Rarefied sets at infinity associated with the Schrödinger operator

Gaixian Xue*

"Correspondence:
jingben84@163.com
School of Mathematics and Information Science, Henan University of Economics and Law, Zhengzhou, 450046, China

Abstract

This paper gives some criteria for a-rarefied sets at infinity associated with the Schrödinger operator in a cone. Our proofs are based on estimating Green a-potential with a positive measure by connecting with a kind of density of the modified measure. Meanwhile, the geometrical property of this a-rarefied sets at infinity is also considered. By giving an example, we show that the reverse of this property is not true.

Keywords: rarefied set; Schrödinger operator; Green a-potential

1 Introduction and results

Let \mathbf{R} and \mathbf{R}_{+}be the set of all real numbers and the set of all positive real numbers, respectively. We denote by $\mathbf{R}^{n}(n \geq 2)$ the n-dimensional Euclidean space. A point in \mathbf{R}^{n} is denoted by $P=\left(X, x_{n}\right), X=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$. The Euclidean distance between two points P and Q in \mathbf{R}^{n} is denoted by $|P-Q|$. Also $|P-O|$ with the origin O of \mathbf{R}^{n} is simply denoted by $|P|$. The boundary and the closure of a set S in \mathbf{R}^{n} are denoted by ∂S and \bar{S}, respectively.

We introduce a system of spherical coordinates $(r, \Theta), \Theta=\left(\theta_{1}, \theta_{2}, \ldots, \theta_{n-1}\right)$, in \mathbf{R}^{n} which are related to Cartesian coordinates $\left(x_{1}, x_{2}, \ldots, x_{n-1}, x_{n}\right)$ by $x_{n}=r \cos \theta_{1}$.

Let D be an arbitrary domain in \mathbf{R}^{n} and let \mathscr{A}_{a} denote the class of non-negative radial potentials $a(P)$, i.e., $0 \leq a(P)=a(r), P=(r, \Theta) \in D$, such that $a \in L_{\text {loc }}^{b}(D)$ with some $b>n / 2$ if $n \geq 4$ and with $b=2$ if $n=2$ or $n=3$.

If $a \in \mathscr{A}_{a}$, then the Schrödinger operator

$$
\operatorname{Sch}_{a}=-\Delta+a(P) I=0
$$

where Δ is the Laplace operator and I is the identical operator, can be extended in the usual way from the space $C_{0}^{\infty}(D)$ to an essentially self-adjoint operator on $L^{2}(D)$ (see [1, Ch. 11]). We will denote it by $S c h_{a}$ as well. This last one has a Green a-function $G_{D}^{a}(P, Q)$. Here $G_{D}^{a}(P, Q)$ is positive on D and its inner normal derivative $\partial G_{D}^{a}(P, Q) / \partial n_{Q} \geq 0$, where $\partial / \partial n_{Q}$ denotes the differentiation at Q along the inward normal into D.

We call a function $u \not \equiv-\infty$ that is upper semi-continuous in D a subfunction with respect to the Schrödinger operator $S c h_{a}$ if its values belong to the interval $[-\infty, \infty)$ and at each point $P \in D$ with $0<r<r(P)$ the generalized mean-value inequality (see [2])

$$
u(P) \leq \int_{S(P, r)} u(Q) \frac{\partial G_{B(P, r)}^{a}(P, Q)}{\partial n_{Q}} d \sigma(Q)
$$

[^0]is satisfied, where $G_{B(P, r)}^{a}(P, Q)$ is the Green a-function of $S c h_{a}$ in $B(P, r)$ and $d \sigma(Q)$ is a surface measure on the sphere $S(P, r)=\partial B(P, r)$.
If $-u$ is a subfunction, then we call u a superfunction. If a function u is both subfunction and superfunction, it is, clearly, continuous and is called an a-harmonic function (with respect to the Schrödinger operator $S c h_{a}$).
The unit sphere and the upper half unit sphere in \mathbf{R}^{n} are denoted by \mathbf{S}^{n-1} and \mathbf{S}_{+}^{n-1}, respectively. For simplicity, a point $(1, \Theta)$ on \mathbf{S}^{n-1} and the set $\{\Theta ;(1, \Theta) \in \Omega\}$ for a set $\Omega, \Omega \subset \mathbf{S}^{n-1}$, are often identified with Θ and Ω, respectively. For two sets $\Xi \subset \mathbf{R}_{+}$and $\Omega \subset \mathbf{S}^{n-1}$, the set $\left\{(r, \Theta) \in \mathbf{R}^{n} ; r \in \Xi,(1, \Theta) \in \Omega\right\}$ in \mathbf{R}^{n} is simply denoted by $\Xi \times \Omega$. By $C_{n}(\Omega)$ we denote the set $\mathbf{R}_{+} \times \Omega$ in \mathbf{R}^{n} with the domain Ω on \mathbf{S}^{n-1}. We call it a cone. We denote the set $I \times \Omega$ with an interval on \mathbf{R} by $C_{n}(\Omega ; I)$.
We shall say that a set $H \subset C_{n}(\Omega)$ has a covering $\left\{r_{j}, R_{j}\right\}$ if there exists a sequence of balls $\left\{B_{j}\right\}$ with centers in $C_{n}(\Omega)$ such that $H \subset \bigcup_{j=0}^{\infty} B_{j}$, where r_{j} is the radius of B_{j} and R_{j} is the distance from the origin to the center of B_{j}.
From now on, we always assume $D=C_{n}(\Omega)$. For the sake of brevity, we shall write $G_{\Omega}^{a}(P, Q)$ instead of $G_{C_{n}(\Omega)}^{a}(P, Q)$. Throughout this paper, let c denote various positive constants, because we do not need to specify them. Moreover, ϵ appearing in the expression in the following sections will be a sufficiently small positive number.
Let Ω be a domain on \mathbf{S}^{n-1} with smooth boundary. Consider the Dirichlet problem
\[

