Boychenko1, Raul Barbosa1 and António Casimiro2

Abstract

Execution of critical services traditionally requires multiple distinct replicas, supported by independent networks and
hardware. To operate properly, these services often depend on the correctness of a fraction of replicas, usually over
2/3 or 1/2. Defying the ideal situation, economical reasons may tempt users to replicate critical services onto a single
multi-tenant cloud infrastructure. Since this may expose users to correlated failures, we assess the risks for two kinds of
majorities: a conventional one, related to the number of replicas, regardless of the machines where they run; and a
second one, related to the physical machines where the replicas run. This latter case may exist in multi-tenant
virtualized environments only.
To assess these risks, under crash and Byzantine failures of virtual and physical machines, we resort to theoretical and
experimental evaluation. Contrary to what one might expect, we conclude that it is not always favorable to distribute
replicas evenly over a fixed number of physical machines. On the contrary, we found cases where they should be as
unbalanced as possible. We systematically identify the best defense for each kind of failure and majority to preserve.
We then review the most common real-life attacks on clouds and discuss the a priori placement of service replicas
that minimizes the effects of these attacks.

Keywords: Cloud computing; Fault-Tolerance; Dependability; Virtualization

1 Introduction
To cut costs, companies increasingly outsource informa-
tion technology to cloud providers. However, with this
movement, they lose much of the control they could exert
on their most critical services. Popular strategies such
as replication may not work well on the cloud, because
providers may take advantage of virtualization tech-
niques [1-5] to concentrate some of (or all) the replicas
in the same physical machine (PM). Recent research has
explored affinities among virtual machines (VMs) to con-
solidate according to traffic [6,7] or memory pages [8,9],
for example. We could think of a cluster of application
servers responding to HTTP requests, or a remote storage
service [10-12].
Common sense will tell us that one should not use a

virtualized infrastructure to run replicas of the same ser-
vice, because a single fault on a single PM could tear down
many replicas at once. Ideally, each new replica should run

*Correspondence: filipius@uc.pt
1CISUC, Department of Informatics Engineering, University of Coimbra, Polo II,
3030-290 Coimbra, Portugal
Full list of author information is available at the end of the article

on a different PM, preferably at distant physical locations,
served by different networks, using diverse software, oper-
ating systems, and so on. However, the costs and com-
plexity of doing this are enormous and cutting these costs
is certainly very tempting for clients. Market offers, like
Rackspace’s or Microsoft’s [13] tend to focus on avail-
ability, providing specific advise and Service Level Agree-
ments (SLAs) for more common non-Byzantine faults.
Critical Byzantine fault-tolerant (BFT) services have been
studied in more academic contexts, including research
projects [14-18]. For example, the Archistar project [19]
considers a storage system replicated across multiple
cloud providers to overcome Byzantine failures. The most
well-known system requiring BFT is perhaps Bitcoin [20],
although Bitcoin resorts to brute computational force for
correctness.
In this paper we consider a setting where clients chose

a single cloud provider. They may do this for a num-
ber of reasons, being simplicity the most important: it is
easier to manage a single cloud contract than three, for
example. It is also easier to deploy a service only once,
especially in Platform-as-a-Service clouds (PaaS), where

© 2014 Araujo et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194676119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:filipius@uc.pt
http://creativecommons.org/licenses/by/2.0

Araujo et al. Journal of Internet Services and Applications 2014, 5:7 Page 2 of 13
http://www.jisajournal.com/content/5/1/7

development is closely tied to the provider. Although ide-
ally the client should have different implementations to
ensure diversity, this may be difficult to achieve in prac-
tice. Replicating data to different providers may also be
undesirable, due to the risks involved in such higher expo-
sure. Additionally, as we show in this paper, even when
using different providers, the client may need to prop-
erly decide the number of replicas to run on each of the
providers.
From the point of view of providers, offering BFT ser-

vices using a small fraction of their resources seems like
a very reasonable step. Nevertheless, BFT services have
some specificities and may not require features like elas-
ticity. Many BFT protocols assume a fixed number of
players and cannot cope with new peers or with the depar-
ture of more than a fixed number f of peers (e.g. [21]).
To change these settings, the service must stop, before
the new group of replicas resumes operation, but this
idea may be unreasonable in a critical replicated environ-
ment. The cloud provider must therefore provide support
for a fixed number of replicas and should ideally allo-
cate these replicas to different servers, availability zones
or even regions, to minimize correlated failures.
Given the contradicting goals of consolidating to save

money and dispersing to ensure robustness, we focus on
a compromise. The provider fixes the number of PMs
to a some satisfactory level and then (s)he needs to
find the best distribution of VMs (i.e., replicas) by these
PMs. We qualitatively try to mitigate the disadvantage
of not using more PMs, by giving a single defense to
the cloud provider: the distribution of the VMs by the
available PMs. Depending on the service, the defender
may care for the number of PMs or the number of
VMs that stand after each failure. In particular, motivated
by many consensus-based algorithms, including Byzan-
tine fault-tolerant ones, e.g. [22] or [21], we count the
number of attacks that are necessary before the ser-
vice loses the majority of machines, physical or virtual.
We also assume that the attacker resources are limited
(otherwise, the defense would be helpless). Neverthe-
less, defining the best defensive strategy for the cloud
provider is a complex task, because PMs and VMs may
fail in many different ways, from crashes to arbitrary
Byzantine failures caused by fragilities in hardware or
software.
To determine the best placement of VMs, we consider

two fundamental goals, of ensuring a majority of VMs
or PMs and resisting to a large spectrum of attacks to
the infrastructure. These might start and be confined
to a single VM, or attacks may spread to other VMs, to
the hypervisor, or to the PM hosting the service. Conse-
quences range from a perceived reduction in the quality
of service to erroneous responses, due to interferences
or complete machine crashes. Attackers may be able to

select specific targets, or they might be limited to per-
form malicious actions over random targets handed by
some scheduler of the cloud service. Based on actual evi-
dence of past attacks, we try to model a large spectrum
of realistic settings. Based on these settings, we resort
to theoretical and experimental analysis to determine the
best distribution of VMs against possible attacks. We
use a balls and urns and other probabilistic approaches
when possible, and experimentally evaluate the remaining
cases.
While intuition suggests that we should balance the

VMs among the PMs, a deeper analysis shows cases where
other options are better. Depending on the kind of attack
and majority to keep, the distribution of VMs might be
irrelevant or should even be as unbalanced as possible,
given the same number of PMs. For example, to ensure
a majority of PMs, the defender should concentrate the
VMs as much as possible: one VM for each but the last
PM, and all the remaining VMs in the last PM. This is the
best way of restricting the attacker to the smallest possible
number of PMs.
Hence, the main contribution of this paper is to deter-

mine the appropriate strategy to defend a majority from
different types of failures, including Byzantine. This
knowledge is important, especially in a setting where
migrating VMs can help the cloud provider to consoli-
date resources in favorable ways. If the provider is not
bound to a balanced or extremely unbalanced solution, he
may take advantage of traffic correlation to consolidate
machines and reduce network traffic, for example. We
take our conclusions to real-life attacks and threats hang-
ing over cloud infrastructures. Knowledge of the most
common attacks and their consequences lets us break the
tie between opposing strategies to place service replicas.
This conclusion goes beyond the theoretical and exper-
imental analysis we did in [23]. Our study can be use-
ful both for the cloud provider and for the client, as it
tells them what to do or expect from the service. E.g.,
this may help the provider to create more precise and
safer SLAs.
The rest of the paper is organized as follows. Section 2

presents the assumptions of our work. In Section 3 we
perform a theoretical analysis regarding the distribution
of VMs. Since there is a long and established field using
the terms “balls” (VMs) and “urns” (PMs), we often keep
these terms. In Section 4 we extend the analysis of the
previous section and runMonte Carlo simulations, when-
ever we are not aware of closed formulas that may help
us to find the appropriate distributions. In Section 5 we
discuss the best distribution strategies. In Section 6 we
go through well-known attacks on clouds and evaluate
the effect of this knowledge on the theoretical findings
of the previous sections. In Section 7 we conclude the
paper.

