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Abstract

Background: An increasing number of genomic studies interrogating more than one molecular level is published.
Bioinformatics follows biological practice, and recent years have seen a surge in methodology for the integrative
analysis of genomic data. Often such analyses require knowledge of which elements of one platform link to those
of another. Although important, many integrative analyses do not or insufficiently detail the matching of the
platforms.

Results: We describe, illustrate and discuss six matching procedures. They are implemented in the R-package sigaR
(available from Bioconductor). The principles underlying the presented matching procedures are generic, and can
be combined to form new matching approaches or be applied to the matching of other platforms. Illustration of
the matching procedures on a variety of data sets reveals how the procedures differ in the use of the available
data, and may even lead to different results for individual genes.

Conclusions: Matching of data from multiple genomics platforms is an important preprocessing step for many
integrative bioinformatic analysis, for which we present six generic procedures, both old and new. They have been
implemented in the R-package sigaR, available from Bioconductor.
Background
DNA copy number aberrations abound in the cancer
cell. The location, size and direction of these aberrations
vary between cancers of different tissues, between cancers
of the same tissue, and may even exhibit heterogeneity
among cells originating from the same tumor [1]. The
DNA copy number aberrations often span a genomic
region encoding one or multiple transcripts. The expres-
sion levels of such transcripts may be affected (in a variety
of ways) by the abnormal gene dosage. In turn, the
affected transcription levels may have consequences for
the cancer cell.
The elucidation of the relationship between DNA copy

number aberrations and mRNA (and microRNA) transcript
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levels is key to enhance our understanding of the regulatory
mechanism of the cancer cell. To this end, oncogenomic
studies profile both the genome and transcriptome of a
large number of tumors of the same tissue, of which [2,3]
are the first examples. The present day shows studies
involving many more samples, which are profiled on
increasingly higher resolution platforms (e.g., [4-8]).
Bioinformatics follows biological practice. First, only
few, relatively simple procedures for the integrative
analysis of DNA copy number and gene expression
data appeared (e.g., [9-11]). The last few years, how-
ever, have seen a surge in more sophisticated method-
ology addressing a wide range of biological questions
involving the two molecular levels (e.g., [12-24]).
In order to investigate the cis- (and trans-) effect of

DNA copy number changes on expression, we need, for
each gene measured, its corresponding copy number in-
formation. If both profiles are generated on the same
platform this is immediate. Pollack et al. [25] and
Van de IJssel et al. [26] showed that DNA copy number
Central Ltd. This is an Open Access article distributed under the terms of the
/creativecommons.org/licenses/by/2.0), which permits unrestricted use,
, provided the original work is properly cited.

https://core.ac.uk/display/194675986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:w.vanwieringen@vumc.nl


Table 1 Label matching

Step 1

Map the manufacturer’s IDs of both platforms to that of a common
reference set of IDs.

Step 2

For each gene on the expression array, find its ID within the set of
reference IDs of DNA copy number array features.

Step 3

Assign the DNA copy number data of the matched feature to the gene.
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and gene expression data can indeed be generated on
the same platform, cDNA and oligo, respectively. If the
data stem from different platforms, features from both
platforms need to be matched. This matching requires
to resolve two key problems:

� Search for DNA copy number features that are (in
some sense) close to gene expression features.

� Summarize the data of the DNA copy number
features that match to the same gene expression
feature.

Matching is important for the downstream integrative
analyses. Although important, many integrative analyses
of DNA copy number and gene expression data do not
or insufficiently detail the matching of the two plat-
forms. In this paper we present the matching procedures
that we have come across and developed. They are
implemented in the R-package sigaR (available from Bio-
conductor). The principles underlying the presented
matching procedure are generic, and can be combined
to form new matching approaches, or be applied to the
matching of other platforms (facilitated by the imple-
mentation of the distanceAny and overlapAny proce-
dures in sigaR). We apply the matching procedures to
five data sets. This illustrates them any consequences of
employing a particular matching procedure, and suggests
ways of making an informed choice on the method best
applied to the data set at hand.

Implementation
Six procedures and three extensions implemented in the
R-package sigaR for matching the features of a DNA
copy number and gene expression array are outlined.
Starting point of each procedure are two R-objects: one
of the cghCall-class and one of the ExpressionSet-object
as defined in the packages CGHbase and Biobase, both
available via Bioconductor. The cghCall object contains
the DNA copy number data (in its various forms [27]:
normalized, segmented, and called data) and annotation
information of the features of the array (e.g., label,
chromosome, start and end base pair information of the
features). The ExpressionSet object comprises the pre-
processed gene expression data plus annotation informa-
tion of the array on which the data were generated.
Below we describe each matching procedure implemen-
ted in sigaR (with one exception, see later) in detail, and
discuss its pro’s and cons. Example R code for each
matching procedure using sigaR is provided in Appendix B.
The number of conceivable matching procedures is pos-

sibly infinite, so we do not claim to provide an exhaustive
list. Instead the focus is on procedures that address the key
problems in the matching of features from different plat-
forms. The principles underlying the described matching
procedures may be varied upon and combined endlessly to
generate new matching procedures. Also, many of these
principles apply to the matching of platforms interrogating
different molecular levels, or other techniques as massive
parallel sequencing (MPS).

Label
The first matching procedure uses the feature labels (e.g.,
manufacturer IDs) of both arrays. Both sets of labels are
mapped to a common descriptor set, e.g., the gene symbol.
These maps are exploited to link the features of the two
platforms, and features of both platforms are matched if
they map to the same common descriptor. See Lo et al.
[28] for an application of this procedure. Table 1 describes
the procedure algorithmically, while it is depicted visually
in Figure 1.
The label matching procedure depends heavily on the

quality of the maps to the common descriptor set. In par-
ticular, a feature of the DNA copy number array located
on one chromosome might – in principle – be matched to
a gene expression element located on another chromo-
some. Also, many features of both arrays may map to one
descriptor, leading to non-unique matching.
Note that the label matching procedure is not imple-

mented in the sigaR package. But labels can be matched
directly using the match function available from the base
of R.

Distance
As an alternative to the label information, features may
also be matched on the basis of their genomic location.
The first procedure we describe that does this defines a
distance measure between the genomic locations of the
two probe sequences. A gene expression feature is
matched to the DNA copy number feature with the
closest (mid-)base pair position. The distance matching
procedure has, among others, been proposed by
Van Wieringen et al. [11]. See Table 2 for an algorithmic
description, with Figure 2 an illustration of the crucial
step of the algorithm.
Matching by distance may link two features that are

considerably separated genomically. Then, the existence
of a cis-effect of one feature’s gene dosage on another
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Figure 1 Label matching: an ID is sought within a large set of
IDs. The dashed arrow indicates that the gene’s ID has been found
in the pile of DNA copy number IDs.
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feature’s gene expression levels cannot reasonably be
assumed. This problem may be circumvented by limiting
the matching to a set of DNA copy number features in
the vicinity of the gene’s midpoint. Care should still be
exercised. The Overlap matching procedure described
later overcomes this problem.

DistanceAny
Several features may be comparably close to the gene to be
matched. The distance matching procedure however works
in accordance to the winner-takes-all principle: the closest,
even though only marginally closer than the runner-up, is
assigned to the gene. This resembles the philosophy of a
greedy algorithm. A more democratic approach would
allow all features (not only one) to contribute, possibly in
various degrees, to the matching (Figure 3). The distan-
ceAny approach does exactly this, and takes into account
the runners-up. Hereto, the distanceAny matching proced-
ure assigns a weighted average of the DNA copy number
features to the gene. When running over the genome, this
is similar in spirit to a moving average. Weights may be
chosen reciprocal to the distance, and possibly be limited to
a neighborhood of the gene. The details of the distanceAny
algorithm are contained in Table 3.
The possible disadvantages of the distance method

directly transfer to the distance Any method. In particu-
lar, if the genome is highly unstable (exhibiting many
Table 2 Distance matching

Step 1

For all genes, calculate their midpoints (average of start and end base
pair position). Do the same for the features on DNA copy number array.

Step 2

For each gene, calculate the distance between its midpoint and that of
the DNA copy number array features (mapping to the same
chromosome as the gene). See Figure 2.

Step 3

Assign to each gene the DNA copy number data of the feature with
minimum distance between its midpoint and that of the gene.
breakpoints) at or near the location of the gene, the
DNA copy number data assigned by the distanceAny
procedure need not resemble the ‘true’ gene dosage of
the gene.

Overlap
Instead of the distance between two features, the per-
centage of overlap between them may be employed to
match the features from two platforms. A gene is
matched to that DNA copy number feature with which
it has the highest percentage of overlap. Among others
De Menezes et al. [14] have used this approach. Table 4
describes the steps of the approach, while Figure 4 visua-
lizes the key problem.
The overlap procedure may be considered rather con-

servative (matching too few probes). This could be due
to the fact that the features of both platforms may have
a rather disjunct coverage of the genome. There may be
valid biological grounds for this. But this disjunct cover-
age may also cause relatively few genes to be assigned a
DNA copy number feature. The OverlapPlus approach
aims to tackle this.

OverlapAny
A gene may span a genomic region that is interrogated by
multiple DNA copy number features. The overlap match-
ing procedure then chooses an arbitrary feature that has
its DNA copy number data assigned to the gene. Poten-
tially relevant information on the DNA copy number of
the gene is then ignored. Following the distanceAny
matching approach, the data of all features with some
overlap to the gene’s sequence is taken into account (via a
weighting scheme) by the overlapAny approach (Figure 5).
Contrasting the distanceAny method, the weights are pro-
portional to the features’ percentage of overlap. Table 5
describes the steps of the overlapAny algorithm.
The disadvantages of the overlap matching procedure

translate directly to the overlapAny approach.

OverlapPlus
As the name suggests the overlapPlus matching procedure
extends the overlap approach. Hereto overlapPlus alters
the objective of feature matching. No longer are features
of both platforms to be matched. Instead the new aim is
to assign to each gene on the expression array the correct
corresponding DNA copy number. This is achieved by
first applying the overlap matching procedure. Then,
DNA copy number information is interpolated to genomic
areas not covered by the DNA copy number platform in
order to assign to genes that map to these uncovered
regions an “estimate” of their gene dosage (Figure 6). The
interpolation is warranted by the discrete nature of the
underlying biological phenomenon. This interpolation
principle has (among others) been proposed by Autio
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Figure 2 Distance matching: the DNA copy number feature closest to the gene is sought. The black points inside the red boxes represent
the midpoints. Above, feature j-1 clearly is closest to the gene.
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et al. [13]. Table 6 details the steps of the overlapPlus
algorithm.
A drawback of the overlapPlus approach is the fact that

it uses, next to the feature annotation information, the ex-
perimental data (to assess the presence of a breakpoint).
This makes the resulting matching dataset dependent: the
matching may be different for subsets of the dataset.

Extensions to distanceAny and overlapAny
The sigaR-package offers three extensions to the distan-
ceAny and overlapAny procedures. These extensions
concern the case where multiple DNA copy number fea-
tures match to a gene, and distanceAny and overlapAny
then take a weighted average. Instead of averaging, the
first extension selects (in line with the ACEit-package
DNA
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feature j-1 featu

DNA

DNA

genomic orde

feature j-1 featu

Figure 3 Distance Any matching: the DNA copy number data of featu
with weights reciprocal to their distance to the gene. In the top panel
represented by the horizontal solid arrows. In the bottom panel, the featur
reflect the weights (reciprocal to the distances) of each feature’s contributi
[11]) the most extreme (operationalized as the largest
absolute deviation from zero) segmented DNA copy
number signal. This is done per sample individually.
Consequently, the resulting DNA copy number signature
may comprise data from all matched features. Selection
of the ‘most aberrant signature’ leads to more variation
in DNA copy number data, which may benefit the dis-
covery of a cis-effect. However, this approach may also
increase the chance of a false discovery.
The second extension encompasses the introduction of

an additional step prior to the weighted average. It may
happen that one or more of the samples exhibit(s) a break-
point (a change in the segmented values) within the set of
matched DNA copy number features. This extension splits
the set of matched features at all breakpoints occurring
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res (mapping to the same chromosome as the gene) is averaged
the distances between the features’ and the gene’s midpoints are
es’ DNA copy number data are averaged, the width of the arrows
on to the average.