$$
\begin{aligned}
& \left(\Lambda_{n}+\lambda\right) \varphi=0 \quad \text { on } \Omega, \\
& \varphi=0 \quad \text { on } \partial \Omega,
\end{aligned}
$$
\]

where Λ_{n} is the spherical part of the Laplace operator Δ_{n}

$$
\Delta_{n}=\frac{n-1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial r^{2}}+\frac{\Lambda_{n}}{r^{2}} .
$$

We denote the least positive eigenvalue of this boundary value problem by λ and the normalized positive eigenfunction corresponding to λ by $\varphi(\Theta)$. In order to ensure the existence of λ and a smooth $\varphi(\Theta)$, we put a rather strong assumption on Ω : if $n \geq 3$, then Ω is a $C^{2, \alpha}$-domain $(0<\alpha<1)$ on \mathbf{S}^{n-1} surrounded by a finite number of mutually disjoint closed hypersurfaces (e.g., see [3, pp.88-89] for the definition of $C^{2, \alpha}$-domain).
For any $(1, \Theta) \in \Omega$, we have (see [4, pp.7-8])

$$
\begin{equation*}
c^{-1} r \varphi(\Theta) \leq \delta(P) \leq c r \varphi(\Theta), \tag{1}
\end{equation*}
$$

where $P=(r, \Theta) \in C_{n}(\Omega)$ and $\delta(P)=\operatorname{dist}\left(P, \partial C_{n}(\Omega)\right)$.
Solutions of an ordinary differential equation

$$
\begin{equation*}
-Q^{\prime \prime}(r)-\frac{n-1}{r} Q^{\prime}(r)+\left(\frac{\lambda}{r^{2}}+a(r)\right) Q(r)=0, \quad 0<r<\infty . \tag{2}
\end{equation*}
$$

It is known (see, for example, [5]) that if the potential $a \in \mathscr{A}_{a}$, then equation (2) has a fundamental system of positive solutions $\{V, W\}$ such that V and W are increasing and decreasing, respectively.

We will also consider the class \mathscr{B}_{a}, consisting of the potentials $a \in \mathscr{A}_{a}$, such that there exists the finite limit $\lim _{r \rightarrow \infty} r^{2} a(r)=k \in[0, \infty)$ and, moreover, $r^{-1}\left|r^{2} a(r)-k\right| \in L(1, \infty)$. If $a \in \mathscr{B}_{a}$, then the (sub)superfunctions are continuous (see [6]).

In the rest of paper, we assume that $a \in \mathscr{B}_{a}$ and we shall suppress this assumption for simplicity.

Denote

$$
\iota_{k}^{ \pm}=\frac{2-n \pm \sqrt{(n-2)^{2}+4(k+\lambda)}}{2},
$$

then the solutions to equation (2) have the asymptotic (see [3])

$$
\begin{equation*}
c^{-1} r^{t_{k}^{+}} \leq V(r) \leq c r^{t_{k}^{*}}, \quad c^{-1} r^{\iota_{k}} \leq W(r) \leq c r^{l_{k}^{-}}, \quad \text { as } r \rightarrow \infty . \tag{3}
\end{equation*}
$$

Let v be any positive measure on $C_{n}(\Omega)$ such that the Green a-potential

$$
G_{\Omega}^{a} v(P)=\int_{C_{n}(\Omega)} G_{\Omega}^{a}(P, Q) d v(Q) \not \equiv+\infty
$$

for any $P \in C_{n}(\Omega)$. Then the positive measure $m(v)$ on \mathbf{R}^{n} is defined by

$$
d m(v)(Q)= \begin{cases}W(t) \varphi(\Phi) d v(Q), & Q=(t, \Phi) \in C_{n}(\Omega ;(1,+\infty)) \\ 0, & Q \in \mathbf{R}^{n}-C_{n}(\Omega ;(1,+\infty))\end{cases}
$$

Remark 1 We remark that the total mass $m(v)$ is finite (see [2, Lemma 5]).