Araujo et al. Journal of Internet Services and Applications 2014, 5:7 Page 3 of 13
http://www.jisajournal.com/content/5/1/7

2 Model
2.1 Failure models
In our analysis we deal with crash failures and Byzantine
failures caused by attackers. Crash failures may stop a VM
or the entire PM. Byzantine failures may produce these
and other arbitrary deviations from the correct service. In
this paper we try to consider a representative number of
entry points and behaviors for attackers. Attackers may
target a specific PM, if they can, or they might depend
on some fragility or assignment from the cloud provider,
thus being unable to pick their concrete target.We assume
the same for VM attacks (limited or unlimited targets). A
faulty PM may compromise all its VMs. Conversely, once
the attacker controls a VM, he might be able to escalate
the attack to control the hypervisor, disturb somehow the
PM or co-located VMs (“interference”), or, in the most
benign case, he might be limited to shut down the VM.
We consider a service with m PMs and v VMs. Each of

the m PMs may run one or more of the v VMs. When
appropriate, we consider a balls and urns problem: the urn
is a PM; the VMs are the balls. VM failures correspond to
drawing a ball from an urn. In some cases, the attacker will
put the ball again in the same urn, sometimes he or she
will simply remove the ball. For example, consider a clus-
ter of application servers responding to HTTP requests,
or a remote storage service [10-12]. Subsequent requests
to the service may end up in the same application server,
making this a case without removal. Contrary to this, if
the attacker may not find the same replica, because he
disrupted the previous one, we have removal. This model
does not cover all the cases if, for instance, the attacker
manages to shut down the entire PM (this would remove
all balls from the urn).

2.2 Goal
Depending on the service, wemay want to ensure a major-
ity of correct VM or PM replicas. Some consensus algo-
rithms, as the one in [22], use special hardware devices,
such as a Trusted PlatformModule (TPM), to improve the
tolerance to Byzantine nodes. To ensure multi-tenancy,
sharing the TPM by multiple VMs through virtualization,
as in vTPM [24], emerges as a natural step. Therefore, it
becomes important to ensure a majority of correct PMs.
When we consider crash failures, we assume that the PM
is in the group until the last VM crashes.
We assume that, as soon as one VM in the service

is under control of the attacker, all co-located VMs and
the respective PM might be compromised and out of the
majority of correct (physical or virtual) machines. What
we do not consider is the case where the attacker manages
to create more machines to participate and corrupt the
BFT protocol. We consider this kind of attack to be out-
side the scope of this paper, as this problem is orthogonal
to the cloud and exists in BFT protocols in general.

The set of attacks we consider falls into a moderate
number of cases. We may have crash and other arbitrary
effects, which we refer to as interference and Byzan-
tine, although crashes may have intentional causes. The
attacker may or may not be able to pick his or her targets;
VMs or PMs may fail; and we may want to preserve VM
or PM majority. Overall we have a total of 14 meaningful
cases that we discuss throughout the paper and wrap up
in Section 5.

3 Theoretical analysis
3.1 Independent VM failures
We start our theoretical analysis by considering that faults
are independent: a fault causing the failure of a VM does
not affect any other co-located VM. This may be the case
of a crash failure. We also assume that to participate in
some replicated protocol, the PM needs to have at least
one operational VM. The PM becomes unusable as soon
as the last VM fails. This could happen if at least one VM
is necessary to operate some shared resource, like a TPM,
e.g., to sign messages. I.e., given the failure of n ≤ v VMs,
we can calculate the probability that a PM with vi VMs
fails. We compute this value in Equation 1, for 1 ≤ vi ≤
n ≤ v, using the Hypergeometric distribution. Pi(vi, n, v)
is the probability that PM i fails due to the failure of all its
vi VMs. Pi(vi, n, v) = 0, for n < vi ≤ v. That is, at least one
VM of PM i will survive the n failures.

Pi(vi, n, v) =
(vi
vi
)(v−vi

n−vi
)

(v
n
)

= n × (n − 1) × . . . (n − vi + 1)
v × (v − 1) × . . . (v − vi + 1)

(1)

Since we assume a fixed number of n crash failures, and
a total of v VMs, we analyze the impact of varying vi and
use the notation Pi(vi). We first show in Equation 2 that
for vi ∈ {1, . . . , n − 2}, Pi(vi) − Pi(vi + 1) > Pi(vi + 1) −
Pi(vi + 2). That is, the marginal gain (in terms of reducing
the probability of failure of a PM) achieved by an incre-
ment of the number of VMs allocated to one PMdecreases
as the number of VMs in that PM approaches the number
of possible failures, n.

Pi(vi) − Pi(vi + 1) − Pi(vi + 1) + Pi(vi + 2) =
Pi(vi)

(
1 − n − vi

v − vi
− n − vi

v − vi
+ (n − vi)(n − vi − 1)

(v − vi)(v − vi − 1)

)
=

Pi(vi)·
·
(
1 − 2(n − vi)(v − vi − 1) − (n − vi)(n − vi − 1)

(v − vi)(v − vi − 1)

)

≥ Pi(vi)
(
1 − (n − vi)(n − vi − 1)

(v − vi)(v − vi − 1)

)
(2)

Araujo et al. Journal of Internet Services and Applications 2014, 5:7 Page 4 of 13
http://www.jisajournal.com/content/5/1/7

Since v ≥ n, the denominator of the subtrahend is
greater or equal than the numerator, which makes the
overall expression greater or equal than 0. In Equation 3,
we define a new function Qi(x) that “extends” Pi for the
domain [1, n]. Pi andQi are equal in the domain {1, . . . , n},
butQi has line segments connecting consecutive points of
Pi in [1, n] \ {1, . . . , n}.

Qi(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pi(1) + (x − 1)(Pi(2) − Pi(1)), 1 ≤ x < 2
· · ·
Pi(j) + (x − j)(Pi(j + 1) − Pi(j)),

1 < j ≤ x < j + 1 < n
· · ·
Pi(n − 1) + (x − n + 1)(Pi(n) − Pi(n − 1)),

n − 1 ≤ x ≤ n
(3)

From Equation 2, it follows that Qi(x) is convex in the
domain. Now, the number of failed machines can be com-
puted as an expectation E = ∑

i Pi(vi) = ∑
i Qi(vi). From

Jensen’s inequality:

Q
(∑

i vi
m

)
≤

∑
i Qi(vi)
m

(4)

where equality occurs when all the vi’s are equal. Since we
want to minimize the right side of the equation we should
evenly balance the VMs by the PMs (assuming that the
division is integer).