Table 3 DistanceAny matching

Step 1

For all genes, calculate their midpoints (average of start and end base
pair position). Do the same for the features on DNA copy number array.

Step 2

For each gene, calculate the distance between its midpoint and that of
the DNA copy number array features (mapping to the same
chromosome as the gene). See the top panel of Figure 3.

Step 3

For each gene, calculate the weighted average of the DNA copy
number data of the features (mapping to the same chromosome as the
gene). Weights are chosen reciprocal to the distance of the features’
midpoint to that of the gene (bottom panel of Figure 3).
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within it in any of the samples, before proceeding to the
weighted average. As a result, within the matched DNA
copy number - gene expression data set, a gene may ap-
pear multiple times: each time with the same expression
signature (the vector of expression values of that gene over
the samples), but with a different DNA copy number sig-
nature (the vector of DNA copy numbers over the
samples). When interested in cis-effect detection via uni-
variate (gene-wise) analysis, this may increase the multiple
testing correction.
The third and last modification extends the previous

one. Now the set of matched DNA copy number fea-
tures is split into a collection of sets, each containing
only a single DNA copy number feature. Again, in the
final matched data set the same gene maybe present
multiple times. The multiplicity correction may further
increase compared to the previous modifications.
These extensions do not affect the actual assignment

of DNA copy number features to genes, but produce
only minor changes to the DNA copy number data sum-
mary, and are thus not taken along in the remainder.
Note that the results of next Section (and in particular
Tables 7 and 8), which do not involve the summary of
the data, do apply to the extensions.

Results
Five data sets have been downloaded to compare the
matching procedures. Data set 1, referred to as the Chin
Table 4 Overlap matching

Step 1

For each gene, calculate the percentage of overlap between its
sequence and that of the DNA copy number array features (mapping to
the same chromosome as the gene). The percentage of overlap is
defined as the number of overlapping base pairs between the two
sequences divided by the length of the DNA copy number probe.

Step 2

Assign to each gene the DNA copy number data of the feature with the
maximum percentage of overlap between its sequence and that of the
gene.
data set [29], is a study involving breast cancer samples
with genome and transcriptome profiled. Data sets 2
and 3, referred to as the TCGA I and II data sets
(respectively), comprise glioblastoma data from The
Cancer Genome Atlas, both with DNA copy number
and gene expression data available for all samples. The
TCGA I and II data sets differ in their gene expression
data, which have been generated on different platforms.
Data sets 4 and 5, referred to as the Taylor I and II data
sets (respectively), consist of prostate cancer samples
with DNA copy number and microRNA expression pro-
file (Taylor I) and DNA copy number and exon expres-
sion profile (Taylor II). The DNA copy number data of
both data sets (Taylor I and II) are identical. Details on
the data sets are found in Table 7 (e.g., number of sam-
ples, number of features), and more extensively in
Appendix A (including preprocessing details).

Matching
Features of the platform pairs that produced the five data
sets are matched by the following procedures: distance,
distanceAny, overlap, overlapAny, and overlapPlus. Note
the label-procedure is not taken along, for it is not applic-
able to the Chin and Taylor I data sets (there will be no
matching as labels of BACs, the DNA copy number
probes of the Chin data set, and microRNA probes need
not map to a gene label).
The results of application of the matching procedures as

implemented in the sigaR-package to the five data sets are
presented in Table 7. In all data sets the distance procedure
is most successful in terms of the number of gene expres-
sion features that have been matched to a DNA copy num-
ber feature: it has been able to match every gene to a DNA
copy number feature (100% matching). This comes as no
surprise, as the result would be observed even if a gene’s
chromosome was interrogated by only one element of the
array CGH. This ‘success’, however, comes at a price: some
genes are matched to DNA copy number features far away
from the genes’ location. The distanceAny procedure
resolves this drawback by limiting the search for a matching
DNA copy number feature to a subdomain of the genome.
For the TCGA I and II and Taylor I and II data sets this
yields over 97% matching. However, the number of
matched gene expression features falls dramatically (to
17.9%) for the Chin data set, even when using a rather wide
search window (100000 bp from the midpoint in both
directions). This need not be a concern as the Chin DNA
copy number data were generated on an BAC platform,
which is being phased out. The even worse ‘performance’
(1.8% matched gene expression features) on the Chin data
set of the distanceAny procedure with a smaller window
may be attributed to the size of DNA copy number features
(BACs). They are rather long compared to the gene expres-
sion features, resulting in distances between the midpoints
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of features from both platforms that often exceed the
threshold of 10000 bp. As an alternative to the distanceAny
procedure, one may use the overlap or overlapAny proced-
ure to circumvent its drawbacks. For the TCGA I and II
data sets, the percentage of matched gene expression fea-
tures (all over 90%) are not far behind that of the distance
and distanceAny procedures, and they exhibit a comparable
‘performance’ for the Chin and Taylor II data sets (16.1%
and 96.2%, respectively) data as the distanceAny procedure.
But they perform poorly (1.8%) for the Taylor I data set.
This is due to the fact that there simply are no more
overlapping features between the two platforms. The
explanation may be two-fold: 1) microRNAs are
much smaller than mRNAs, and 2) DNA copy
DNA

DNA

genomic orde

gene

feature j-1 feature

DNA

DNA

genomic orde

gene

feature j-1 feature

Figure 5 OverlapAny matching: the DNA copy number data of featur
with weights proportional to their percentage of overlap with the ge
the features’ and the gene’s are represented by the horizontal solid arrows
averaged, the width of the arrows reflect the weights (proportional to the
number features present on the array may be under-
sampled at the location of microRNAs. A relaxation
of the nonzero overlap between features from both
platforms is offered by the overlapPlus procedure.
This works out nicely for the Taylor I data set (the
percentage of matched gene expression features now
at 88.8%), and slightly improves the number of
matched features for the other data sets. However,
the overlapPlus procedure makes use of the experi-
mental data (breakpoints), which implies that the
matching may be different between data sets gener-
ated on the same platform.
As seen from the above, the distanceAny and over-

lapAny procedures come with a tuning parameter
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Table 5 OverlapAny matching

Step 1

For each gene, calculate the percentage of overlap between its
sequence and that of the DNA copy number array features (mapping to
the same chromosome as the gene). The percentage of overlap is
defined as the number of overlapping base pairs between the two
sequences divided by the length of the DNA copy number probe. See
the top panel of Figure 5 for an illustration.

Step 2

For each gene, calculate the weighted average of the DNA copy
number data of the features (mapping to the same chromosome as the
gene). Weights are chosen proportional to the percentage of overlap of
the features’ sequence to that of the gene. This is depicted in the
bottom panel of Figure 5.

Table 6 OverlapPlus matching

Step 1

Apply the overlap matching procedure.

Step 2

For all unmatched genes, the closest DNA copy number feature down-
and upstream are

determined.

Step 3

Per gene, assess whether any of the samples in the dataset exhibits a
breakpoint (i.e., a change in the segmented DNA copy number) in
between the genes closest down- and upstream feature. If no
breakpoint is present (the top panel of Figure 6), assign the DNA copy
number data of the closest feature to the gene. If, any of the samples
reveals a breakpoint (the bottom panel of Figure 6), the gene is left
unmatched. For it could not be decided whether the closest down- or
upstream feature contains the correct DNA copy number data.
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(the separation distance and the percentage of over-
lap, respectively), which affects the number of
matched features. Not directly obvious, but no less
important, the tuning parameter also determines the
total number of DNA copy number features used in
the construction of the matched gene dosage signa-
ture (the vector of DNA copy number values of one
genomic location over samples). Whereas distance,
overlap and overlapPlus eventually select a single
feature from the DNA copy number array, the dis-
tanceAny and overlapAny procedures potentially se-
lect more than one feature, and their data is
aggregated into a matching signature. Hence, the lat-
ter two procedures make more use of the experi-
mental data.
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Figure 6 OverlapPlus matching: after the overlap approach, the DNA
of the gene dosage of the closest array CGH features. In both panels n
approach would interpolate the DNA copy number data between feature j
however, the features j-1 and j are separated by a breakpoint, and the over
Consequences
To contrast these high-level comparisons of the match-
ing procedures, we show the consequences of employing
a particular matching procedure at the level of an indi-
vidual gene. Table 8 shows the resulting matchings for a
single gene of the TCGA II data set. It becomes quickly
obvious that the matched DNA copy number features
differ in number across matching procedures. More
interesting is perhaps how the coverage of the gene var-
ies between these sets of matched DNA copy number
features. The distance matching procedure selects a sin-
gle DNA copy number feature close to the middle of the
gene. The distanceAny (< 10000 bp) procedure covers a
r

feature j feature j+1

gene
expression

array

copy
number

array

breakpoint

r

feature j feature j+1

gene
expression

array

copy
number

array

oint

copy number of unmatched genes is ‘estimated’ by interpolation
o feature overlaps with the gene. In the top panel the overlapPlus
-1 and j, as there is no breakpoint between them. In the bottom panel,
lapPlus procedure will not interpolate.
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larger interval around the midpoint of the gene, but
stays well within the 3′ and 5′ ends of the gene. With a
larger window size (< 100000 bp), the distanceAny pro-
cedure spans a region well beyond the boundaries of the
gene. In contrast, the overlapAny procedures yield a rea-
sonably uniform coverage of the gene not exceeding the
3′ and 5′ ends. Completely different in their choice of
the matching DNA copy number feature are the overlap
and overlapPlus procedures, which select the feature
closest to the 3′ end of the gene. Too large a coverage,
e.g., beyond the limits of the gene, may lead to a DNA
copy number signature unrelated to the gene. Too small
a coverage may assign it a rather noisy DNA copy num-
ber signature. The middle ground, with a reasonable
coverage of the gene as shown by the overlapAny and dis-
tanceAny (with a small window size) procedures, seems
an acceptable compromise.
The consequences of choosing a matching procedure re-

veal themselves also in DNA copy number data, as
Table 7 Matching results for the data sets using various matc

Chin

platform details

manufacturer CN UCSF

probe type CN BAC

manufacturer GE Affymetrix

probe type GE oligo

before matching

# samples 89

# CN features 2149

# GE features 10757

after distance matching

# CN and GE features 10757

after distanceAny matching (< 10000 bp)

# CN and GE features 190

# CN features per gene (average) 1.04

after distanceAny matching (< 100000 bp)

# CN and GE features 1921

# CN features per gene (average) 1.13

after overlap matching

# CN and GE features 1734

after overlapAny matching (> 0%)

# CN and GE features 1734

# CN features per gene (average) 1.13

after overlapAny matching (> 0.10%)

# CN and GE features 1585

# CN features per gene (average) 1.10

after overlapPlus matching

# CN and GE features 1879

For the distanceAny and overlapAny the average number of DNA copy number fea
signature is reported. This is one for all other methods.
matching procedures either select different features or
utilize different ways of summarizing data from multiple
features. The vast majority of genes have DNA copy num-
ber signatures that vary little to nothing between the
matching procedures (Figure 7). As a result, the p-values
and Spearman’s rank correlations differ too, but again lit-
tle. Occasionally, however, there is a data point that is
affected in a more serious manner by the choice of match-
ing procedure. Figure 8 shows that the distanceAny
method has one data point (indicated by the orange circle)
that deviates from its counterpart in the other matched
DNA copy number signatures. In this particular case, it is
due to the large window size chosen, and the problem
vanishes if the window size is decreased.
One expects that the correlation between a gene’s ex-

pression levels and its true DNA copy number signature
is higher than that between the gene’s expression levels
and any other DNA copy number signature. This sug-
gests that the best matching procedure yields the highest
hing procedures

TCGA I TCGA II Taylor I Taylor II

Agilent Agilent Agilent Agilent

oligo oligo oligo oligo

Affymetrix Agilent Agilent Affymetrix

oligo oligio oligo oligo

55 55 49 49

234416 234416 223697 223697

18528 35582 393 15478

18528 35582 393 15478

18179 34620 389 15254

2.92 2.88 4.36 2.87

18480 35424 393 15468

24.33 23.84 27.97 24.47

17426 32135 7 14900

17426 32135 7 14900

8.91 8.63 1 9.86

17424 32123 5 14898

8.91 8.63 1 9.85

18405 35197 349 15381

tures that contribute to the composition of the final DNA copy number



Table 8 Matching results for the A_23_P140170 gene expression feature of the TCGA II data set

Gene expression feature to be matched

Chr. Start End

14 38570874 38642188

Matching DNA copy number features

Chr. Start End dist. dist.Any dist.Any overl. over.Any over.Any over.Plus

(< 10 k) (< 100 k) (> 0%) (> 10%)

14 38510003 38510062 x

14 38542068 38542127 x

14 38555801 38555860 x

14 38562310 38562358 x

14 38571564 38571623 x x x x x

14 38581765 38581824 x x x

14 38587626 38587685 x x x

14 38597108 38597167 x x x x

14 38602277 38602335 x x x x

14 38609230 38609289 x x x x x

14 38614898 38614957 x x x x

14 38626492 38626551 x x x

14 38631536 38631595 x x x

14 38639169 38639225 x x x

14 38646487 38646546 x

14 38653819 38653878 x

14 38665516 38665575 x

14 38670657 38670716 x

14 38675867 38675926 x

14 38682480 38682539 x

14 38686855 38686914 x

14 38693139 38693198 x

14 38697285 38697344 x

14 38701438 38701497 x

14 38705250 38705309 x

An ‘x’ denotes that that DNA copy number feature has been selected by the corresponding matching procedure. The dashed lines indicate the boundaries of the
gene.

van Wieringen et al. BMC Bioinformatics 2012, 13:80 Page 9 of 17
http://www.biomedcentral.com/1471-2105/13/80
correlations between the two molecular levels. There-
fore, for the genes present in all matched versions of a
data set, we calculated the Spearman’s rank correlation
coefficient between the genes’ expression levels and their
assigned DNA copy number signature (segmented data).
For many genes, the matching procedures yield identical
correlations. Even when focussing on those genes with
correlations varying over the matching procedures, the
differences are often small. To provide some insight in
which procedure yields the highest correlations, we
compare the correlations of the matching procedures in
a pairwise fashion. Hereto we simply count how many
times matching procedure A yields a higher correlation
than matching procedure B, and vice versa. Table 9 gives
the results for the Chin and TCGA II data sets. For the
Chin data set, the distance and distanceAny methods
give the best results (more correlations that exceed that
of other procedures than vice versa). E.g., the distance
procedure yields 8− 1 = 7 genes with a higher cis-correl-
ation than the overlapPlus procedure. The distance and
distanceAny methods are followed by the overlapAny pro-
cedure, and finally, but not too far behind, the overlap and
overlapPlus procedures. A similar picture emerges from
the Taylor II data set (results not shown). The TCGA I
(results not shown) and TCGA II data sets tell a different
story: the overlapAny procedure performs best, followed
by the distanceAny with a small window. No clear winner
emerges from this comparison, but it points to either the
distanceAny (with a small window size) or overlapAny
procedure. Or, put differently, in the light of the results
presented in Table 8, this points to procedures capable of
matching multiple DNA copy number features to the
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Figure 7 Each panel depicts the relation between the matched gene expression and DNA copy number data (as produced by one of
the matching procedure) for the 210774_s_at probe from the TCGA data set (with Affymetrix expression arrays). The red line is the best
fitting piece-wise linear spline (as obtained from the method described in [30]). The pink area represent the 95% confidence intervals for the
fitted relationship. The vertical dashed line separate the samples with a loss from those with a normals.
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same gene, and that together have a reasonable coverage
of that gene.

Downstream analysis
Finally, we illustrate the effect of matching on down-
stream analysis. We assess the cis-effect of a DNA copy
number aberration on the expression levels of the genes
mapping to it. Hereto, we employ piecewise linear re-
gression splines (PLRS) to allow any plausible type of re-
lationship between the two molecular levels [Leday
GGR, Van der Vaart AW, Van Wieringen WN, Van de
Wiel MA (2012) “Modeling association between DNA
copy number and gene expression with constrained pie-
cewise linear regression splines”, submitted; 31]. A gene’s
association between gene dosage and expression levels is
declared significant if its corrected p-value (Benjamini-
Hochberg multiple testing correction) is smaller than
0.05. The associated workflow is portrayed in Figure 9.
Table 10 reports the number of significant genes for
each data set - matching procedure combination (the
Taylor I and II data sets are excluded for being unin-
formative, neither provided anything significant). This
number is reported on the whole set of genes matched
by each procedure (the size of this set can be found in
Table 7), but also on the restricted set containing only
those genes that are matched by all procedures. The
Taylor I and Taylor II data sets are not discriminative
between the matching procedures. For the Chin data set
the distance procedure finds most significant genes, fol-
lowed by distanceAny (< 100 k), overlapPlus and other
overlap methods. This order is concordant with the
matching result: the more matched genes, the more dis-
coveries. This may obscure the comparison of the meth-
ods. Moreover, as pointed out before, the distance and
distanceAny (with a large window size) procedures may
match genes to DNA copy number features located else-
where on the genome. This raises doubts over the inter-
pretation of significant associations. In the restricted set
of genes, the number of discoveries is constant over the
methods, with the overlapAny procedure having one
additional finding. In the TCGA I and TCGA II data
sets, irrespective of the gene sets considered, the overla-
pAny procedures yield most significant findings. Note-
worthy is the fact that even though the distance-based
procedures match hundreds (TCGA I) or thousands
(TCGA II) of genes more, this does not lead to more
discoveries. This could be interpreted as the additionally
matched genes being assigned an unrelated DNA copy
number signature. In summary, this comparison of
downstream analyses suggests that (at least in data sets
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Figure 8 Each panel depicts the relation between the matched gene expression and DNA copy number data (as produced by one of
the matching procedure) for the A_23_P168211 probe from the TCGA data set (with Agilent expression arrays). The red line is the best
fitting piece-wise linear spline (as obtained from the method described in [30]). The pink area represent the 95% confidence intervals for the
fitted relationship. The vertical dashed lines separate the samples with a normal from those with a gain, and those with a gain from those with
an amplification.
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generated on a high-resolution DNA copy number plat-
form) the overlapAny procedure may be preferred.

Conclusion
Matching of the features from different high-throughput
platforms is a important preprocessing step for bioinfor-
matic analyses of integrative genomics studies. We have
described, reviewed and implemented (sigaR-package) the
most widely used matching procedures found in literature.
Application of the matching procedures to five data sets
generated on different platforms revealed that 1) the num-
ber of features matched varies considerably between the
matching procedures, and 2) the choice of matching pro-
cedure may even affect (although usually only to a minor
degree) the DNA copy number signature (the vector of
DNA copy number values over the samples) assigned to a
gene. These observations, which have their consequences
on any downstream integrative analysis, facilitate an
informed decision on the matching procedure of choice.
The matching procedures have shown little differ-

ence in the number of features matched and have
very little impact on downstream analysis results, in
the several examples shown. These results rely on
correct pre-processing, of which copy number data
segmentation is an important aspect. It should be
kept in mind that, although overall results may be
robust to matching procedure selection, this may not
be true for all genes, as Figure 8 illustrates. Finally,
care should be exercised when extrapolating these
conclusions to other data sets, which may have been
generated using other platforms/technologies than
those used here.
We recommend to start the matching with the

overlapAny procedure. This may be conservative in
some cases, but certainly has the clearest and most
undisputed physical interpretation for matching. If
this yields satisfactory results, the task is done. Else,
remaining unmatched features may be handled either
by the distanceAny (with not too big a window
around the gene) or overlapPlus procedure.

Availability and requirements

� Project name: sigaR
� Project home page: http://www.bioconductor.org
� Operating system: Platform independent
� Programming language: R
� Other requirements: R (currently: R-devel; soon: >=

2.15.0)
� License: General Public Licence (>= 2)
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Figure 9 Flowchart of cis-effect analysis.

Table 9 Pairwise comparison of cis-correlations

dist. dist.Any dist.Any overl. over.Any over.Any over.Plus

(< 10 k) (< 100 k) (> 0%) (> 10%)

distance

Chin - 15 7 8 15 14 8

TCGA II - 5869 778 1253 1632 1641 1253

distanceAny (< 10 k)

Chin 1 - 10 17 15 15 17

TCGA II 919 - 5957 6153 5694 5698 6153

distanceAny (< 100 k)

Chin 11 9 - 9 11 10 9

TCGA II 6102 5821 - 1808 1812 1823 1808

overlap

Chin 1 9 4 - 8 7 0

TCGA II 1294 6090 1770 - 1883 1885 0

overlapAny (> 0%)

Chin 10 12 14 13 - 5 13

TCGA II 2071 5807 2131 2116 - 168 2116

overlapAny (> 10%)

Chin 10 12 14 11 3 - 11

TCGA II 2074 5810 2137 2122 161 - 2122

overlapPlus

Chin 1 9 4 0 8 7 -

TCGA II 1294 6090 1770 0 1883 1885 -

The upper triangle contains the number of genes (within the set of intersecting genes) with cis-correlations (Spearman) of the column matching procedure
exceeding those of the row matching procedure. Low triangle similar, but defined vice versa. Recall the number of intersecting genes equals 157 (Chin) and
31947 (TCGA II).
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Table 10 Results of downstream analysis

Chin TCGA I TCGA II
(157) (17352) (31947)

distance matching

individual 4009 929 9845

intersection 66 913 9768

distanceAny matching (< 10000 bp)

individual 74 914 9772

intersection 66 932 9769

distanceAny matching (< 100000 bp)

individual 787 937 9814

intersection 66 924 9740

overlap matching

individual 675 912 9824

intersection 66 911 9801

overlapAny matching (> 0%)

individual 684 937 9810

intersection 67 935 9779

overlapAny matching (> 0.10%)

individual 640 937 9809

intersection 67 935 9778

overlapPlus matching

individual 737 920 9859

intersection 66 909 9800

Number of genes with a significant cis-effect at FDR< 0.05 for the data set-
matching combinations. The number of genes is displayed for data sets as
yielded by each matching procedure individually, and for the data sets
confined to the set of intersecting genes. The total number of intersecting
genes is given directly below to the data set name.
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� Any restrictions to use by non-academics: none
declared.

Appendix A: Data sets
Data set 1: Chin

� Sample type: Breast cancer.
� Molecular levels: DNA copy number & gene

expression.
� Reference: Chin et al. [29].
� DNA copy number platform: BAC, fabricated at UC

San Francisco.
� Gene expression platform: Affymetrix U133A.
� Number of samples: 89.
� Availability: CaBig repository.
� Preprocessing: Pre-processing of both DNA copy

number and gene expression data used here was as
described in [32], with the additional steps of
segmentation and calling (via the R-package CGHcall
[33], using default settings) on the normalized data.
The annotation information of both datasets was
updated as described below. The publicly available
DNA copy number data had an annotation table
involving chromosome number, start and end
positions, with the latter equal to exactly the start plus
2 bp, for all BAC clones. As this is unlikely to be true
and correct information is essential for matching to
be performed adequately, annotation information for
BAC clones from Ensembl was used to update the
information. For 1491 BAC clones in the Chin data,
we obtained updated start and end positions. For the
remaining clones, not found via Ensembl, their
chromosome and start data were kept the same, but
their end location was imputed by the sum of their
start plus the average BAC clone length on the newer
annotation table (144132 bp). The Chin gene
expression array data contained 21339 probe sets.
Using the Bioconductor package hgu133plus2.db
version 2.4.1, we obtained up-to-date annotation
(including start and end chromosomal positions) for
16099 probe sets. Some of those were allocated to
more than one chromosome, in which case we took
the first values for chromosome, start and end
encountered in the data table.

Data set 2: TCGA I

� Sample type: Glioblastoma.
� Molecular levels: DNA copy number & gene

expression.
� Reference: Verhaak et al. [34].
� DNA copy number platform: 244 K Agilent MSKCC.
� Gene expression platform: Affymetrix 133A.
� Number of samples: 55.
� Availability: The Cancer Genome Atlas (TCGA):

http://cancergenome.nih.gov/
� Preprocessing: All samples from batch 1 to 3, for

which both copy number data (244 K Agilent
MSKCC) and level-e normalized expression data
(Affy 133A) is available, were used. Replicated
samples were not taken into account. Probe
features were matched to genomic locations
using Ensembl and biomaRt (NCBI build 36,
Ensemble 54). The Affymetrix gene expression
array contains 22277 probe features, of which
18607 could be matched to a genomic location.
After removal of probes mapping to the Y
chromosome, 18528 probes for the gene
expression data were left. The Agilent copy
number platform consists of 235834 probe
features of which all features could be matched
to a genomic location. 234416 were available
after preprocessing in CGHcall [33].
Segmentation and calling were performed using
default settings except for undo.sd (0.6).

� Note: The DNA copy number data of this data set is
identical to that of the TCGA II data set.

http://cancergenome.nih.gov/


Table 12 R-code for overlap matching

# match
> matchedIDs < − matchCGHcall2ExpressionSet(CNdata, GEdata, 1, 2, 3,

1, 2, 3, method = “overlap”)

> # generate matched objects

> CNdata < − cghCall2subset(CNdata, matchedIDs[,1])

> GEdata < − ExpressionSet2subset(GEdata, matchedIDs[,2])

Table 13 R-code for overlapPlus matching

# match
> matchedIDs < − matchCGHcall2ExpressionSet(CNdata, GEdata, 1, 2, 3,

1, 2, 3, method = “overlapPlus”)

> # generate matched objects

> CNdata < − cghCall2subset(CNdata, matchedIDs[,1])

> GEdata < − ExpressionSet2subset(GEdata, matchedIDs[,2])

Table 14 R-code for distanceAny matching

# match
> matchedIDs < − matchAnn2Ann(fData(CNdata)[,1], fData(CNdata)[,2],

fData(CNdata)[,3], fData(GEdata)[,1],

fData(GEdata)[,2], fData(GEdata)[,3],

method = “distance”)

> # add offset to distances (avoids infinitely large weights)

> matchedIDs < − lapply(matchedIDs, function(Z, offset){ Z[,3] < − Z[,3]
+ offset;

return(Z) }, offset = 1)

> # extract ids for object subsetting

> matchedIDsGE < − lapply(matchedIDs, function(Z){ return(Z[, -2,
drop=FALSE]) })

> matchedIDsCN < − lapply(matchedIDs, function(Z){ return(Z[, -1,
drop=FALSE]) })

> # generate matched objects

> GEdata < − ExpressionSet2weightedSubset(GEdata, matchedIDsGE, 1,
2, 3)

> CNdata < − cghCall2weightedSubset(CNdata, matchedIDsCN, 1, 2, 3)

Table 15 R-code for overlapAny matching

# match
> matchedIDs < − matchAnn2Ann(fData(CNdata)[,1], fData(CNdata)[,2],

fData(CNdata)[,3], fData(GEdata)[,1],

fData(GEdata)[,2], fData(GEdata)[,3],
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Data set 3: TCGA II

� Sample type: Glioblastoma.
� Molecular levels: DNA copy number & gene

expression.
� Reference: Verhaak et al. [34].
� DNA copy number platform: 244 K Agilent MSKCC.
� Gene expression platform: Agilent custom 244 K.
� Number of samples: 55.
� Availability: The Cancer Genome Atlas (TCGA):

http://cancergenome.nih.gov/
� Preprocessing: All samples from batch 1 to 3, for

which both copy number data (244K Agilent
MSKCC) and level-2 normalized expression data
(Agilent custom 244K) is available, were used.
Replicated samples were not taken into account.
Probe features were matched to genomic locations
using Ensembl and biomaRt (NCBI build 36,
Ensemble 54). The Agilent gene expression array is a
custom design on the 244K platform with 90K unique
probes. Only 36196 of the 90797 unique probes could
be matched to genomic locations using Ensembl.
After removal of probes mapping to the Y
chromosome, 35582 probes for the gene expression
data were left. The Agilent copy number platform
consists of 235834 probe features of which all features
could be matched to a genomic location. 234416 were
available after preprocessing in CGHcall [33].
Segmentation and calling were performed using default
settings except for undo.sd (0.6).

� Note: The DNA copy number data of this data set is
identical to that of the TCGA I data set.

Data set 4: Taylor I

� Sample type: Prostate cancer.
� Molecular levels: DNA copy number & microRNA

expression.
� Reference: Taylor et al. [35].
� DNA copy number platform: Agilent 244 K array

CGH.
� MicroRNA expression platform: Agilent microRNA

V2.
� Number of samples: 49.
method = “overlap”)

> # extract ids for object subsetting

> matchedIDsGE < − lapply(matchedIDs, function(Z){ return(Z[, -2,
drop=FALSE]) })

> matchedIDsCN < − lapply(matchedIDs, function(Z){ return(Z[, -1,
drop=FALSE]) })

> # generate matched objects

> GEdata < − ExpressionSet2weightedSubset(GEdata, matchedIDsGE, 1,
2, 3)

> CNdata < − cghCall2weightedSubset(CNdata, matchedIDsCN, 1, 2, 3)

Table 11 R-code for distance matching

# match
> matchedIDs < − matchCGHcall2ExpressionSet(CNdata, GEdata, 1, 2, 3,

1, 2, 3, method = “distance”)

> # generate matched objects

> CNdata < − cghCall2subset(CNdata, matchedIDs[,1])

> GEdata < − ExpressionSet2subset(GEdata, matchedIDs[,2])

http://cancergenome.nih.gov/


Table 16 R-code for overlapAny matching with extension
1: extreme DNA copy number signal

# match
> matchedIDs < − matchAnn2Ann(fData(CNdata)[,1], fData(CNdata)[,2],

fData(CNdata)[,3], fData(GEdata)[,1],

fData(GEdata)[,2], fData(GEdata)[,3],

method= “overlap”)

> # extract ids for object subsetting

> matchedIDsGE < − lapply(matchedIDs, function(Z){ return(Z[, -2,
drop=FALSE]) })

> matchedIDsCN < − lapply(matchedIDs, function(Z){ return(Z[, -1,
drop=FALSE]) })

> # generate matched objects

> GEdata < − ExpressionSet2weightedSubset(GEdata, matchedIDsGE, 1,
2, 3)

> CNdata < − cghCall2maximumSubset(CNdata, matchedIDsCN, 1, 2, 3)

Table 17 R-code for overlapAny matching with extension
2: split at breakpoints

# match
> matchedIDs < − matchAnn2Ann(fData(CNdata)[,1], fData(CNdata)[,2],

fData(CNdata)[,3], fData(GEdata)[,1],

method = “overlap”)

> # expand > matchedFeatures < − splitMatchingAtBreakpoints
(matchedFeatures, CNdata)

> # extract ids for object subsetting

> matchedIDsGE < − lapply(matchedIDs, function(Z){ return(Z[, -2,
drop=FALSE]) })

> matchedIDsCN < − lapply(matchedIDs, function(Z){ return(Z[, -1,
drop=FALSE]) })

> # generate matched objects

> GEdata < − ExpressionSet2weightedSubset(GEdata, matchedIDsGE, 1,
2, 3)

> CNdata < − cghCall2weightedSubset(CNdata, matchedIDsCN, 1, 2, 3)

Table 18 R-code for overlapAny matching with extension
3: link gene to each matched DNA copy number feature
seperately

# match
> matchedIDs < − matchAnn2Ann(fData(CNdata)[,1], fData(CNdata)[,2],

fData(CNdata)[,3], fData(GEdata)[,1],

fData(GEdata)[,2], fData(GEdata)[,3],

method = “overlap”)

> # expand > matchedIDs < − expandMatching2singleIDs(matchedIDs)

> # extract ids for object subsetting

> matchedIDsGE < − lapply(matchedIDs, function(Z){ return(Z[, -2,
drop=FALSE]) })

> matchedIDsCN < − lapply(matchedIDs, function(Z){ return(Z[, -1,
drop=FALSE]) })

> # generate matched objects

> GEdata < − ExpressionSet2weightedSubset(GEdata, matchedIDsGE, 1,
2, 3)

> CNdata < − cghCall2maximumSubset(CNdata, matchedIDsCN, 1, 2, 3)
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� Availability: GEO database (DNA copy number:
GSE21034; Exon expression: GSE21036).

� Preprocessing: Data are limited to 49 prostate cancer
samples of which DNA copy number, exon expression
and microRNA expression (see data set Taylor I) was
available. The Agilent 244 k array CGH raw data were
provided as tab-delimitedtext files containing the
normalised log2-ratios and the values of control
measures such as background-to-foreground ratios,
spot saturation, spot uniformity and others. The files
were imported into R and the data filtered for the
aforementioned quality criteria and subsequently
merged with the recent annotation data provided by
Agilent eArray. The data was segmented and called
using the CGHcall-package [33] using default settings.
The resulting data consists of 223697 oligo probes
(autosomes only). The Agilent Human miRNA
Microarray 2.0 (GEO platform GPL8227) data were
downloaded as text files and imported and processed in
R using the Bioconductor package AgiMicroRna [36].
The log2 expression values were normalized using
RMA [37] and the resulting data matrix filtered for QA
criteria provided by Agilent that make sure that only
meaningful expression values are kept in the dataset.
The final data object contained the expression values of
393 miRNAs (autosomes only) from 49 samples.

� Note: The DNA copy number data of this data set is
identical to that of the Taylor II data set.

Data set 5: Taylor II

� Sample type: Prostate cancer.
� Molecular levels: DNA copy number & exon

expression.
� Reference: Taylor et al. [35].
� DNA copy number platform: Agilent 244 K array CGH.
� Exon expression platform: Affymetrix Human Exon

1.0 ST array.
� Number of samples: 49.
� Availability: GEO database (DNA copy number:

GSE21034; Exon expression: GSE21036).
� Preprocessing: Data are limited to 49 prostate cancer

samples of which DNA copy number, exon expression
and microRNA expression (see data set Taylor I) was
available. The Agilent 244 k array CGH raw data were
provided as tab-delimitedtext files containing the
normalised log2-ratios and the values of control
measures such as background-to-foreground ratios,
spot saturation, spot uniformity and others. The files
were imported into R and the data filtered for the
aforementioned quality criteria and subsequently
merged with the recent annotation data provided by
Agilent eArray. The data was segmented and called
using the CGHcall-package [33] using default settings.
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The resulting data consists of 223697 oligo probes
(autosomes only). Preprocessing of the Affymetrix
Human Exon 1.0 ST Array data (GEO platform
GPL5188) followed the workflow described in [38].
Briefly, Affymetrix Power Tools was used to read the
raw data CEL files with hybridisation fluorescence
intensities along with the latest version of annotation
files and to normalise the gene-level data using the
Robust Multichip Average (RMA) algorithm [37]. After
quality filtering the result is stored in an ExpressionSet-
object with summarized log2-ratios of 15478 genes
(autosomes only) from 49 samples.

� Note: The DNA copy number data of this data set is
identical to that of the Taylor I data set.

Appendix B: Example code
For the R-code below it is assumed that the sigaR-pack-
age plus its dependencies have been activated, and that
the cghCall and ExpressionSet objects (called CNdata
and GEdata, respectively) have been loaded (Tables 11,
12, 13, 14, 15, 16, 17 and 18).
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