For each $P=(r, \Theta) \in \mathbf{R}^{n}-\{O\}$, the maximal function $M(P ; \lambda, \beta)$ is defined by

$$
M(P ; \lambda, \beta)=\sup _{0<\rho<\frac{r}{2}} \frac{\lambda(B(P, \rho))}{\rho^{\beta}},
$$

where $\beta \geq 0$ and λ is a positive measure on \mathbf{R}^{n}. The set

$$
\left\{P=(r, \Theta) \in \mathbf{R}^{n}-\{O\} ; M(P ; \lambda, \beta) r^{\beta}>\epsilon\right\}
$$

is denoted by $E(\epsilon ; \lambda, \beta)$.
It is known that the Martin boundary of $C_{n}(\Omega)$ is the set $\partial C_{n}(\Omega) \cup\{\infty\}$, each of which is a minimal Martin boundary point. For $P \in C_{n}(\Omega)$ and $Q \in \partial C_{n}(\Omega) \cup\{\infty\}$, the Martin kernel can be defined by $M_{\Omega}^{a}(P, Q)$. If the reference point P is chosen suitably, then we have

$$
\begin{equation*}
M_{\Omega}^{a}(P, \infty)=V(r) \varphi(\Theta) \quad \text { and } \quad M_{\Omega}^{a}(P, O)=c W(r) \varphi(\Theta) \tag{4}
\end{equation*}
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$.
In [7], Long et al. introduced the notations of a-thin (with respect to the Schrödinger operator $S c h_{a}$) at a point, a-polar set (with respect to the Schrödinger operator $S c h_{a}$) and a-rarefied sets at infinity (with respect to the Schrödinger operator $S c h_{a}$), which generalized earlier notations obtained by Brelot and Miyamoto (see [8, 9]). A set H in \mathbf{R}^{n} is said
to be a-thin at a point Q if there is a fine neighborhood E of Q which does not intersect $H \backslash\{Q\}$. Otherwise H is said to be not a-thin at Q on $C_{n}(\Omega)$. A set H in \mathbf{R}^{n} is called a polar set if there is a superfunction u on some open set E such that $H \subset\{P \in E ; u(P)=\infty\}$. A subset H of $C_{n}(\Omega)$ is said to be a-rarefied at infinity on $C_{n}(\Omega)$ if there exists a positive superfunction $v(P)$ on $C_{n}(\Omega)$ such that

$$
\inf _{P \in C_{n}(\Omega)} \frac{v(P)}{M_{\Omega}^{a}(P, \infty)} \equiv 0
$$

and

$$
H \subset\left\{P=(r, \Theta) \in C_{n}(\Omega) ; \nu(P) \geq V(r)\right\} .
$$

Let H be a bounded subset of $C_{n}(\Omega)$. Then $\hat{R}_{M_{\Omega}(\cdot, \infty)}^{H}$ is bounded on $C_{n}(\Omega)$ and the greatest a-harmonic minorant of $\hat{R}_{M_{\Omega}(\cdot, \infty)}^{H}$ is zero. We see from the Riesz decomposition theorem (see [10, Theorem 2]) that there exists a unique positive measure λ_{H}^{a} on $C_{n}(\Omega)$ such that (see [7, p.6])

$$
\begin{equation*}
\hat{R}_{M_{\Omega}^{a}(\cdot, \infty)}^{H}(P)=G_{\Omega}^{a} \lambda_{H}^{a}(P) \tag{5}
\end{equation*}
$$

for any $P \in C_{n}(\Omega)$ and λ_{H}^{a} is concentrated on I_{H}, where

$$
I_{H}=\left\{P \in C_{n}(\Omega) ; H \text { is not } a \text {-thin at } P\right\} .
$$

We denote the total mass $\lambda_{H}^{a}\left(C_{n}(\Omega)\right)$ of λ_{H}^{a} by $\lambda_{\Omega}^{a}(H)$.
By using this positive measure λ_{H}^{a} (with respect to the Schrödinger operator $S c h_{a}$), we can further define another measure η_{H}^{a} on $C_{n}(\Omega)$ by

$$
d \eta_{H}^{a}(P)=M_{\Omega}^{a}(P, \infty) d \lambda_{H}^{a}(P)
$$

for any $P \in C_{n}(\Omega)$. It is easy to see that $\eta_{H}^{a}\left(C_{n}(\Omega)\right)<+\infty$.
Recently, Long et al. (see [7, Theorem 2.5]) gave a criterion for a subset H of $C_{n}(\Omega)$ to be a-rarefied set at infinity.