3.2 VM failure contaminates other VMs
We now consider Byzantine attacks, where a malicious
user may take over all the co-located VMs, once he or
she successfully attacks the first one (malware injection,
side-channel or protected environment escape attacks).
In mathematical terms, we can treat this problem as an
urns and balls problem, and use known results, such
as [25]. Urns represent a PM, while balls represent the
VMs. To distinguish between correct and compromised
VMs we may assign colors to balls: white balls represent
correct machines, whereas black balls represent compro-
mised machines. The objective of our analysis in this
section is to show that there is a proper way of ini-
tially distributing white balls, which minimizes the num-
ber of urns that end up having black balls as a result
of malicious actions successively changing the color of
balls from white to black. Our assumption in this par-
ticular case is that the previously white ball returns to
the same urn as black and the attacker has no option
concerning the urn from where it picks a ball. This
represents a case where the service is apparently run-
ning and the attacker might find the same (possibly
compromised) VM.

The option left to the cloud provider is to select a dis-
tribution of VMs by the PMs and, in this particular case,
we care about the number of urns that do not have black
balls, which we denote by the random variable X. P(X ≥
k) is the probability that k or more urns have no black
balls.

Theorem 1. Assume that we have v white balls dis-
tributed by 1 < m < v urns, such that each urn has at
least one ball. Assume that the attacker works in successive
turns, picking one ball at a time from an urn, and always
putting back a black ball in the same urn. The attacker
does not select the ball or the urn. ∀ k ∈ {1, . . . ,m},
P(X ≥ k) is maximized when m − 1 urns have 1 ball,
and the remaining urn has the remaining v − m + 1
balls.

Proof. Refer to Figure 1. Note that white urns have only
1 ball, gray urns have at least 1, but less than v − m + 1
balls, and black urns have v − m + 1 balls. Consider
setting A, where only 1 urn has more than 1 ball. I.e.,
m − 1 urns have 1 ball, whereas the last urn in the
figure has v − m + 1 balls. Setting B represents any
other case, with the same number of urns, m, but
with a different distribution of balls. Let us match pair-
wise the urns in setting A with the urns in setting B
(original), starting by the 1-ball urns (on the left side
of the figure). After this first set of urns, we define
another set O, with the urns that have more than 1 ball
in B, but only one ball in A. This definition excludes the
first urns that have 1 ball in A and B, as well as the
last urn of A, which has more than 1 ball. Note that
1 ≤ |O| ≤ m − 1.
We now resort to an artificial division of set O in B.

We split each one of the |O| urns in B into two other
urns: one with 1 ball, and the other with the remain-
ing balls. This makes for a total of m − 1 urns with
only 1 ball, just like in setting A. The remaining v −
m + 1 balls are spread over |O| + 1 urns (in gray in the
“imaginary B”), each having one or more balls. In the
rest of our reasoning, we should refer to settings A and
“imaginary B”, with m and m + |O| urns, respectively.
In both cases there are m − 1 urns with only 1 ball.
We first observe that these urns have exactly the same
probability of having a black ball. What about the sin-
gle black and |O| + 1 gray urns in A and “imaginary
B”, respectively? Since the number of balls is the same,
v − m + 1, the probability of having one or more
black balls is exactly the same in both settings. How-
ever, these black balls only “contaminate” (or exist) in a
single urn in setting A, whereas in “imaginary B” they
may spread over multiple urns. As a consequence, P(X ≥
k) in setting A must be the same or greater than in
setting B.

Araujo et al. Journal of Internet Services and Applications 2014, 5:7 Page 5 of 13
http://www.jisajournal.com/content/5/1/7

1 1... 1 1... v-m
+1

>1

b1-1 b2-1 b|O|
-1

...

1 1... 1 1...

A
im

ag
in

ar
y

B

v-m
+1 ...=

m urns

1

1

1 b1>1... b2>1 b|O|
>1

... >1

or
ig

in
al

B 1

urns in set O

sp
li

t u
rn

s

Figure 1 Distributions of balls by urns in settings A and B.

To calculate P(X ≥ k), we can use a result from ([25],
Equation (3.5)), which we restate here:

P(X ≥ k) =
(k)∑
a

⎛
⎝1 −

k∑
j=1

paj

⎞
⎠

n

−

−
(

k
k − 1

) (k+1)∑
a

⎛
⎝1 −

k+1∑
j=1

paj

⎞
⎠

n

+

+
(
k + 1
k − 1

) (k+2)∑
a

⎛
⎝1 −

k+2∑
j=1

paj

⎞
⎠

n

−

. . .

+ (−1)m−k
(
m − 1
k − 1

) m∑
j=1

pjn (5)

The m urns define a set of integers {1, 2, . . . ,m}. The
variable pj is the probability that we assign a black ball
to urn j. From this set, we define subsets with k elements
{a1, a2, . . . , ak}.

∑(k)
a denotes a summation over all these

subsets. Thus, there are
(m
k
)
terms in this sum. For a better

understanding of this formula, we should realize that sum-
mation

∑(k)
a concerns the probability of having k urns

without black balls when n black balls have been dropped
in the urns. The summation that follows in the formula
considers the probability of having k + 1 empty for the
same n balls and so on.

3.3 Keeping a majority of virtual machines
The next question we consider is the impact of machine
failures on the number of VMs that stay alive in a correct
state. In many cases, this number might be more impor-
tant than the number of different PMs where the replicas
run. Onemay ask whether concentratingmany VMs in the
same (or few) machine(s) could reduce the average num-
ber of VMs that survive (other) PM crashes. Interestingly,
the answer is no. Assume Z(t) to be a random variable
that represents the number of VMs that are running at
time t. Variable vi is the number of VMs running on PM i;
Yi(t) is a random variable that assumes the value 0 if PM
i is off at time t or 1 if it is on. If we assume that all PMs
have the same characteristics, at any given time t, Yi(t) is
the same for all values of i, and we can simply remove the
subscript. Equation 6 shows that the distribution of VMs

Araujo et al. Journal of Internet Services and Applications 2014, 5:7 Page 6 of 13
http://www.jisajournal.com/content/5/1/7

by the PMs is not relevant from the point of view of the
average:

E[Z(t)]=
m∑
i=1

vi · P[Yi(t) = 1]= P[Y (t) = 1] v (6)

However, one should notice that other metrics may be
relevant as well. On the few occasions when the most
loaded PM fails, much fewer replicas will be available.
I.e., the unbalanced setting will most of the time keep a
few more VMs running, but sometimes, it will have much
less.

4 Experimental evaluation
Since we cannot evaluate all the interesting scenarios
using analytical expressions, in this section we partially
resort to simulation. To evaluate the likelihood of keep-
ing a majority of correct PMs, we start with m = 5
PMs and v = 10 VMs in Figure 2. We considered four
cases: in one of them, all the machines (urns) have the
same probability of receiving an attack (black ball) and
this probability remains constant. We call this case “bal-
anced without removal”. We also consider the case where
a single machine has a probability of 60% of receiving
an attack, while the remaining 40% probability is equally
distributed among the remaining machines. This cor-
responds to running 6 VMs in a single PM, while the
remaining 4 VMs run in the other 4 PMs, in a one-to-one
correspondence. To this case we call “unbalanced (60%)
without removal”. We also consider removals of the VMs
once the attacker dominates them. This corresponds to
a scenario where the attacker is successively requesting
some instance of a service from a limited set. Each time it
gets a new instance, the attacker will not get the same, but
a new one (e.g., a new VM). These are the two cases with
removal.

