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Abstract
This paper gives some criteria for a-rarefied sets at infinity associated with the
Schrödinger operator in a cone. Our proofs are based on estimating Green a-potential
with a positive measure by connecting with a kind of density of the modified
measure. Meanwhile, the geometrical property of this a-rarefied sets at infinity is also
considered. By giving an example, we show that the reverse of this property is not
true.
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1 Introduction and results
Let R and R+ be the set of all real numbers and the set of all positive real numbers, re-
spectively. We denote by Rn (n ≥ ) the n-dimensional Euclidean space. A point in Rn is
denoted by P = (X,xn), X = (x,x, . . . ,xn–). The Euclidean distance between two points P
and Q in Rn is denoted by |P –Q|. Also |P –O| with the origin O of Rn is simply denoted
by |P|. The boundary and the closure of a set S in Rn are denoted by ∂S and S, respectively.
We introduce a system of spherical coordinates (r,�), � = (θ, θ, . . . , θn–), in Rn which

are related to Cartesian coordinates (x,x, . . . ,xn–,xn) by xn = r cos θ.
Let D be an arbitrary domain in Rn and let Aa denote the class of non-negative radial

potentials a(P), i.e.,  ≤ a(P) = a(r), P = (r,�) ∈D, such that a ∈ Lbloc(D) with some b > n/
if n ≥  and with b =  if n =  or n = .
If a ∈ Aa, then the Schrödinger operator

Scha = –� + a(P)I = ,

where � is the Laplace operator and I is the identical operator, can be extended in the
usual way from the space C∞

 (D) to an essentially self-adjoint operator on L(D) (see [,
Ch. ]). We will denote it by Scha as well. This last one has a Green a-function Ga

D(P,Q).
Here Ga

D(P,Q) is positive on D and its inner normal derivative ∂Ga
D(P,Q)/∂nQ ≥ , where

∂/∂nQ denotes the differentiation at Q along the inward normal into D.
We call a function u �≡ –∞ that is upper semi-continuous in D a subfunction with re-

spect to the Schrödinger operator Scha if its values belong to the interval [–∞,∞) and at
each point P ∈D with  < r < r(P) the generalized mean-value inequality (see [])

u(P) ≤
∫
S(P,r)

u(Q)
∂Ga

B(P,r)(P,Q)
∂nQ

dσ (Q)
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is satisfied, where Ga
B(P,r)(P,Q) is the Green a-function of Scha in B(P, r) and dσ (Q) is a

surface measure on the sphere S(P, r) = ∂B(P, r).
If –u is a subfunction, then we call u a superfunction. If a function u is both subfunction

and superfunction, it is, clearly, continuous and is called an a-harmonic function (with
respect to the Schrödinger operator Scha).
The unit sphere and the upper half unit sphere in Rn are denoted by Sn– and Sn–+ ,

respectively. For simplicity, a point (,�) on Sn– and the set {�; (,�) ∈ �} for a set
�, � ⊂ Sn–, are often identified with � and �, respectively. For two sets � ⊂ R+ and
� ⊂ Sn–, the set {(r,�) ∈ Rn; r ∈ �, (,�) ∈ �} in Rn is simply denoted by � × �. By
Cn(�) we denote the set R+ × � in Rn with the domain � on Sn–. We call it a cone. We
denote the set I × � with an interval on R by Cn(�; I).
We shall say that a setH ⊂ Cn(�) has a covering {rj,Rj} if there exists a sequence of balls

{Bj} with centers in Cn(�) such that H ⊂ ⋃∞
j= Bj, where rj is the radius of Bj and Rj is the

distance from the origin to the center of Bj.
From now on, we always assume D = Cn(�). For the sake of brevity, we shall write

Ga
�(P,Q) instead ofGa

Cn(�)(P,Q). Throughout this paper, let c denote various positive con-
stants, because we do not need to specify them. Moreover, ε appearing in the expression
in the following sections will be a sufficiently small positive number.
Let � be a domain on Sn– with smooth boundary. Consider the Dirichlet problem

(
n + λ)ϕ =  on �,

ϕ =  on ∂�,

where 
n is the spherical part of the Laplace operator �n

�n =
n – 
r

∂

∂r
+

∂

∂r
+


n

r
.