Theorem A A subset H of $C_{n}(\Omega)$ is a-rarefied at infinity on $C_{n}(\Omega)$ if and only if

$$
\sum_{j=0}^{\infty} \lambda_{\Omega}^{a}\left(H_{j}\right) W\left(2^{j}\right)<\infty,
$$

where $H_{j}=H \cap C_{n}\left(\Omega ;\left[2^{j}, 2^{j+1}\right)\right)$ and $j=0,1,2, \ldots$.

In this paper, we shall obtain a series of new criteria for a-rarefied sets at infinity on $C_{n}(\Omega)$, which complement Theorem A. Our results are essentially based on Qiao and Deng, Ren and Zhao, Xue (see [2, 11-14]). In order to avoid complexity of our proofs, we shall assume $n \geq 3$. But our results in this paper are also true for $n=2$.
First we shall state Theorem 1, which is the main result in this paper.

Theorem 1 A subset H of $C_{n}(\Omega)$ is a-rarefied at infinity on $C_{n}(\Omega)$ if and only if there exists a positive measure ξ_{H}^{a} on $C_{n}(\Omega)$ such that

$$
\begin{equation*}
G_{\Omega}^{a} \xi_{H}^{a}(P) \not \equiv+\infty \tag{6}
\end{equation*}
$$

for any $P \in C_{n}(\Omega)$ and

$$
\begin{equation*}
H \subset\left\{P=(r, \Theta) \in C_{n}(\Omega) ; G_{\Omega}^{a} \xi_{H}^{a}(P) \geq V(r)\right\} \tag{7}
\end{equation*}
$$

Next we give the geometrical property of a-rarefied sets at infinity.
Theorem 2 If a subset H of $C_{n}(\Omega)$ is a-rarefied at infinity on $C_{n}(\Omega)$, then H has a covering $\left\{r_{j}, R_{j}\right\}(j=0,1,2, \ldots)$ satisfying

$$
\begin{equation*}
\sum_{j=0}^{\infty}\left(\frac{r_{j}}{R_{j}}\right) V\left(\frac{R_{j}}{r_{j}}\right) W\left(\frac{R_{j}}{r_{j}}\right)<\infty \tag{8}
\end{equation*}
$$

Finally, by an example we show that the reverse of Theorem 2 is not true.

Example Put

$$
r_{j}=3 \cdot 2^{j-1} \cdot j^{\frac{1}{2-n}} \quad \text { and } \quad R_{j}=3 \cdot 2^{j-1} \quad(j=1,2,3, \ldots)
$$

A covering $\left\{r_{j}, R_{j}\right\}$ satisfies

$$
\sum_{j=1}^{\infty}\left(\frac{r_{j}}{R_{j}}\right) V\left(\frac{R_{j}}{r_{j}}\right) W\left(\frac{R_{j}}{r_{j}}\right) \leq c \sum_{j=1}^{\infty}\left(\frac{r_{j}}{R_{j}}\right)^{n-1}=c \sum_{j=1}^{\infty} j^{\frac{n-1}{2-n}}<+\infty
$$

from equation (3).
Let $C_{n}\left(\Omega^{\prime}\right)$ be a subset of $C_{n}(\Omega)$, i.e., $\bar{\Omega}^{\prime} \subset \Omega$. Suppose that this covering is located as follows: there is an integer j_{0} such that $B_{j} \subset C_{n}\left(\Omega^{\prime}\right)$ and $R_{j}>2 r_{j}$ for $j \geq j_{0}$. Then the set $H=\bigcup_{j=j_{0}}^{\infty} B_{j}$ is not a-rarefied at infinity on $C_{n}(\Omega)$. This fact will be proved in Section 5.

2 Lemmas

Lemma 1 (see [1, Ch. 11] and [15, Lemma 4])

$$
\begin{aligned}
& G_{\Omega}^{a}(P, Q) \leq c V(t) W(r) \varphi(\Theta) \varphi(\Phi) \\
& \left(r e s p . G_{\Omega}^{a}(P, Q) \leq c V(r) W(t) \varphi(\Theta) \varphi(\Phi)\right)
\end{aligned}
$$

for any $P=(r, \Theta) \in C_{n}(\Omega)$ and any $Q=(t, \Phi) \in C_{n}(\Omega)$ satisfying $r \geq 2 t($ resp. $t \geq 2 r)$.

Lemma 2 (see [2, Lemma 5]) Let v be a positive measure on $C_{n}(\Omega)$ such that there is a sequence of points $P_{i}=\left(r_{i}, \Theta_{i}\right) \in C_{n}(\Omega), r_{i} \rightarrow+\infty(i \rightarrow+\infty)$ satisfying $G_{\Omega}^{a} \nu\left(P_{i}\right)<+\infty$ $\left(i=1,2, \ldots ; Q \in C_{n}(\Omega)\right)$. Then, for a positive number L,

$$
\int_{C_{n}(\Omega ;(L,+\infty))} W(t) \varphi(\Phi) d \nu(Q)<+\infty
$$

and

$$
\lim _{R \rightarrow+\infty} \frac{W(R)}{V(R)} \int_{C_{n}(\Omega ;(0, R))} V(t) \varphi(\Phi) d v(Q)=0 .
$$

Lemma 3 (see $\left[2\right.$, Theorem 3]) Let v be any positive measure on $C_{n}(\Omega)$ such that $G_{\Omega}^{a} \nu(P) \not \equiv$ $+\infty$ for any $P \in C_{n}(\Omega)$. Then, for a sufficiently large L,

$$
\left\{P=(r, \Theta) \in C_{n}(\Omega ;(L,+\infty)) ; G_{\Omega}^{a} \nu(P) \geq V(r) \varphi(\Theta)\right\} \subset E(\epsilon ; m(\nu), n-1) .
$$

Lemma 4 (see [2, Lemma 6]) Let λ be any positive measure on \mathbf{R}^{n} having finite total mass. Then $E(\epsilon ; \lambda, n-1)$ has a covering $\left\{r_{j}, R_{j}\right\}(j=1,2, \ldots)$ satisfying

$$
\begin{equation*}
\sum_{j=1}^{\infty}\left(\frac{r_{j}}{R_{j}}\right) V\left(\frac{R_{j}}{r_{j}}\right) W\left(\frac{R_{j}}{r_{j}}\right)<\infty . \tag{9}
\end{equation*}
$$

3 Proof of Theorem 1

Suppose that

$$
H \subset \Pi\left(\xi_{H}^{a}\right)=\left\{P=(r, \Theta) \in C_{n}(\Omega) ; G_{\Omega}^{a} \xi_{H}^{a}(P) \geq V(r)\right\}
$$

for a positive measure ξ_{H}^{a} on $C_{n}(\Omega)$ satisfying equation (6).
We write

$$
G_{\Omega}^{a} \nu(P)=G_{\Omega}^{a}(1, j)(P)+G_{\Omega}^{a}(2, j)(P)+G_{\Omega}^{a}(3, j)(P),
$$

where

$$
\begin{aligned}
& G_{\Omega}^{a}(1, j)(P)=\int_{C_{n}\left(\Omega ; i\left(0, j^{j-1}\right)\right)} G_{\Omega}^{a}(P, Q) d v(Q), \\
& G_{\Omega}^{a}(2, j)(P)=\int_{C_{n}\left(\Omega ;\left[j j^{-1}, j^{+}+2\right)\right)} G_{\Omega}^{a}(P, Q) d v(Q)
\end{aligned}
$$

and

$$
G_{\Omega}^{a}(3, j)(P)=\int_{C_{n}\left(\Omega ;\left[2^{2+2}, \infty\right)\right)} G_{\Omega}^{a}(P, Q) d \nu(Q) .
$$

Now we shall show the existence of an integer N such that for any integer $j(\geq N)$, we have

$$
\begin{equation*}
\Pi\left(\xi_{H}^{a}\right)(j) \subset\left\{P=(r, \Theta) \in C_{n}\left(\Omega ;\left[2^{j}, 2^{j+1}\right)\right) ; 2 G_{\Omega}^{a}(2, j)(P) \geq V(r)\right\} \tag{11}
\end{equation*}
$$

for any integer $j(\geq N)$.
For any $P=(r, \Theta) \in C_{n}\left(\Omega ;\left[2^{j}, 2^{j+1}\right)\right)$, we have

$$
G_{\Omega}^{a}(1, j)(P) \leq c W(r) \varphi(\Theta) \int_{C_{n}\left(\Omega ;\left(0, j^{-1}\right)\right)} V(t) \varphi(\Phi) d \nu(Q)
$$

and

$$
G_{\Omega}^{a}(3, j)(P) \leq c V(r) \varphi(\Theta) \int_{C_{n}\left(\Omega ;\left[2^{j+2}, \infty\right)\right)} d m(v)(Q)
$$

from Lemma 1.
By applying Lemma 2, we can take an integer N such that for any $j(\geq N)$,

$$
W\left(2^{j}\right) V^{-1}\left(2^{j}\right) \int_{C_{n}\left(\Omega ;\left(0,2^{j-1}\right)\right)} V(t) \varphi(\Phi) d \nu(Q) \leq \frac{1}{4 c}
$$

and

$$
\int_{C_{n}\left(\Omega ;\left[\nu^{j+2}, \infty\right)\right)} d m(\nu)(Q) \leq \frac{1}{4 c} .
$$

Thus we obtain

$$
\begin{equation*}
4 G_{\Omega}^{a}(1, j)(P) \leq V(r) \varphi(\Theta) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
4 G_{\Omega}^{a}(3, j)(P) \leq V(r) \varphi(\Theta) \tag{13}
\end{equation*}
$$

for any $P=(r, \Theta) \in C_{n}\left(\Omega ;\left[2^{j}, 2^{j+1}\right)\right)$, where $j \geq N$.
Thus, if $P=(r, \Theta) \in \Pi(v)(j)(j \geq N)$, then we obtain

$$
2 G_{\Omega}^{a}(1, j)(P) \geq V(r) \varphi(\Theta)
$$

from equations (12) and (13), which gives equation (11).
From equations (4), (7) and (11), we have

$$
G_{\Omega}^{a}(2, j)(P)=\int_{C_{n}(\Omega)} G_{\Omega}^{a}(P, Q) d \tau_{j}^{a}(Q) \geq M_{\Omega}^{a}(P, \infty)
$$

where $P \in I_{j}(j \geq N)$ and

$$
d \tau_{j}^{a}(Q)= \begin{cases}2^{1-j} d \xi_{H}^{a}(Q), & Q \in C_{n}\left(\Omega ;\left[2^{j-1}, 2^{j+2}\right)\right), \\ 0, & Q \in C_{n}\left(\Omega ;\left(0,2^{j-1}\right)\right) \cup C_{n}\left(\Omega ;\left[2^{j+2}, \infty\right)\right) .\end{cases}
$$

And then we obtain

$$
\eta_{H_{j}}^{a}\left(C_{n}(\Omega)\right) \leq \int_{C_{n}(\Omega)} V(t) \varphi(\Phi) d \tau_{j}^{a}(Q)=\int_{C_{n}\left(\Omega ;\left[2^{j-1}, 2^{j+2}\right)\right)} V(t) \varphi(\Phi) d \xi_{H}^{a}(Q)
$$

for $j \geq N$. Then we have

$$
\sum_{j=N}^{\infty} \lambda_{\Omega}^{a}\left(H_{j}\right) W\left(2^{j}\right)=\sum_{j=N}^{\infty} \eta_{H_{j}}^{a}\left(C_{n}(\Omega)\right) W\left(2^{j}\right) \leq c \int_{C_{n}\left(\Omega ;\left[2^{N-1}, \infty\right)\right)} d m\left(\xi_{H}^{a}\right)
$$

in which the last integral is finite by Remark 1 . And hence H is a-rarefied set at infinity from Theorem A.

Suppose that

$$
\sum_{j=0}^{\infty} \lambda_{\Omega}^{a}\left(H_{j}\right) W\left(2^{j}\right)<\infty
$$

Consider a function $f_{H}^{a}(P)$ on $C_{n}(\Omega)$ defined by

$$
f_{H}^{a}(P)=\sum_{j=-1}^{\infty} \hat{R}_{M_{\Omega}^{a}(\cdot, \infty)}^{H_{j}}(P)
$$

for any $P \in C_{n}(\Omega)$, where $H_{-1}=H \cap C_{n}(\Omega ;(0,1))$.
If we put $\mu_{H}^{a}(1)(P)=\sum_{j=-1}^{\infty} \lambda_{H_{j}}^{a}(P)$, then from equation (5) we have that

$$
f_{H}^{a}(P)=\int_{C_{n}(\Omega)} G_{\Omega}^{a}(P, Q) d \mu_{H}^{a}(1)(Q)
$$

for any $P \in C_{n}(\Omega)$.
Next we shall show that $f_{H}^{a}(P)$ is always finite on $C_{n}(\Omega)$. Take any point $P=(r, \Theta) \in C_{n}(\Omega)$ and a positive integer $j(P)$ satisfying $r \leq 2^{j(P)+1}$. We write

$$
f_{H}^{a}(P)=f_{H}^{a}(1)(P)+f_{H}^{a}(2)(P),
$$

where

$$
\begin{aligned}
& f_{H}^{a}(1)(P)=\sum_{j=-1}^{j(P)+1} \int_{C_{n}(\Omega)} G_{\Omega}^{a}(P, Q) d \lambda_{H_{j}}^{a}(Q) \quad \text { and } \\
& f_{H}^{a}(2)(P)=\sum_{j=j(P)+2}^{\infty} \int_{C_{n}(\Omega)} G_{\Omega}^{a}(P, Q) d \lambda_{H_{j}}^{a}(Q) .
\end{aligned}
$$

Since $\lambda_{H_{j}}^{a}$ is concentrated on $I_{H_{j}} \subset \bar{H}_{j} \cap C_{n}(\Omega)$, we have that

$$
\begin{aligned}
\int_{C_{n}(\Omega)} G_{\Omega}^{a}(P, Q) d \lambda_{H_{j}}^{a}(Q) & \leq c V(r) \varphi(\Theta) \int_{C_{n}(\Omega)} W(t) \varphi(\Phi) d \lambda_{H_{j}}^{a}(t, \Phi) \\
& \leq c V(r) \varphi(\Theta) W\left(2^{j}\right) V^{-1}\left(2^{j}\right) \int_{C_{n}(\Omega)} V(t) \varphi(\Phi) d \lambda_{H_{j}}^{a}(t, \Phi)
\end{aligned}
$$