In the plots without removal, we use Equation 5 to com-
pute the probability that at most 2 out of 5 PMs have black
balls, as the number of attacks grows. We can see a clear
difference between the balanced and unbalanced cases.
The chances of keeping a majority significantly improve
for the latter case. For instance, after 5 attacks, there is
still more than 40% chances of conserving the majority in
the unbalanced case, while in the balanced case, this prob-
ability is below 10%. To plot the lines with removal we
resorted to Monte Carlo simulation. We show error bars
that correspond to a 99% confidence interval of the aver-
age, assuming a normal distribution. Since we used 10,000
trials to get these plots, the intervals are very small and
the error bars are barely visible. As we expected, removal
makes it easier for the attacker to reach a larger number
of different PMs, thus negatively affecting the probabil-
ity of keeping a majority of correct PMs. The four plots
of the figure actually depict two extreme pairs of cases:
the one without removal approximates a scenario where
we have a very large number of VMs, or where the same
VM can be handed to the attacker. The pair of lines with
removal corresponds to the other extreme case, where
we have a small number of VMs (10) for the available
PMs (5).
Next, we try a larger number of PMs, m = 21, to com-

pare against the smaller set of 5. For this larger set, the
advantage of unbalancing the distribution of VMs is even
more visible, as we depict in Figure 3. For the case with-
out removal, given by Equation 5, after a little more than
20 attacks, there is nearly no chance that the majority
of the PMs is still correct for the balanced option. This
takes more than 60 attacks in the case of the unbalanced
scenario. The difference in the removal case is also impor-
tant. Note that in this setting we assumed that the entire
PM is compromised once the attacker penetrates the first
VM, either because he or she managed to control the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

P
[X

 >
=

 3
]

Number of attacks

Unbalanced (60%) w/out removal
Balanced w/out removal

Unbalanced (60%) w/ removal
Balanced w/ removal

Figure 2 Probability of conserving majority for 5 physical machines.

Araujo et al. Journal of Internet Services and Applications 2014, 5:7 Page 7 of 13
http://www.jisajournal.com/content/5/1/7

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60

P
[X

 >
=

 1
1]

Number of attacks

Unbalanced (60%) w/out removal
Balanced w/out removal

Unbalanced (60%) w/ removal
Balanced w/ removal

Figure 3 Probability of conserving majority for 21 physical machines (PM or all VM contamination).

hypervisor or because he or she gained control of all the
VMs in the same physical machine. Unlike this, in Figure 4
we consider other cases: a 50% and a 0% chance (no con-
tamination) of controlling the service via hypervisor or
other machines. We can see that as the chance of domi-
nating the entire service in the PM decreases, balancing
becomes increasingly better. This is not surprising, if we
think that this case is more similar to crash cases, where
the attacker cannot engage more co-located resources in
arbitrary behaviors. Hence, by unbalancing the VMs, it
becomes more likely that PMs with only one VM are left
empty when their single VM fails.
These plots raise the question of determining the num-

ber of attacks that it takes until the attacker succeeds in
(probabilistically) holding the majority of the machines.
We do this evaluation in Figure 5, for the balanced and
unbalanced (60%) cases, without removal, for a varying

number of PMs. In both cases, the growth seems to be
approximately linear, but the slope is much higher in the
unbalanced case, thus making it much more difficult to
break.
Finally, in Figure 6 we evaluate the unbalance factor.

We use 11 machines and make the balance change from
1/11 (balanced) to 1 − 1/11 � 91% (most unbalanced) in
steps of 1/11. For all these unbalanced factors, we plot the
number of attacks until the attacker gets the majority of
machines with probability greater than 50%. There is no
removal.

5 Placement strategies of the defense
We now identify the best strategies to distribute the VMs
by the PMs. Should the defender use a balanced approach
or an unbalanced one? We assume that failures render
the target unusable either because it crashed or because it

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60

P
[X

 >
=

 1
1]

Number of attacks

60% unb. w/ rem., no contam.
Balanced w/ rem., no contam.

60% unb. w/ rem., 50% contam.
Balanced w/ rem., 50% contam.

Figure 4 Probability of conserving majority for 21 physical machines (no contamination and 50% contamination).

Araujo et al. Journal of Internet Services and Applications 2014, 5:7 Page 8 of 13
http://www.jisajournal.com/content/5/1/7

 0

 10

 20

 30

 40

 50

 60

 5 10 15 20 25 30R
ou

nd
s

un
til

 m
aj

or
ity

 is
 lo

st
 w

ith
 p

ro
ba

b.
 >

 5
0%

Number of physical machines

Unbalanced (60%)
Balanced

Figure 5 Evaluation of the rounds the attacker needs until it probabilistically gets the majority as a function of the number of physical
machines.

ceased to follow the protocol. Then, we consider multiple
contamination models: an attack to one VM may or may
not become an attack to co-located VMs and PM.We also
consider that attacks might be “limited” or “unlimited”,
to VMs, or directly to the PMs. “Limited” means that the
attacker selects a target at random with uniform prob-
ability. “Unlimited” is the extreme opposite case, where
the attacker may select the target he wants. In the next
sections we consider different scenarios of attacks and
contamination models. Table 1 shows the best distribu-
tion of VMs by PMs for each attack and contamination
model.

5.1 Attacks to PMs
In this section we consider attacks to PMs regardless of
their source. They could well begin in a VM and escalate

to affect the entire PM. If we assume that the targeted
PM disappears from the service or acts incorrectly, the
distribution of VMs by the PMs is not relevant for a PM
majority. On the other hand, if we consider VM majori-
ties, the distribution of VMs might be relevant. If the
attacker can pick his targets (“unlimited” case), it is better
to evenly distribute the machines, otherwise the attacker
will select PMs with more VMs. If not (“limited” case), the
distribution of VMs is irrelevant, as we saw in Section 3.3.

5.2 Attacks contained within VMs
Now, consider VM targets, but assume that the attacker
cannot leave the borders of the VM, i.e., the VM might
misbehave somehow, but it cannot tamper with other
VMs, the PM or any other device related to the service,
like a TPM. Crashes are a typical cause for this behavior.

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.2 0.4 0.6 0.8 1R
ou

nd
s

un
til

 m
aj

or
ity

 is
 lo

st
 w

ith
 p

ro
ba

b.
 >

 5
0%

Unabalance factor

Figure 6 Evaluation of the rounds the attacker needs until it probabilistically gets the majority as a function of the unbalance factor.

Araujo et al. Journal of Internet Services and Applications 2014, 5:7 Page 9 of 13
http://www.jisajournal.com/content/5/1/7

Table 1 Distribution of VMs by PMs as a function of the
failure and the objective to achieve by the defender

Failure/Objective PMMajority VMMajority

Attacks to PMs

Limited PMs Irrelevant Irrelevant

Unlimited PMs Irrelevant Balanced

Attacks contained within VMs

Lim. Crash VMs Balanced Irrelevant

Unlim. Crash VMs Balanced Irrelevant

Attacks to a VM interfere with the PM service

Lim. Interf. VMs Unbalanced —

Unlim. Interf. VMs Irrelevant —

Cross-VM and VM-to-Hypervisor escalation

Lim. Byzantine VMs Unbalanced Balanced

Unlim. Byzantine VMs Irrelevant Balanced

In this case, the distribution is irrelevant to keep a major-
ity of VMs, as only one VM is faulty after each successful
attack. Keeping a PM majority might be different. If the
PM is out of the service when the last VM it holds stops,
balancing is better to avoid PMs without VMs.