We denote the least positive eigenvalue of this boundary value problem by λ and the nor-
malized positive eigenfunction corresponding to λ by ϕ(�). In order to ensure the exis-
tence of λ and a smooth ϕ(�), we put a rather strong assumption on �: if n ≥ , then �

is a C,α-domain ( < α < ) on Sn– surrounded by a finite number of mutually disjoint
closed hypersurfaces (e.g., see [, pp.-] for the definition of C,α-domain).
For any (,�) ∈ �, we have (see [, pp.-])

c–rϕ(�)≤ δ(P) ≤ crϕ(�), ()

where P = (r,�) ∈ Cn(�) and δ(P) = dist(P, ∂Cn(�)).
Solutions of an ordinary differential equation

–Q′′(r) –
n – 
r

Q′(r) +
(

λ

r
+ a(r)

)
Q(r) = ,  < r < ∞. ()

It is known (see, for example, []) that if the potential a ∈ Aa, then equation () has a
fundamental system of positive solutions {V ,W } such that V and W are increasing and
decreasing, respectively.

http://www.journalofinequalitiesandapplications.com/content/2014/1/247
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We will also consider the class Ba, consisting of the potentials a ∈ Aa, such that there
exists the finite limit limr→∞ ra(r) = k ∈ [,∞) and, moreover, r–|ra(r) – k| ∈ L(,∞). If
a ∈ Ba, then the (sub)superfunctions are continuous (see []).
In the rest of paper, we assume that a ∈ Ba and we shall suppress this assumption for

simplicity.
Denote

ι±k =
 – n± √

(n – ) + (k + λ)


,

then the solutions to equation () have the asymptotic (see [])

c–rι
+
k ≤ V (r) ≤ crι

+
k , c–rι

–
k ≤ W (r)≤ crι

–
k , as r → ∞. ()

Let ν be any positive measure on Cn(�) such that the Green a-potential

Ga
�ν(P) =

∫
Cn(�)

Ga
�(P,Q)dν(Q) �≡ +∞

for any P ∈ Cn(�). Then the positive measurem(ν) on Rn is defined by

dm(ν)(Q) =

{
W (t)ϕ(�)dν(Q), Q = (t,�) ∈ Cn(�; (, +∞)),
, Q ∈ Rn –Cn(�; (, +∞)).

Remark  We remark that the total massm(ν) is finite (see [, Lemma ]).

For each P = (r,�) ∈ Rn – {O}, the maximal functionM(P;λ,β) is defined by

M(P;λ,β) = sup
<ρ< r



λ(B(P,ρ))
ρβ

,

where β ≥  and λ is a positive measure on Rn. The set

{
P = (r,�) ∈ Rn – {O};M(P;λ,β)rβ > ε

}

is denoted by E(ε;λ,β).
It is known that the Martin boundary of Cn(�) is the set ∂Cn(�) ∪ {∞}, each of which

is a minimal Martin boundary point. For P ∈ Cn(�) and Q ∈ ∂Cn(�) ∪ {∞}, the Martin
kernel can be defined byMa

�(P,Q). If the reference point P is chosen suitably, then we have

Ma
�(P,∞) = V (r)ϕ(�) and Ma

�(P,O) = cW (r)ϕ(�) ()

for any P = (r,�) ∈ Cn(�).
In [], Long et al. introduced the notations of a-thin (with respect to the Schrödinger

operator Scha) at a point, a-polar set (with respect to the Schrödinger operator Scha) and
a-rarefied sets at infinity (with respect to the Schrödinger operator Scha), which general-
ized earlier notations obtained by Brelot and Miyamoto (see [, ]). A set H in Rn is said

http://www.journalofinequalitiesandapplications.com/content/2014/1/247
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to be a-thin at a point Q if there is a fine neighborhood E of Q which does not intersect
H\{Q}. Otherwise H is said to be not a-thin at Q on Cn(�). A set H in Rn is called a po-
lar set if there is a superfunction u on some open set E such that H ⊂ {P ∈ E;u(P) = ∞}.
A subset H of Cn(�) is said to be a-rarefied at infinity on Cn(�) if there exists a positive
superfunction v(P) on Cn(�) such that

inf
P∈Cn(�)

v(P)
Ma

�(P,∞)
≡ 

and

H ⊂ {
P = (r,�) ∈ Cn(�); v(P) ≥ V (r)

}
.

LetH be a bounded subset ofCn(�). Then R̂H
Ma

�(·,∞) is bounded onCn(�) and the greatest

a-harmonic minorant of R̂H
Ma

�(·,∞) is zero. We see from the Riesz decomposition theorem
(see [, Theorem ]) that there exists a unique positive measure λa

H on Cn(�) such that
(see [, p.])