for $j \geq j(P)+2$. Hence we have

$$
\begin{equation*}
f_{H}^{a}(2)(P) \leq c V(r) \varphi(\Theta) \sum_{j=j(P)+2}^{\infty} \eta_{H_{j}}^{a}\left(C_{n}(\Omega)\right) W\left(2^{j}\right) V^{-1}\left(2^{j}\right), \tag{14}
\end{equation*}
$$

which, together with Theorem A, shows that $f_{H}^{a}(2)(P)$ is finite and hence $f_{H}^{a}(P)$ is also finite for any $P \in C_{n}(\Omega)$.
Since

$$
\hat{R}_{M_{\Omega}^{a}(\cdot, \infty)}^{H_{j}}(P)=M_{\Omega}^{a}(P, \infty)
$$

holds on $I_{H_{j}}$ and $I_{H_{j}} \subset \bar{H}_{j} \cap C_{n}(\Omega)$, we see that for any $P=(r, \Theta) \in I_{H_{j}}(j=-1,0,1,2,3, \ldots)$

$$
\begin{equation*}
f_{H}^{a}(P) \geq c \hat{R}_{M_{\Omega}^{a}(\cdot, \infty)}^{H_{j}}(P) \geq V(r) \varphi(\Theta) \tag{15}
\end{equation*}
$$

And hence equation (15) also holds for any $P=(r, \Theta) \in H^{\prime}=\bigcup_{j=-1}^{\infty} I_{H_{j}}$. Since H^{\prime} is equal to H except a polar set H^{0}, we can take another positive superfunction $f_{H}^{a}(3)(P)$ on $C_{n}(\Omega)$ such that $f_{H}^{a}(3)(P)=G_{\Omega}^{a} \mu_{H}^{a}(2)(P)$ with a positive measure $\mu_{H}^{a}(2)(P)$ on $C_{n}(\Omega)$ and $f_{H}^{a}(3)(P)$ is identically $+\infty$ on H^{0}.

Finally, we can define a positive superfunction g on $C_{n}(\Omega)$ by $g(P)=f_{H}^{a}(P)+f_{H}^{a}(3)(P)=$ $G_{\Omega}^{a} \xi_{H}^{a}(P)$ for any $P \in C_{n}(\Omega)$ with $\xi_{H}^{a}=\mu_{H}^{a}(1)+\mu_{H}^{a}(2)$. Also we see from equation (15) that equations (6) and (7) hold.
Thus we complete the proof of Theorem 1.

4 Proof of Theorem 2

From Theorem 1 and Lemma 3, we have a positive number L such that

$$
H \cap C_{n}(\Omega ;(L,+\infty)) \subset E\left(\epsilon ; m\left(\xi_{H}^{a}\right), n-1\right)
$$

Hence by Remark 1 and Lemma 4, $E\left(\epsilon ; m\left(\xi_{H}^{a}\right), n-1\right)$ has a covering $\left\{r_{j}, R_{j}\right\}(j=1,2,3, \ldots)$ satisfying equation (9) and hence H has also a covering $\left\{r_{j}, R_{j}\right\}(j=0,1,2,3, \ldots)$ with an additional finite B_{0} covering $C_{n}(\Omega ;(0, L])$, satisfying equation (8), which is the conclusion of Theorem 2.

5 Proof of an example

Since $\varphi(\Theta) \geq c$ for any $\Theta \in \Omega^{\prime}$, we have $M_{\Omega}^{a}(P, \infty) \geq c V\left(R_{j}\right)$ for any $P \in \bar{B}_{j}$, where $j \geq j_{0}$. Hence we have

$$
\begin{equation*}
\hat{R}_{M_{\Omega}^{a}(\cdot, \infty)}^{B_{j}}(P) \geq c V\left(R_{j}\right) \tag{16}
\end{equation*}
$$

for any $P \in \bar{B}_{j}$, where $j \geq j_{0}$.
Take a measure δ on $C_{n}(\Omega), \operatorname{supp} \delta \subset \bar{B}_{j}, \delta\left(\bar{B}_{j}\right)=1$ such that

$$
\begin{equation*}
\int_{C_{n}(\Omega)}|P-Q|^{2-n} d \delta(P)=\left\{\operatorname{Cap}\left(\bar{B}_{j}\right)\right\}^{-1} \tag{17}
\end{equation*}
$$

for any $Q \in \bar{B}_{j}$, where Cap denotes the Newton capacity. Since

$$
G_{\Omega}^{a}(P, Q) \leq|P-Q|^{2-n}
$$

for any $P \in C_{n}(\Omega)$ and $Q \in C_{n}(\Omega)$ (see [16], the case $n=2$ is implicitly contained in [17]),

$$
\begin{aligned}
\left\{\operatorname{Cap}\left(\bar{B}_{j}\right)\right\}^{-1} \lambda_{B_{j}}^{a}\left(C_{n}(\Omega)\right) & =\int\left(\int|P-Q|^{2-n} d \delta(P)\right) d \lambda_{B_{j}}^{a}(Q) \\
& \geq \int\left(\int G_{\Omega}^{a}(P, Q) d \lambda_{B_{j}}^{a}(Q)\right) d \delta(P) \\
& =\int \hat{R}_{M_{\Omega}}^{B_{j}}(\cdot, \infty) \\
& \geq c V\left(R_{j}\right) \delta\left(\bar{B}_{j}\right)=c V\left(R_{j}\right)
\end{aligned}
$$

from equations (16) and (17). Hence we have

$$
\begin{equation*}
\lambda_{B_{j}}^{a}\left(C_{n}(\Omega)\right) \geq c \operatorname{Cap}\left(\bar{B}_{j}\right) V\left(R_{j}\right) \geq c r_{j}^{n-2} V\left(R_{j}\right) \tag{18}
\end{equation*}
$$

If we observe $\lambda_{H_{j}}^{a}\left(C_{n}(\Omega)\right)=\lambda_{B_{j}}^{a}\left(C_{n}(\Omega)\right)$, then we have by equation (3)

$$
\sum_{j=j_{0}}^{\infty} W\left(2^{j}\right) \lambda_{H_{j}}^{a}\left(C_{n}(\Omega)\right) \geq c \sum_{j=j_{0}}^{\infty}\left(\frac{r_{j}}{R_{j}}\right)^{n-2}=c \sum_{j=j_{0}}^{\infty} \frac{1}{j}=+\infty,
$$

from which it follows by Theorem A that H is not a-rarefied at infinity on $C_{n}(\Omega)$.

Competing interests

The author declares that they have no competing interests.

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grants Nos. 11301140 and U1304102.

Received: 26 March 2014 Accepted: 30 May 2014 Published: 18 July 2014

References

1. Escassut, A, Tutshke, W, Yang, CC: Some Topics on Value Distribution and Differentiability in Complex and p-Adic Analysis. Science Press, Beijing (2008)
2. Qiao, L, Deng, GT: Integral representations and growth properties for a class of superfunctions in a cone. Taiwan. J. Math. 15, 2213-2233 (2011)
3. Gilbarg, D, Trudinger, NS: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1977)
4. Courant, R, Hilbert, D: Methods of Mathematical Physics, vol. 1. Interscience, New York (2008)
5. Verzhbinskii, GM, Maz'ya, VG: Asymptotic behavior of solutions of elliptic equations of the second order close to a boundary. I. Sib. Mat. Zh. 12, 874-899 (1971)
6. Simon, B: Schrödinger semigroups. Bull. Am. Math. Soc. 7, 447-526 (1982)
7. Long, PH, Gao, ZQ, Deng, GT: Criteria of Wiener type for minimally thin sets and rarefied sets associated with the stationary Schrödinger operator in a cone. Abstr. Appl. Anal. 2012, Article ID 453891 (2012)
8. Brelot, M: On Topologies and Boundaries in Potential Theory. Lecture Notes in Mathematics, vol. 175. Springer, Berlin (1971)
9. Miyamoto, I, Yoshida, H: Two criterions of Wiener type for minimally thin sets and rarefied sets in a cone. J. Math. Soc. Jpn. 54, 487-512 (2002)
10. Qiao, L, Pan, GS: Generalization of the Phragmén-Lindelöf theorems for subfunctions. Int. J. Math. 24(8), 1350062 (2013). doi:10.1142/S0129167X13500626
11. Qiao, L, Pan, GS: Integral representations of generalized harmonic functions. Taiwan. J. Math. 17(5), 1503-1521 (2013)
12. Ren, YD: Solving integral representations problems for the stationary Schrödinger equation. Abstr. Appl. Anal. 2013, Article ID 715252 (2013)
13. Zhao, T: Minimally thin sets associated with the stationary Schrödinger operator. J. Inequal. Appl. 2014, 67 (2014)
14. Xue, GX: A remark on the a-minimally thin sets associated with the Schrödinger operator. Bound. Value Probl. 2014, 133 (2014)
15. Azarin, VS: Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone. Transl. Am. Math. Soc. 80, 119-138 (1969)
16. Cranston, M: Conditional Brownian motion, Whitney squares and the conditional gauge theorem. In: Seminar on Stochastic Processes, 1988, pp. 109-119. Birkhäuser, Basel (1989)
17. Cranston, M, Fabes, E, Zhao, Z: Conditional gauge and potential theory for the Schrödinger operator. Trans. Am. Math. Soc. 307, 415-425 (1964)

doi:10.1186/1029-242X-2014-247

Cite this article as: Xue: Rarefied sets at infinity associated with the Schrödinger operator. Journal of Inequalities and Applications 2014 2014:247.

[^0]: © 2014 Xue; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