5.3 Attacks affect the replicated service, but not other
VMs or the PM

Now, we assume that attacks to VMs do not cross the
frontier of the VM, except to disrupt the service pro-
vided by that PM. This corresponds to a case where the
corrupted VM manages to control the service, at least
sometimes, e.g., by responding first to requests enter-
ing the machine. However, this model assumes that the
attacker cannot invade other VMs or the PM from the VM
(e.g., to shut down other VMs). From the perspective of
keeping a majority of VMs, we omit this case from our
analysis, because it is similar to the contained VM attacks.
For a PM majority, in the “Limited” case, the best thing
to do is to unbalance the VMs, as we saw in Sections 3.2
and 4. In the “Unlimited” case, where an attacker can dis-
turb the service in any PM (s)he wants, the distribution
is irrelevant. It is interesting to note the striking differ-
ence to the case where attacks do not cross VM borders,
where we balance the VMs, to ensure that, say, crashes
do not leave a PM without VMs. We reviewed a similarly
interesting case, where balancing may be a better option
in Section 4, Figure 4: as the probability of affecting the
service decreases to zero, balancing becomes better.

5.4 Cross-VM or VM-to-hypervisor attacks
We now consider attacks that can cross VM boundaries
to take over other VMs (cross-VM) or the PM (VM-to-
Hypervisor attack). This case ends up being the same as

the “Unlimited PMs”, and thus gets the same distribution.
However, it includes some subtleties worth discussing, as
it may happen that an attacker is unable to reach arbitrary
VMs, but he might end up shutting down the PM or many
co-located VMs to reach other VMs and PMs in future
interactions. In other words, an attacker with limited
access to VMs might end up affecting other co-located
VMs, to reach a different set of victims. Although this
would not be purely “Unlimited Byzantine”, the same dis-
tributions (Irrelevant/Balanced) would hold. However, if
the attacker cannot improve his chances of reaching arbi-
trary VMs and is constrained by the provider (“Limited
Byzantine VMs”), we have the same case as the “Limited
Interference” for the PM majority. For a VM majority we
need a Balanced distribution of VMs, or, otherwise, the
attacker would have a higher probability of reaching VMs
with more co-located VMs.

6 Classification of real attacks
In this section we identify and describe attacks found
in the literature that may affect virtualized cloud infras-
tructures. We categorize real attacks and the resulting
failures that we found in the literature, namely described
by Jensen et al. [26], Zhang et al. [27], Gruschka et al. [28],
and Verizon [29], onto the classes of Table 1. Our anal-
ysis intends to support selection and prioritization of
the placement strategies, according to the main security
concerns and impact of attacks.

6.1 Denial of service
One of the most attractive features of cloud systems is
their on-demand provision of computing power for legiti-
mate users. However, this feature may raise serious secu-
rity problems if it is exploited with the wrong intentions.
Attackers may flood a service with requests, inducing the
infrastructure, to create countless VMs in response to
those requests, thereby exhausting the available hardware
resources. This leads to a Denial of Service (DoS), not
only on the specific service under attack, but also on other
services that share the infrastructure.
There are numerous examples of such attacks on cloud

services and providers. The most famous cases are not
necessarily connected to models we propose in this
paper, but can affect operation of an entire provider. The
Spamhaus anti-spam organization and the cloud provider
CloudFlare, recently suffered a Distributed Denial of Ser-
vice (DDoS) attack [30]. By exploiting core Internet infras-
tructures and open DNS resources, attackers managed to
create an attack of great dimension. Although the attack
was mitigated and the adversaries were unable to achieve
the goal of shutting down the spamhaus.org site, they
managed to cause delays and outages in some other Inter-
net resources. The work of Domingues et al. [31] shows
that VMs can actually affect each other, especially when

Araujo et al. Journal of Internet Services and Applications 2014, 5:7 Page 10 of 13
http://www.jisajournal.com/content/5/1/7

they perform I/O operations, thus opening the door to
DoS problems, although cloud providers are evidently
reluctant to disclose these cases.

6.2 Malware injection
The malware injection attack consists of installing some
malicious service implementation or VM into the cloud.
The adversary deceives the cloud system to accept mali-
cious software as a valid instance of the attacked ser-
vice. Successful invasion allows the infected instance to
execute user requests. The effects of malware injection
may vary from eavesdropping to completely disabling or
changing functionality of the attacked service. Compa-
nies like Intel are actively developing solutions against this
kind of threat. This is the case of the “Trusted Execution
Technology” (TXT).
One of the most notorious injections of malicious soft-

ware occurred against the Google password system [32].
Vulnerabilities of Internet Explorer 6, which was still used
by some workers, allowed hackers to inject malicious soft-
ware that enabled them to access the company’s internal
network. Although Google claimed that no passwords
were stolen, it is difficult to evaluate all the consequences
of the attack.

6.3 Metadata spoofing
In metadata spoofing, attackers modify the Web Services’
metadata descriptions. Attackers may modify the syntax
and operation of some functions described in the WSDL.
Unaware of the fraudulent modification, an unknowing
user will invoke functions that execute unexpected oper-
ations on the server. A successful attack could allow the
adversary to manipulate service operations or even to
obtain user credentials, to perform a broader range of
attacks.
Although we were not able to find reported cloud-

related incidents involving metadata spoofing, we found
descriptions of such attacks on web-service based
resources. For example, hackers were able to configure
administrative settings (without having privileged user
access) in an attack to D-Link routers [33], using vulner-
abilities of the SOAP-based device control protocol. In
some models of the D-Link routers, the attackers were
able to execute the SOAP action GetDeviceSettings
without authentication. This action alone did not allow
the adversary to obtain any sensitive data, but it could be
used to bypass the authentication requirements for other
SOAP actions.

6.4 XML signature wrapping
The XML signature wrapping attack modifies authenti-
cated SOAP messages. Several different variants of this
attack exist. In one of the variants, after obtaining the orig-
inal signed SOAP packet, the attacker moves the message

body to a wrapping element inside the SOAP header and
creates a new body with a different operation. This may
deceive some servers to accept the signature, because the
original signed contents still exist inside that wrapping
element. However, the new function in the SOAP body
of the message may harm the server. As a result, the
attacker could execute arbitrary operations on the cloud
system as a legitimate user, influencing the availability of
the services.
Some studies revealed potential vulnerabilities of cloud

providers to XML Signature Wrapping attacks. A group
of researchers from the Ruhr-University Bochum demon-
strated this fragility in the Amazon Web Services
(AWS) [34]. Using this approach, the researchersmanaged
to delete and create new images on the customer’s EC2
instance and hijack AWS sessions to get sensitive data,
including plaintext passwords. Despite being restricted to
AWS, researchers believe that other cloud providersmight
be affected by the same type of vulnerabilities.

6.5 VM-to-hypervisor attack
The VM-to-Hypervisor attack is based on exploiting secu-
rity vulnerabilities of the hypervisor. The complexity of
the virtualization software may leave some open pos-
sibilities for adversaries to escape from the protected
environment and gain full access to the hosting physi-
cal machine [35]. Consequences of the VM-to-Hypervisor
attacks may vary from creation of rogue VMs to complete
interruption of the attacked hardware, both of which may
compromise multiple services in many different ways.
The media continuously reports privilege escalation

vulnerabilities of different virtualization technologies. In
a recent case [36], a major vulnerability in the 64-bit
Xen hypervisor running 64-bit para-virtualized guests on
Intel CPUs was disclosed and patched before any hacker
managed to exploit it. Successful attack would allow the
adversary to escape from guest status and gain admin-
istrative access on the host machine. After breaking the
protected environment, the adversary could run arbitrary
code in privileged mode, install and run new programs,
and create new accounts with administrative rights.

6.6 Cross-VM side-channel attack
The cross-VM side-channel attack consists of taking
advantage of information leaks from the system’s shared
components, such as cache or memory. Timing informa-
tion in the access to some memory addresses may let the
attacker know whether or not data from the address was
stored in cache. Several techniques of cache pattern classi-
fication, noise reduction and error correction are applied
to minimize the search space for cryptographic informa-
tion. The effect of such attacks varies from eavesdropping
to service interruption, depending on the goals of the
attacker.

Araujo et al. Journal of Internet Services and Applications 2014, 5:7 Page 11 of 13
http://www.jisajournal.com/content/5/1/7

We are not aware of any cloud providers that have
been victims of cross-VM side-channel attacks. Nonethe-
less, a research team managed to collect and reconstruct
cryptographic keys from information leaked by the CPU
cache. This allowed them to take control over a victim
VM [37].

6.7 Hacking
Hacking consists of obtaining illegitimate access to a sys-
tem by circumventing security mechanisms, either by
exploiting security vulnerabilities or by obtaining access
credentials. Some of the most common forms of attack
include stealing login credentials, brute force attacks, SQL
injection and backdoor exploitation. The main goals of
hacking generally are data stealing or damaging.
These types of attack have become increasingly com-

mon in recent years, as reported by Verizon [29], regard-
ing network infrastructures and data centers. One may
expect hacking to be one of the main forms of attack on
cloud infrastructures as well, given that the applications
running in the cloud make use of common technologies
and security mechanisms, and are therefore vulnerable to
the same strategies. According to the Verizon study, hack-
ing along with malware injection are the most widespread
forms of attack.

6.8 Defending against real attacks
In Table 2 we go through the list of attacks and identify the
potential consequences. Since a given attack type can have
a range of different effects on a victim, our classification
considers the most serious documented consequences of
each type of attack. Fortunately, the most serious con-
sequences of attacks are not always the most frequently
observed ones. As we shall see, this does not have an
impact on the choice of placement strategy regarding PM
majorities nor VMmajorities.
Based on information about each attack’s outcome we

assign it to one of the classes listed in Table 1. For exam-
ple, if the adversary may take full control of one particular

Table 2 Classification of the attacks according to the worst
consequences documented

Class of Attack Real Case

Limited PMs
Denial of Service

VM-to-Hypervisor Attack

Limited Crash VMs VM Software Faults

Lim. Byzantine VMs

Cross-VM Side-Channel

XML Signature Wrapping

Metadata Spoofing

Unlim. PMs/Byzant. VMs
Malware Injection

Hacking

PM, he could make it stop, which would be a crash failure.
However, since the attacker may also disrupt the service in
some other subtler way, we consider this failure as Byzan-
tine instead. After classifying attacks we determine the
appropriate defense strategy, taking into account a set of
factors explained below.
Let us start with the situations in which resource dis-

tribution is irrelevant. Two kinds of attacks share this
result: Denial of Service and VM-to-Hypervisor Attacks.
The main reason why the distribution is irrelevant in case
of a DoS attack has to do with how resources are used
with virtualization and cloud computing. Since the phys-
ical resources are shared, an attacker, even by targeting
one specific VM, may prevent the other co-located VMs
from operating properly. In an even more difficult sce-
nario, on-demand resource provisioning may lead to VM
instance flooding, congesting the infrastructure of the
cloud provider.
While the replica placement strategy for DoS attacks

is straightforward, the strategy to defend against VM-to-
Hypervisor attacks requires some additional discussion.
Although the adversary starts malicious actions from one
VM (randomly assigned by the cloud provider), the attack
to the target service occurs only when the hypervisor
gives in. In fact, intrusion into the target service occurs
from a successfully hacked PM (hypervisor). This intru-
sion method and its potentially serious effects lead us
to associate VM-to-Hypervisor attacks with the Limited
(Byzantine) PM category, and in this case the placement
of VMs for majority preservation is irrelevant. Hence, the
first line of Table 3 shows the distribution of replicas as
being irrelevant regardless of the kind of majority that is
to be assured.
Despite not being necessarily of intentional nature, we

include in our analysis VM software faults as one of the
causes of VM crashes. This is an interesting case because
software faults leading to accidental crashes are quite
common. In this case, if we assume that any VMmight be
affected with uniform probability, the distribution of VMs

Table 3 Placement strategies according to attack type and
majority goal

PMMaj. VMMaj. Real Case

Irrelevant Irrelevant
Denial of Service

VM-to-Hypervisor Attack

Balanced Irrelevant VM Software Faults

Unbalanced Balanced

Cross-VM Side-Channel

XML Signature Wrapping

Metadata Spoofing

Irrelevant Balanced
Malware Injection

Hacking

Araujo et al. Journal of Internet Services and Applications 2014, 5:7 Page 12 of 13
http://www.jisajournal.com/content/5/1/7

is only relevant to ensure a PM majority. We do not show
PM crashes in the tables, as they would fall in the “Limited
PMs” attacks, which we covered already.
We proceed with the discussion of Limited Byzantine

VM attacks, where the placement of replicas has great
impact on defender’s success. There are several char-
acteristics of this attack class corresponding to failures
described in Section 6. The analysis of adversary lim-
itations, targets and intrusion consequences lead us to
classify XML Signature Wrapping, Metadata Spoofing
and Cross-VM Side-Channel as Limited Byzantine VM
attacks. Usually the target of these attacks are the VMs
hosting the victim’s service. The adversary, despite hav-
ing some information about the victim, does not seem
capable of picking the attack starting point and target at
will. Nonetheless, a broken service instance may enable
the hacker to compromise other service replicas running
on the shared resource. The placement strategy in this
case greatly depends on the desired majority. When the
goal is keeping the majority of VMs, a balanced place-
ment strategy should be adopted, otherwise unbalancing
is better.
The classification of Malware Injection and Hacking

as Unlimited PMs or Unlimited Byzantine VMs, which
ends up being the same, is based on the worst possible
consequences achieved by an adversary (partial or total
access to the infrastructure). Possible scenarios include
exploitation of the same vulnerability in many nodes to
start a full scale attack. In the real case we described in
Section 6.2, hackers seemed to have accessed the entire
intranet of the cloud provider. The analysis performed
in Section 5 suggests a balanced placement strategy for
Unlimited (Byzantine) PM attacks when VM majority is
the goal, whereas the distribution is irrelevant otherwise.
By analyzing Malware Injection and Hacking attacks,

along with information provided by the Verizon
report [29], the most harmful consequences of these
attacks are likely to be uncommon. Although such an
attack may provide unlimited access to a cloud infras-
tructure (e.g., leaked or stolen administration passwords)
one may consider that an attacker will in general be more
successful in obtaining illegitimate access into a single
application and its VMs rather than the whole infrastruc-
ture. This would, in fact, suggest that most malware and
hacking attacks should be classified as Limited Byzantine
VMs.
A careful analysis of the relation between attack types

and placement strategies on lines three and four of Table 3
helped us to solve this ambiguous situation.We noted that
the replica distribution methods are not contradictory for
any of the majorities. When the defender wants to keep a
VMmajority, both lines suggest a balanced strategy.When
the defender’s goal is to keep a PM majority under inten-
tional attacks, the irrelevant indications suggest that the

unbalanced placement strategy should be used, allowing
the defender to protect against a larger fraction of attacks.

7 Conclusion and future perspectives
Clouds are changing the surface of information technolo-
gies. As a consequence, the concentration of resources in
the same region, network, or even machine poses an evi-
dent challenge to designers of dependable systems. In this
paper we evaluate the problem of distributing resources
over physical machines. We adopt the perspective of the
cloud provider that needs to distribute VMs by a given
fixed set of PMs. While intuition could perhaps suggest
that a balanced distribution of VMs would make a more
dependable system for most scenarios, this is not the case.
Based on real evidence of security incidents, the behav-

ior of a defender should consider whether he or she needs
to keep a majority of PMs or VMs. Whereas balancing is
indeed better for the latter case, unbalancing is the best
option for the former. In any case, it is wise to adopt
a strategy for placing replicas, rather than leaving the
distribution uncontrolled, given that there are relatively
few cases in which replica placement may be considered
irrelevant.
An interesting perspective for the future is to include

probabilities in our analysis. For example, given the proba-
bility of having a compromised VM,what is the probability
that other co-located VMsmight become compromised as
well? The same for the hypervisor: given a compromised
VM what is the probability that the attack escalates to
affect the hypervisor? Standing on figures owned by cloud
providers, this may give an idea of the probability that an
attack manages to control a majority of VMs or PMs, thus
helping providers to select the best defensive strategy.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
FA carried out the theoretical evaluation in Section 3, the experimental
evaluation of Section 4, wrote most part of these sections and contributed in
all others. SB carried out most of the research for real attacks. SB and RB were
the main contributors to Sections 5 and 6. AC reviewed and rewrote parts of
the manuscript. All authors contributed to the conclusions and all authors
read and approved the final manuscript.

Acknowledgments
This work has been supported by the FCT, Fundação para a Ciência e a
Tecnologia, funded in the scope of Programa Operacional Temático Factores
de Competitividade (COMPETE) and Fundo Comunitário Europeu FEDER,
through projects EXPL/EEI-ESS/2542/2013, DECAF, An Exploratory Study of
Distributed Cloud Application Failures, and CMU-PT/RNQ/0015/2009, TRONE,
Trustworthy and Resilient Operations in a Network Environment.

Author details
1CISUC, Department of Informatics Engineering, University of Coimbra, Polo II,
3030-290 Coimbra, Portugal. 2Faculty of Sciences, University of Lisbon, Campo
Grande, 1749-016 Lisboa, Portugal.

Received: 10 May 2013 Accepted: 26 June 2014

Araujo et al. Journal of Internet Services and Applications 2014, 5:7 Page 13 of 13
http://www.jisajournal.com/content/5/1/7

References
1. Barham P, Dragovic B, Fraser B, Hand S, Harris T, Ho A, Neugebauer R,

Pratt I, Warfield A (2003) Xen and the art of virtualization. In: Proceedings
of the nineteenth ACM Symposium On Operating Systems Principles,
SOSP ‘03. ACM, New York, pp 164–177

2. Technical White Papers — VMWare. http://www.vmware.com/resources/
techresources/. Retrieved on May 6, 2014

3. Papers — Oracle VM VirtualBox. https://www.virtualbox.org/wiki/Papers.
Retrieved on May 6, 2014

4. Bellard F (2005) QEMU, a fast and portable dynamic translator.
In: Proceedings of the annual conference on USENIX Annual Technical
Conference, ATEC ‘05. USENIX Association, Berkeley, pp 41–41

5. Camargos FL, Girard G, des Ligneris B (2008) Virtualization of Linux servers.
In: Proceedings of the Linux symposium. http://ols.fedoraproject.org/
OLS/Reprints-2008/camargos-reprint.pdf.

6. Meng X, Isci C, Jeffrey J, Zhang L, Bouillet E, Pendarakis D (2010)
Efficient resource provisioning in compute clouds via vm multiplexing.
In: Proceedings of the 7th International Conference on Autonomic
Computing, ICAC ‘10. ACM, New York, pp 11–20

7. Sonnek J, Greensky J, Reutiman R, Chandra A (2010) Starling: minimizing
communication overhead in virtualized computing platforms using
decentralized affinity-aware migration. In: Proceedings of the 2010 39th
International Conference on Parallel Processing, ICPP ‘10. IEEE Computer
Society, Washington, DC, pp 228–237

8. Wood T, Tarasuk-Levin G, Shenoy P, Desnoyers P, Cecchet E, Corner MD
(2009) Memory buddies: exploiting page sharing for smart colocation in
virtualized data centers. In: Proceedings of the 2009 ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, VEE ‘09. ACM, New York, pp 31–40

9. Gupta D, Lee S, Vrable M, Savage S, Snoeren AC, Varghese G, Voelker GM,
Vahdat A (2010) Difference engine: harnessing memory redundancy in
virtual machines. Commun ACM 53(10):85–93

10. Heroku | Cloud application platform. http://www.heroku.com. Retrieved
on May 6, 2014

11. Ruby On rails and PHP cloud hosting PaaS | Managed rails development |
Engine yard platform as a service. http://www.engineyard.com. Retrieved
on May 6, 2014

12. Google App Engine— Google Developers. https://developers.google.
com/appengine/. Retrieved on May 6, 2014

13. McKeown M, Kommalapati H, Roth J Disaster recovery and high
availability for windows azure applications. Web page http://msdn.
microsoft.com/en-us/library/windowsazure/dn251004.aspx visited on
December 5th 2013

14. Bessani AN, Alchieri EP, Correia M, Fraga JS (2008) DepSpace: a byzantine
fault-tolerant coordination service. SIGOPS Oper Syst Rev 42(4):163–176

15. Prieto E, Diaz R, Romano L, Rieke R, Achemlal M (2011) MASSIF: a
promising solution to enhance olympic games IT security. In: Georgiadis
CK, Jahankhani H, Pimenidis E, Bashroush R, Al-Nemrat A (eds)
ICGS3/e-Democracy, volume 99 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications
Engineering. Springer, pp 139–147. http://link.springer.com/chapter/10.
1007%2F978-3-642-33448-1_20.

16. Bessani A, Cutillo LA, Ramunno G, Schirmer N, Smiraglia P (2013) The
TClouds platform: concept, architecture and instantiations. In:
Proceedings of the 2nd international workshop on Dependability Issues
in Cloud Computing, DISCCO ‘13. ACM, New York, pp 1:1–1:6

17. SECFUNET - Security for Future Networks - Home. http://www.secfunet.
eu. Accessed on 6 May 2014

18. CloudFit. http://cloudfit.di.fc.ul.pt/index.php?title=Public:Main_Page.
Accessed on 6 May 2014

19. Slamanig D, Hanser C (2012) On cloud storage and the cloud of clouds
approach. In: Internet technology and secured transactions, 2012
international conferece for, pp 649–655. http://ieeexplore.ieee.org/xpl/
login.jsp?tp=&arnumber=6470897&url=http%3A%2F%2Fieeexplore.ieee.
org%252.

20. Bitcoin - Open source P2P money. http://bitcoin.org/. Accessed on 6 May
2014

21. Castro M, Liskov B (2002) Practical byzantine fault tolerance and proactive
recovery. ACM Trans Comput Syst 20(4):398–461

22. Correia M, Veronese GS, Lung LC (2010) Asynchronous Byzantine
consensus with 2f+1 processes. In: Proceedings of the 2010 ACM

Symposium on Applied Computing, SAC ‘10. ACM, New York,
pp 475–480

23. Araujo F, Barbosa R, Casimiro A (2012) Replication for dependability on
virtualized cloud environments. In: Proceedings of the 10th international
workshop on Middleware for Grids, Clouds and e-Science, MGC ‘12. ACM,
New York, pp 2:1–2:6

24. Berger S, Cáceres R, Goldman KA, Perez R, Sailer R, van Doorn L (2006)
vTPM: virtualizing the Trusted Platform Module. In: Proceedings of the
15th conference on USENIX security symposium - Volume 15,
USENIX-SS’06. USENIX Association, Berkeley

25. Johnson NL, Kotz S (1977) Urn models and their application— an
approach to modern discrete probability theory. John Wiley & Sons,
New York, Chichester, Brisbane, Toronto

26. Jensen M, Schwenk J, Gruschka N, Iacono LL (2009) On technical security
issues in cloud computing. In: Proceedings of the 2009 IEEE International
Conference on Cloud Computing, CLOUD ‘09. IEEE Computer Society,
Washington, DC, pp 109–116

27. Zhang Y, Juels A, Reiter MK, Ristenpart T (2012) Cross-VM side channels
and their use to extract private keys. In: Proceedings of the 2012 ACM
conference on computer and communications security. ACM, New York,
pp 305–316

28. Gruschka N, Iacono LL (2009) Vulnerable cloud: SOAP message security
validation revisited. In: ICWS, pp 625–631. http://ieeexplore.ieee.org/xpl/
login.jsp?tp=&arnumber=5175877&url=http%3A%2F%2Fieeexplore.ieee.
org%252.

29. Verizon (2013) Data breach investigations report. http://www.
verizonenterprise.com/DBIR/2013/. Retrieved on May 6, 2014

30. CloudFlare blog - The DDoS That Almost Broke the Internet. http://blog.
cloudflare.com/the-ddos-that-almost-broke-the-internet. Retrieved on
May 6, 2014

31. Domingues P, Araujo F, Silva L (2009) Evaluating the performance and
intrusiveness of virtual machines for desktop grid computing. In:
Proceedings of the 2009 IEEE International Symposium on Parallel &
Distributed Processing, IPDPS ‘09. IEEE Computer Society, Washington,
DC, pp 1–8

32. SFGate.com blog - The Google Attack Scenario Offense and Defense.
http://blog.sfgate.com/ybenjamin/2010/04/20/the-google-attack-
scenario-offense-and-defense/. Retrieved on May 6, 2014

33. Hacking D-Link Routers With HNAP. http://www.sourcesec.com/Lab/
dlink_hnap_captcha.pdf. Retrieved on May 6, 2014

34. Computerworld - Researchers Demo Cloud Security Issue with Amazon
AWS Attack. http://www.computerworld.com/s/article/9221208/
Researchers_demo_cloud_security_issue_with_Amazon_AWS_attack/.
Retrieved on May 6, 2014

35. Szefer J, Keller E, Lee RB, Rexford J (2011) Eliminating the hypervisor attack
surface for a more secure cloud. In: Proceedings of the 18th ACM
conference on computer and communications security, CCS ‘11. ACM,
New York, pp 401–412

36. InformationWeek - New Virtualization Vulnerability Allows Escape To
Hypervisor Attacks. http://www.informationweek.com/security/
application-security/new-virtualization-vulnerability-allows/240001996/.
Retrieved on May 6, 2014

37. Dark Reading - Researchers Develop Cross-VM Side-Channel Attack.
http://www.darkreading.com/attacks-breaches/researchers-develop-
cross-vm-side-channel-attack/d/d-id/1138623? Retrieved on May 6, 2014

doi:10.1186/s13174-014-0007-z
Cite this article as: Araujo et al.: Replica placement to mitigate attacks on
clouds. Journal of Internet Services and Applications 2014 5:7.

http://www.vmware.com/resources/techresources/
http://www.vmware.com/resources/techresources/
https://www.virtualbox.org/wiki/Papers
http://ols.fedoraproject.org/OLS/Reprints-2008/camargos-reprint.pdf
http://ols.fedoraproject.org/OLS/Reprints-2008/camargos-reprint.pdf
http://www.heroku.com
http://www.engineyard.com
https://developers.google.com/appengine/
https://developers.google.com/appengine/
http://msdn.microsoft.com/en-us/library/windowsazure/dn251004.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/dn251004.aspx
http://link.springer.com/chapter/10.1007%2F978-3-642-33448-1_20
http://link.springer.com/chapter/10.1007%2F978-3-642-33448-1_20
http://www.secfunet.eu
http://www.secfunet.eu
http://cloudfit.di.fc.ul.pt/index.php?title=Public:Main_Page
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6470897&url=http%3A%2F%2Fieeexplore.ieee.org%252
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6470897&url=http%3A%2F%2Fieeexplore.ieee.org%252
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6470897&url=http%3A%2F%2Fieeexplore.ieee.org%252
http://bitcoin.org/
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5175877&url=http%3A%2F%2Fieeexplore.ieee.org%252
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5175877&url=http%3A%2F%2Fieeexplore.ieee.org%252
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5175877&url=http%3A%2F%2Fieeexplore.ieee.org%252
http://www.verizonenterprise.com/DBIR/2013/
http://www.verizonenterprise.com/DBIR/2013/
http://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
http://blog.cloudflare.com/the-ddos-that-almost-broke-the-internet
http://blog.sfgate.com/ybenjamin/2010/04/20/the-google-attack-scenario-offense-and-defense/
http://blog.sfgate.com/ybenjamin/2010/04/20/the-google-attack-scenario-offense-and-defense/
http://www.sourcesec.com/Lab/dlink_hnap_captcha.pdf
http://www.sourcesec.com/Lab/dlink_hnap_captcha.pdf
http://www.computerworld.com/s/article/9221208/Researchers_demo_cloud_security_issue_with_Amazon_AWS_attack/
http://www.computerworld.com/s/article/9221208/Researchers_demo_cloud_security_issue_with_Amazon_AWS_attack/
http://www.informationweek.com/security/application-security/new-virtualization-vulnerability-allows/240001996/
http://www.informationweek.com/security/application-security/new-virtualization-vulnerability-allows/240001996/
http://www.darkreading.com/attacks-breaches/researchers-develop-cross-vm-side-channel-attack/d/d-id/1138623?
http://www.darkreading.com/attacks-breaches/researchers-develop-cross-vm-side-channel-attack/d/d-id/1138623?

	Abstract
	Keywords

	Introduction
	Model
	Failure models
	Goal

	Theoretical analysis
	Independent VM failures
	VM failure contaminates other VMs
	Keeping a majority of virtual machines

	Experimental evaluation
	Placement strategies of the defense
	Attacks to PMs
	Attacks contained within VMs
	Attacks affect the replicated service, but not other VMs or the PM
	Cross-VM or VM-to-hypervisor attacks

	Classification of real attacks
	Denial of service
	Malware injection
	Metadata spoofing
	XML signature wrapping
	VM-to-hypervisor attack
	Cross-VM side-channel attack
	Hacking
	Defending against real attacks

	Conclusion and future perspectives
	Competing interests
	Authors' contributions
	Acknowledgments
	Author details
	References