R̂H
Ma

�(·,∞)(P) =Ga
�λa

H (P) ()

for any P ∈ Cn(�) and λa
H is concentrated on IH , where

IH =
{
P ∈ Cn(�);H is not a-thin at P

}
.

We denote the total mass λa
H(Cn(�)) of λa

H by λa
�(H).

By using this positive measure λa
H (with respect to the Schrödinger operator Scha), we

can further define another measure ηa
H on Cn(�) by

dηa
H (P) =Ma

�(P,∞)dλa
H (P)

for any P ∈ Cn(�). It is easy to see that ηa
H (Cn(�)) < +∞.

Recently, Long et al. (see [, Theorem .]) gave a criterion for a subset H of Cn(�) to
be a-rarefied set at infinity.

Theorem A A subset H of Cn(�) is a-rarefied at infinity on Cn(�) if and only if

∞∑
j=

λa
�(Hj)W

(
j

)
< ∞,

where Hj =H ∩Cn(�; [j, j+)) and j = , , , . . . .

In this paper, we shall obtain a series of new criteria for a-rarefied sets at infinity on
Cn(�), which complement Theorem A. Our results are essentially based on Qiao and
Deng, Ren and Zhao, Xue (see [, –]). In order to avoid complexity of our proofs,
we shall assume n ≥ . But our results in this paper are also true for n = .
First we shall state Theorem , which is the main result in this paper.

http://www.journalofinequalitiesandapplications.com/content/2014/1/247
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Theorem  A subset H of Cn(�) is a-rarefied at infinity on Cn(�) if and only if there exists
a positive measure ξa

H on Cn(�) such that

Ga
�ξa

H (P) �≡ +∞ ()

for any P ∈ Cn(�) and

H ⊂ {
P = (r,�) ∈ Cn(�);Ga

�ξa
H (P) ≥ V (r)

}
. ()

Next we give the geometrical property of a-rarefied sets at infinity.

Theorem  If a subset H of Cn(�) is a-rarefied at infinity on Cn(�), then H has a covering
{rj,Rj} (j = , , , . . .) satisfying

∞∑
j=

(
rj
Rj

)
V

(
Rj

rj

)
W

(
Rj

rj

)
< ∞. ()

Finally, by an example we show that the reverse of Theorem  is not true.

Example Put

rj =  · j– · j 
–n and Rj =  · j– (j = , , , . . .).

A covering {rj,Rj} satisfies
∞∑
j=

(
rj
Rj

)
V

(
Rj

rj

)
W

(
Rj

rj

)
≤ c

∞∑
j=

(
rj
Rj

)n–

= c
∞∑
j=

j
n–
–n < +∞

from equation ().

Let Cn(�′) be a subset of Cn(�), i.e., �
′ ⊂ �. Suppose that this covering is located as

follows: there is an integer j such that Bj ⊂ Cn(�′) and Rj > rj for j ≥ j. Then the set
H =

⋃∞
j=j Bj is not a-rarefied at infinity on Cn(�). This fact will be proved in Section .

2 Lemmas
Lemma  (see [, Ch. ] and [, Lemma ])

Ga
�(P,Q) ≤ cV (t)W (r)ϕ(�)ϕ(�)(
resp. Ga

�(P,Q) ≤ cV (r)W (t)ϕ(�)ϕ(�)
)

for any P = (r,�) ∈ Cn(�) and any Q = (t,�) ∈ Cn(�) satisfying r ≥ t (resp. t ≥ r).

Lemma  (see [, Lemma ]) Let ν be a positive measure on Cn(�) such that there is
a sequence of points Pi = (ri,�i) ∈ Cn(�), ri → +∞ (i → +∞) satisfying Ga

�ν(Pi) < +∞
(i = , , . . . ; Q ∈ Cn(�)). Then, for a positive number L,

∫
Cn(�;(L,+∞))

W (t)ϕ(�)dν(Q) < +∞

http://www.journalofinequalitiesandapplications.com/content/2014/1/247
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and

lim
R→+∞

W (R)
V (R)

∫
Cn(�;(,R))

V (t)ϕ(�)dν(Q) = .

Lemma (see [, Theorem]) Let ν be any positivemeasure on Cn(�) such that Ga
�ν(P) �≡

+∞ for any P ∈ Cn(�). Then, for a sufficiently large L,

{
P = (r,�) ∈ Cn

(
�; (L, +∞)

)
;Ga

�ν(P) ≥ V (r)ϕ(�)
} ⊂ E

(
ε;m(ν),n – 

)
.

Lemma  (see [, Lemma ]) Let λ be any positive measure on Rn having finite total mass.
Then E(ε;λ,n – ) has a covering {rj,Rj} (j = , , . . .) satisfying

∞∑
j=

(
rj
Rj

)
V

(
Rj

rj

)
W

(
Rj

rj

)
< ∞. ()

3 Proof of Theorem 1
Suppose that

H ⊂ �
(
ξa
H
)
=

{
P = (r,�) ∈ Cn(�);Ga

�ξa
H (P) ≥ V (r)

}
()

for a positive measure ξa
H on Cn(�) satisfying equation ().

We write

Ga
�ν(P) =Ga

�(, j)(P) +Ga
�(, j)(P) +Ga

�(, j)(P),

where

Ga
�(, j)(P) =

∫
Cn(�;(,j–))

Ga
�(P,Q)dν(Q),

Ga
�(, j)(P) =

∫
Cn(�;[j–,j+))

Ga
�(P,Q)dν(Q)

and

Ga
�(, j)(P) =

∫
Cn(�;[j+,∞))

Ga
�(P,Q)dν(Q).

Now we shall show the existence of an integer N such that for any integer j (≥ N ), we
have

�
(
ξa
H
)
(j) ⊂ {

P = (r,�) ∈ Cn
(
�;

[
j, j+

))
; Ga

�(, j)(P) ≥ V (r)
}

()

for any integer j (≥ N ).
For any P = (r,�) ∈ Cn(�; [j, j+)), we have

Ga
�(, j)(P) ≤ cW (r)ϕ(�)

∫
Cn(�;(,j–))

V (t)ϕ(�)dν(Q)

http://www.journalofinequalitiesandapplications.com/content/2014/1/247
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and

Ga
�(, j)(P) ≤ cV (r)ϕ(�)

∫
Cn(�;[j+,∞))

dm(ν)(Q)

from Lemma .
By applying Lemma , we can take an integer N such that for any j (≥N ),

W
(
j

)
V–(j)∫

Cn(�;(,j–))
V (t)ϕ(�)dν(Q)≤ 

c

and
∫
Cn(�;[j+,∞))

dm(ν)(Q)≤ 
c

.

Thus we obtain

Ga
�(, j)(P) ≤ V (r)ϕ(�) ()

and

Ga
�(, j)(P) ≤ V (r)ϕ(�) ()

for any P = (r,�) ∈ Cn(�; [j, j+)), where j ≥ N .
Thus, if P = (r,�) ∈ �(ν)(j) (j ≥ N ), then we obtain

Ga
�(, j)(P) ≥ V (r)ϕ(�)

from equations () and (), which gives equation ().
From equations (), () and (), we have

Ga
�(, j)(P) =

∫
Cn(�)

Ga
�(P,Q)dτ a

j (Q)≥ Ma
�(P,∞),

where P ∈ Ij (j ≥ N ) and

dτ a
j (Q) =

{
–j dξa

H (Q), Q ∈ Cn(�; [j–, j+)),
, Q ∈ Cn(�; (, j–))∪Cn(�; [j+,∞)).

And then we obtain

ηa
Hj

(
Cn(�)

) ≤
∫
Cn(�)

V (t)ϕ(�)dτ a
j (Q) =

∫
Cn(�;[j–,j+))

V (t)ϕ(�)dξa
H (Q)

for j ≥ N . Then we have

∞∑
j=N

λa
�(Hj)W

(
j

)
=

∞∑
j=N

ηa
Hj

(
Cn(�)

)
W

(
j

) ≤ c
∫
Cn(�;[N–,∞))

dm
(
ξa
H
)
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/247
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in which the last integral is finite by Remark . And hence H is a-rarefied set at infinity
from Theorem A.
Suppose that

∞∑
j=

λa
�(Hj)W

(
j

)
< ∞.

Consider a function f aH (P) on Cn(�) defined by

f aH (P) =
∞∑
j=–

R̂Hj
Ma

�(·,∞)(P)

for any P ∈ Cn(�), where H– =H ∩Cn(�; (, )).
If we put μa

H ()(P) =
∑∞

j=– λ
a
Hj
(P), then from equation () we have that

f aH (P) =
∫
Cn(�)

Ga
�(P,Q)dμa

H ()(Q)

for any P ∈ Cn(�).
Next we shall show that f aH (P) is always finite onCn(�). Take any point P = (r,�) ∈ Cn(�)

and a positive integer j(P) satisfying r ≤ j(P)+. We write

f aH (P) = f aH ()(P) + f aH ()(P),

where

f aH ()(P) =
j(P)+∑
j=–

∫
Cn(�)

Ga
�(P,Q)dλa

Hj
(Q) and

f aH ()(P) =
∞∑

j=j(P)+

∫
Cn(�)

Ga
�(P,Q)dλa

Hj
(Q).

Since λa
Hj

is concentrated on IHj ⊂Hj ∩Cn(�), we have that

∫
Cn(�)

Ga
�(P,Q)dλa

Hj
(Q) ≤ cV (r)ϕ(�)

∫
Cn(�)

W (t)ϕ(�)dλa
Hj
(t,�)

≤ cV (r)ϕ(�)W
(
j

)
V–(j)∫

Cn(�)
V (t)ϕ(�)dλa

Hj
(t,�)

for j ≥ j(P) + . Hence we have

f aH ()(P)≤ cV (r)ϕ(�)
∞∑

j=j(P)+

ηa
Hj

(
Cn(�)

)
W

(
j

)
V–(j), ()

which, together with TheoremA, shows that f aH ()(P) is finite and hence f aH (P) is also finite
for any P ∈ Cn(�).
Since

R̂Hj
Ma

�(·,∞)(P) =Ma
�(P,∞)

http://www.journalofinequalitiesandapplications.com/content/2014/1/247
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holds on IHj and IHj ⊂Hj ∩Cn(�), we see that for any P = (r,�) ∈ IHj (j = –, , , , , . . .)

f aH (P) ≥ cR̂Hj
Ma

�(·,∞)(P) ≥ V (r)ϕ(�). ()

And hence equation () also holds for any P = (r,�) ∈ H ′ =
⋃∞

j=– IHj . Since H ′ is equal
to H except a polar set H, we can take another positive superfunction f aH ()(P) on Cn(�)
such that f aH ()(P) =Ga

�μa
H ()(P) with a positive measure μa

H ()(P) on Cn(�) and f aH ()(P)
is identically +∞ on H.
Finally, we can define a positive superfunction g on Cn(�) by g(P) = f aH (P) + f aH ()(P) =

Ga
�ξa

H (P) for any P ∈ Cn(�) with ξa
H = μa

H () +μa
H (). Also we see from equation () that

equations () and () hold.
Thus we complete the proof of Theorem .

4 Proof of Theorem 2
From Theorem  and Lemma , we have a positive number L such that

H ∩Cn
(
�; (L, +∞)

) ⊂ E
(
ε;m

(
ξa
H
)
,n – 

)
.

Hence by Remark  and Lemma , E(ε;m(ξa
H),n – ) has a covering {rj,Rj} (j = , , , . . .)

satisfying equation () and hence H has also a covering {rj,Rj} (j = , , , , . . .) with an
additional finite B covering Cn(�; (,L]), satisfying equation (), which is the conclusion
of Theorem .

5 Proof of an example
Since ϕ(�) ≥ c for any � ∈ �′, we have Ma

�(P,∞) ≥ cV (Rj) for any P ∈ Bj, where j ≥ j.
Hence we have

R̂Bj
Ma

�(·,∞)(P) ≥ cV (Rj) ()

for any P ∈ Bj, where j ≥ j.
Take a measure δ on Cn(�), supp δ ⊂ Bj, δ(Bj) =  such that

∫
Cn(�)

|P –Q|–n dδ(P) =
{
Cap(Bj)

}– ()

for any Q ∈ Bj, where Cap denotes the Newton capacity. Since

Ga
�(P,Q) ≤ |P –Q|–n

for any P ∈ Cn(�) and Q ∈ Cn(�) (see [], the case n =  is implicitly contained in []),

{
Cap(Bj)

}–
λa
Bj

(
Cn(�)

)
=

∫ (∫
|P –Q|–n dδ(P)

)
dλa

Bj (Q)

≥
∫ (∫

Ga
�(P,Q)dλa

Bj (Q)
)
dδ(P)

=
∫

R̂Bj
Ma

�(·,∞) dδ(P)

≥ cV (Rj)δ(Bj) = cV (Rj)

http://www.journalofinequalitiesandapplications.com/content/2014/1/247
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from equations () and (). Hence we have

λa
Bj

(
Cn(�)

) ≥ cCap(Bj)V (Rj) ≥ crn–j V (Rj). ()

If we observe λa
Hj
(Cn(�)) = λa

Bj (Cn(�)), then we have by equation ()

∞∑
j=j

W
(
j

)
λa
Hj

(
Cn(�)

) ