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Abstract
By using a density technique, sufficient conditions for lower semicontinuity of strong
solutions to a parametric generalized vector equilibrium problem are established,
where the monotonicity is not necessary. The obtained results are different from the
corresponding ones in the literature (Gong and Yao in J. Optim. Theory Appl.
138:197-205, 2008; Gong in J. Optim. Theory Appl. 139:35-46, 2008; Chen and Li in Pac.
J. Optim. 6:141-151, 2010; Li and Fang in J. Optim. Theory Appl. 147:507-515, 2010;
Gong and Yao in J. Optim. Theory Appl. 138:189-196, 2008). Some examples are given
to illustrate the results.
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1 Introduction
It is well known that the vector equilibrium problem (VEP, in short) is a very general
mathematical model, which embraces the formats of several disciplines, as those for Nash
equilibria, those fromGameTheory, those from (Vector) Optimization and (Vector) Vari-
ational Inequalities, and so on (see [–]).
The stability analysis of solution maps for parametric vector equilibrium problems

(PVEP, in short) is an important topic in optimization theory and applications. There are
some papers discussing the upper and/or lower semicontinuity of solution maps. Cheng
and Zhu [] obtained a result on the lower semicontinuity of the solution set map to a
PVEP in finite-dimensional spaces by using a scalarization method. Huang et al. [] used
local existence results of the models considered and additional assumptions to establish
the lower semicontinuity of solution mappings for parametric implicit vector equilibrium
problems. Recently, by virtue of a density result and scalarization technique, Gong and
Yao [] have first discussed the lower semicontinuity of efficient solutions to parametric
vector equilibrium problems, which are called generalized systems in their paper. By using
the idea of Cheng and Zhu [], Gong [] has discussed the continuity of the solution maps
to a weak PVEP in Hausdorff topological vector spaces. Kimura and Yao [] discussed
the semicontinuity of solution maps for parametric vector quasi-equilibrium problems
by virtue of the closedness or openness assumptions for some certain sets. Xu and Li []
proved the lower semicontinuity for PVEP by using a new proofmethod, which is different
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from the one used in Gong and Yao []. Chen and Li [] studied the continuity of solution
sets for parametric generalized systems without the uniform compactness assumption,
which improves the corresponding results in []. We observe that the semicontinuity of
solution maps for the PVEP has been discussed under the assumption of C-strict (strong)
monotonicity, which implies that the f -solution set of the PVEP is a singleton for a linear
continuous functional f (see [, , , , ]). However, it is well known that the f -solution
set of (weak) PVEPs should be general, but not a singleton. Moreover, to the best of our
knowledge, there are few results of semicontinuity have been established for strong so-
lution maps of PVEP in the literature. So, in this paper, by using a density skill, we aim
at studying the lower semicontinuity of the strong solution map for a class of parametric
generalized vector equilibrium problems (PGVEPs), when the f -solution set is a general
set by removing the assumption of C-strict monotonicity.
The rest of the paper is organized as follows. In Section , we introduce a class of para-

metric generalized vector equilibrium problem, and recall some concepts and their prop-
erties. In Section , by the density and scalarization technique, we discuss the lower semi-
continuity of strong solution mappings to the PGVEP, and compare our main results with
the corresponding ones in the recent literature [, , , ]. We also give some examples
to illustrate our results.

2 Preliminaries
Throughout this paper, unless specified otherwise, let X, Y be normed spaces and Z be
Banach space. Let Y ∗ be the topological dual space of Y , and C be a closed convex pointed
cone in Y with nonempty topological interior intC.
Let

C∗ :=
{
f ∈ Y ∗ : f (y) ≥ ,∀y ∈ C

}

be the dual cone of C. Denote the quasi-interior of C∗ by C�, i.e.,

C� :=
{
f ∈ Y ∗ : f (y) > ,∀y ∈ C \ {}}.

Let A be a nonempty subset of X and F : A × A → Y be a vector-valued mapping. We
consider the following generalized vector equilibrium problem:

Find x ∈ A such that F(x, y) /∈ –K , ∀y ∈ A,

where K ∪ {} is a convex cone in Y .
When the subset A and the mapping F are perturbed by a parameter μ ∈ �, in which

� is a nonempty subset of Z, we consider the following parametric generalized vector
equilibrium problem (PGVEP):

Find x ∈ A(μ) such that F(x, y,μ) /∈ –K , ∀y ∈ A(μ),

where A : � → X \ {∅} is a set-valued mapping, F : B × B × � ⊂ X × X × Z → Y is a
vector-valued mapping with A(�) =

⋃
μ∈� A(μ)⊂ B.
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Definition . [] A vector x ∈ A(μ) is called a weak solution to the (PGVEP), iff

F(x, y,μ) /∈ – intC, ∀y ∈ A(μ).

The set of the weak solutions to the (PGVEP) is denoted by Vw(μ).

Definition . A vector x ∈ A(μ) is called a strong solution to the (PGVEP), iff

F(x, y,μ) /∈ –C \ {}, ∀y ∈ A(μ).

The set of the strong solutions to the (PGVEP) is denoted by Vs(μ).

Definition . [] Let f ∈ C∗ \ {}. A vector x ∈ A(μ) is called an f -solution to the
(PGVEP), iff

f
(
F(x, y,μ)

) ≥ , ∀y ∈ A(μ).

The set of the f -solution to the (PGVEP) is denoted by Vf (μ).

Definition . Let F : X ×X × � → Y be a vector-valued mapping.
(i) F(·, ·, ·) is called C-monotone on A(μ)×A(μ)× �, iff for any given μ ∈ �, for each

x, y ∈ A(μ), F(x, y,μ) + F(y,x,μ) ∈ –C.
(ii) F(·, ·, ·) is called C-strictly monotone (i.e., C-strongly monotone in []) on

A(μ)×A(μ)× �, iff F is a C-monotone on A(μ)×A(μ)× �, and for any given
μ ∈ �, for each x, y ∈ A(μ) with x 
= y, F(x, y,μ) + F(y,x,μ) ∈ – intC.

(iii) F(x, ·,μ) is called C-convex if, for each x,x ∈ A(μ) and t ∈ [, ],
tF(x,x,μ) + ( – t)F(x,x,μ) ∈ F(x, tx + ( – t)x,μ) +C.

(iv) F(x, ·,μ) is called C-like-convex on A(μ), iff for any x,x ∈ A(μ) and any t ∈ [, ],
there exists x ∈ A(μ) such that tF(x,x,μ) + ( – t)F(x,x,μ) ∈ F(x,x,μ) +C.

(v) A set D ⊂ Y is called a C-convex set, iff D +C is a convex set in Y .

Throughout this paper, we always assumeVw(μ) 
= ∅ andVs(μ) 
= ∅ for allμ ∈ �. This pa-
per aims at investigating the semicontinuity of the strong solution mappings to (PGVEP).

Lemma . [] Let F(x,A(μ),μ) be a C-convex set for each μ ∈ � and x ∈ A(μ). If
intC 
= ∅, then Vw(μ) =

⋃
f∈C∗\{} Vf (μ).

The notation B(λ̄, δ) denotes the open ball with center λ̄ ∈ � and radius δ > . Let F :
� → X be a set-valued mapping, and let there be given λ̄ ∈ �.

Definition . []
(i) F is called lower semicontinuous (l.s.c., for short) at λ̄, iff for any open set V

satisfying V ∩ F(λ̄) 
= ∅, there exists δ > , such that for every λ ∈ B(λ̄, δ),
V ∩ F(λ) 
= ∅.

(ii) F is called upper semicontinuous (u.s.c., for short) at λ̄, iff for any open set V
satisfying F(λ̄) ⊂ V , there exists δ > , such that for every λ ∈ B(λ̄, δ), F(λ)⊂ V .
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We say F is l.s.c. (resp. u.s.c.) on �, iff it is l.s.c. (resp. u.s.c.) at each λ ∈ �. F is said to
be continuous on �, iff it is both l.s.c. and u.s.c. on �.

Proposition . []
(i) F is l.s.c. at λ̄ if and only if for any sequence {λn} ⊂ � with λn → λ̄ and any x̄ ∈ F(λ̄),

there exists xn ∈ F(λn), such that xn → x̄.
(ii) If F has compact values (i.e., F(λ) is a compact set for each λ ∈ �), then F is u.s.c. at

λ̄ if and only if for any sequences {λn} ⊂ � with λn → λ̄ and {xn} with xn ∈ F(λn),
there exist x̄ ∈ F(λ̄) and a subsequence {xnk } of {xn}, such that xnk → x̄.

The following lemma plays an important role in the proof of the lower semicontinuity
of the solution map Vs(μ).

Lemma . [, Theorem , p.] The union � =
⋃

i∈I �i of a family of l.s.c. set-valued
mappings�i from a topological space X into a topological space Y is also an l.s.c. set-valued
mapping from X into Y , where I is an index set.
Let Q : X → Y be a set-valued mapping between two topological spaces. The lower limit

of Q is defined as

Liminfx→x Q(x) =
{
y ∈ Y : ∀xα → x,∃yα ∈Q(xα), yα → y

}
.

Proposition . []
(i) Liminfx→x Q(x) is a closed set.
(ii) Q is l.s.c. at x ∈ domQ := {x|Q(x) 
= ∅} if and only if Q(x) ⊂ Liminfx→x Q(x).

3 Lower semicontinuity of strong solution sets to (PGVEP)
In this section, we discuss the lower semicontinuity of the strong solutions for (PVEP).
Firstly, we obtain two important lemmas relevant to the (PVEP) as follows.

Lemma . Let f ∈ C∗ \ {}. Suppose the following conditions are satisfied:
(i) A(·) is continuous with compact convex values on �.
(ii) For each μ ∈ �, F(·, ·, ·) is continuous on B× B× μ.
(iii) For each μ ∈ �, x ∈ A(μ) \Vf (μ), there exist y ∈ Vf (μ) and r > , such that

F(x, y,μ) + F(y,x,μ) + B
(
,dr(x, y)

) ⊂ –C.

Then Vf (·) is l.s.c. on �.

Proof Suppose to the contrary that there exists μ ∈ �, such that Vf (·) is not l.s.c. at μ.
Then there exist a sequence {μn} with μn → μ and x ∈ Vf (μ), such that for any xn ∈
Vf (μn), xn � x.
Since A(·) is l.s.c. at μ, there exists x̄n ∈ A(μn), such that x̄n → x. Obviously, x̄n ∈

A(μn) \Vf (μn). By (iii), there exists yn ∈ Vf (μn) such that

F(x̄n, yn,μn) + F(yn, x̄n,μn) + B
(
,dr(x̄n, yn)

) ⊂ –C. (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/325
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For yn ∈ A(μn), because A(·) is u.s.c. at μ with compact values, there exist y ∈ A(μ) and
a subsequence {ynk } of {yn}, such that ynk → y. In particular, for (.), we have

F(x̄nk , ynk ,μnk ) + F(ynk , x̄nk ,μnk ) + B
(
,dr(x̄nk , ynk )

) ⊂ –C. (.)

Taking the limit as nk → +∞, we have

F(x, y,μ) + F(y,x,μ) + B
(
,dr(x, y)

) ⊂ –C. (.)

Noting that x ∈ Vf (μ) and y ∈ A(μ), we have

f
(
F(x, y,μ)

) ≥ . (.)

Moreover, since ynk ∈ Vf (μnk ) and x̄nk ∈ A(μnk ), it follows from the continuity of f and F
that

f
(
F(y,x,μ)

) ≥ . (.)

By (.), (.), and the linearity of f , we have

f
(
F(x, y,μ) + F(y,x,μ)

) ≥ . (.)

Assume that x 
= y; by (.), we obtain F(x, y,μ) + F(y,x,μ) ⊂ – intC. Thus, we
have

f
(
F(x, y,μ) + F(y,x,μ)

)
< ,

which contradicts (.). Therefore x = y, which leads to a contradiction. Hence, for each
f ∈ C∗ \ {}, Sf (·) is l.s.c. on �. �

Lemma . Let f ∈ C∗ \ {}. Suppose the following conditions are satisfied:
(i) A is nonempty compact set.
(ii) F(·, ·) is continuous on B× B.
(iii) For each x ∈ A \Vf there exist y ∈ Vf and r > , such that

F(x, y) + F(y,x) + B
(
,dr(x, y)

) ⊂ –C.

Let us define the set-valued mapping H : C∗ \ {} → A by

H(f ) = Vf , f ∈ C∗ \ {};

then we see that H(·) is l.s.c. on C∗ \ {}.

Proof By using Lemma . and following a similar way to the proof to Lemma . of [],
we can obtain the conclusion. �

Now, we discuss the lower semicontinuity of strong solution mappings to (PGVEP).

http://www.journalofinequalitiesandapplications.com/content/2014/1/325
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Theorem . Let f ∈ C∗ \ {}. Suppose the following conditions are satisfied:
(i) A(·) is continuous with compact convex values on �.
(ii) For each μ ∈ � and x ∈ A(μ), F(x, ·,μ) is C-like-convex on A(μ).
(iii) For each μ ∈ �, F(·, ·, ·) is continuous on B× B× μ.
(iv) For each μ ∈ �, x ∈ A(μ) \Vf (μ), there exist y ∈ Vf (μ) and r > , such that

F(x, y,μ) + F(y,x,μ) + B
(
,dr(x, y)

) ⊂ –C.

(v) F(A(μ),A(μ),μ) are bounded subsets of Y for each μ ∈ �.
(vi) C� 
= ∅ and intC 
= ∅.

Then Vs(·) is lower semicontinuous on �.

Proof We prove the result in the following three steps.
Step . We first show that

⋃
f∈C�

Vf (μ) ⊂ Vs(μ) ⊂ cl
( ⋃
f∈C�

Vf (μ)
)
. (.)

Since Vf (μ) 
= ∅, for each f ∈ C∗ \ {}. Then, by definition, we have
⋃
f∈C�

Vf (μ) ⊂ Vs(μ) ⊂ Vw(μ). (.)

Since for any x ∈ A(μ), F(x, ·,μ) is C-like-convex, then F(x,A(μ),μ) + C is a convex set.
From Lemma ., we have

Vw(μ) =
⋃

f∈C∗\{}
Vf (μ). (.)

By (.) and (.), we get

⋃
f∈C�

Vf (μ) ⊂ Vs(μ) ⊂
⋃

f∈C∗\{}
Vf (μ). (.)

To show that

⋃
f∈C∗\{}

Vf (μ) ⊂ cl
( ⋃
f∈C�

Vf (μ)
)
, (.)

we first prove

⋃
f∈C∗\{}

Vf ⊂ cl
( ⋃
f∈C�

Vf

)
. (.)

Let us define the set-valued mapping H : C∗ \ {} → A by

H(f ) = Vf , f ∈ C∗ \ {}.

By Lemma ., we know that H(·) is lower semicontinuous on C∗ \ {}.

http://www.journalofinequalitiesandapplications.com/content/2014/1/325
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Let x ∈ ⋃
f∈C∗\{} Vf . Then there exists f ∈ C∗ \ {} such that

x ∈ Vf =H(f).

Since C� 
= ∅, let g ∈ C� and set

fn = f + (/n)g.

Then fn ∈ C�. We show that {fn} converges to f with respect to the topology β(Y ∗,Y ).
For any neighborhoodU of  with respect to β(Y ∗,Y ), there exist bounded subsets Bi ⊂

Y (i = , , . . . ,m) and ε >  such that

m⋂
i=

{
f ∈ Y ∗ : sup

y∈Bi

∣∣f (y)∣∣ < ε
}

⊂U .

Since Bi is bounded and g ∈ Y ∗, |g(Bi)| is bounded for i = , . . . ,m. Thus, there exists N
such that

sup
y∈Bi

∣∣(/n)g(y)∣∣ < ε, i = , . . . ,m,n≥N .

Hence (/n)g ∈ U , that is, fn – f ∈ U . This means that {fn} converges to f with respect to
β(Y ∗,Y ).
Since H(f ) is l.s.c. at f, for sequence {fn} ⊂ C∗ \ {}, fn → f and x ∈H(f), there exists

xn ∈H(fn) = Vfn ⊂ ⋃
f∈C� Vf , such that xn → x. This means that

x ∈ cl
( ⋃
f∈C�

Vf

)
.

By the arbitrariness of x ∈ ⋃
f∈C∗\{} Vf , we have

⋃
f∈C∗\{}

Vf ⊂ cl
( ⋃
f∈C�

Vf

)
.

Then we can obtain the result that for each μ ∈ � (.) is valid, and the validity of (.)
follows readily from (.) and (.).
Step . For each μ ∈ �, let S̃(μ) :=

⋃
f∈C� Vf (μ). By a similar argument to the proof of

Lemma ., we find for each f ∈ C�, that Vf (·) is l.s.c. on�. It follows from Lemma . that
S̃(·) is l.s.c. on �.
Step . Now we show that Vs(·) is lower semicontinuous on �. From Step , we have

S̃(μ) ⊂ Vs(μ) ⊂ cl
(
S̃(μ)

)
, ∀μ ∈ �.

Let μ ∈ � be any fixed point. Because of the lower semicontinuity of S̃(·) at μ and the
closedness of the lower limit of S̃ (see Proposition .), together with the above inclusion
relation, we have

Vs(μ) ⊂ cl
(
S̃(μ)

) ⊂ lim inf
μα→μ

S̃(μα) ⊂ lim inf
μα→μ

Vs(μα).

http://www.journalofinequalitiesandapplications.com/content/2014/1/325
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Hence, Vs(·) is l.s.c. at μ. By the arbitrariness of μ, Vs(·) is l.s.c. on �. This completes
the proof. �

Remark . In Theorem ., by using the density technique, we obtain a sufficient condi-
tion for the lower semicontinuity of strong solutions to (PGVEP).Our approach is different
from the corresponding ones in [] (see Theorem . of []). Furthermore, the condition of
C-strong (strict) monotonicity is not required, and the C-convexity of F is generalized to
the C-like-convexity. Thus, Theorem . improves and extends the corresponding results
in the literature [, , , , ]. The following example is given to illustrate the case.

Example . LetX = R, Y = R,C = R
+,� = [, ],A(μ) = [–, ], and F(x, y,μ) = (–μ +

y, μx). For any f ∈ C∗ \ {}, it follows from a direct computation that Vf (μ) = [, ]. It is
clear that A(·) is a continuous set-valued mapping with nonempty compact convex values
and for each μ ∈ �, F(·, ·, ·) is continuous on A(μ)×A(μ)× μ. Therefore, conditions (i)-
(ii) of Theorem . are satisfied. For any given μ ∈ � and for any given x ∈ A(μ), we have,
for any y, y ∈ A(μ), t ∈ [, ],

F
(
x, ty + ( – t)y,μ

)
=

(
 – μ + ty + ( – t)y, μx

)
= t

(
 – μ + y, μx

)
+ ( – t)

(
 – μ + y, μx

)
∈ tF(x, y,μ) + ( – t)F(x, y,μ) –C.

Thus, for any given μ ∈ � and for any given x ∈ A(μ), F(x, ·,μ) is R
+-like-convex on A(μ),

that is, condition (iii) of Theorem . is satisfied.
For any x ∈ A(μ) \Vf (μ), there exists y =  ∈ Vf (μ), such that

F(x, y,μ) + F(y,x,μ) + B
(
,dr(x, y)

)
=

(
 – μ + x, μx

)
+ B

(
,dr(x, )

) ⊂ –C.

Thus, the condition (iv) of Theorem . is satisfied. It is clear that F(A(μ),A(μ),μ) are
bounded subsets of Y for each μ ∈ �, (R

+)� 
= ∅, and intR
+ 
= ∅. Consequently, by Theo-

rem ., Vs(·) is lower semicontinuous on �.
However, the condition of C-strong monotonicity does not hold. Indeed, for any x ∈

A(μ) \Vf (μ) = [–, ), there exists y = –x ∈ Vf (μ) = [, ], such that

F(x, y,μ) + F(y,x,μ) =
(
–μ + , 

)
/∈ – intC.

Obviously, F(·, ·,μ) is not C-strongly monotone on A(μ)×A(μ). Then Theorem . in []
and Theorem . in [] are not applicable, and the corresponding results in references [,
Theorem .], [, Theorem .] are also not applicable.

Finally, we give an example to illustrate that the assumption (iv) of Theorem . is es-
sential.

http://www.journalofinequalitiesandapplications.com/content/2014/1/325
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Example . Let X = R, Y = R, C = R
+. Let � = [, ] and

A(μ) = [μ – , ], μ ∈ �.

It is clear that A is a continuous set-valued mapping from � to X with nonempty compact
convex values. Define the mapping F : A(μ)×A(μ)× � → R by

F(x, y,μ) =
((

 –μ)μ


x(x – y), 

)
, ∀x, y ∈ A(μ),μ ∈ �.

Obviously, we know that conditions (ii), (iii), (v), and (vi) are satisfied.
We have, for any f ∈ C∗ \ {},  ∈ Vf (μ), and

Vs(μ) = Vf (μ) = {, }, if μ =  and Vs(μ) = {}, if μ ∈ (, ].

In fact, there exists x = 
 ∈ A(μ) \Vf (μ), for y =  ∈ Vf (μ), we have

F(x, y,μ) + F(y,x,μ) + B
(
,dr(x, y)

)

=
(


, 

)
+ B

(
,dr

(


, 

))

⊂ –C.

Using a similar method, there exists x = 
 ∈ A(μ) \ Vf (μ), for y =  ∈ Vf (μ), we have

F(x, y,μ) + F(y,x,μ) +B(,dr(x, y)) 
⊂ –C. Thus, condition (iv) of Theorem . is not satis-
fied.
Now, we show that Vs(μ) is not lower semicontinuous at μ = . There exists  ∈ Vs()

and there exists a neighborhood (– 
 ,


 ) of , for any neighborhoodU() of , there exists

 < μ̃ <  such that μ̃ ∈U() and

Vs(μ̃) =  /∈
(
–


,



)
.

Thus,

Vs(μ̃)∩
(
–


,



)
= ∅.

By virtue of Definition ., we know that Vs(μ) is not lower semicontinuous at μ = .
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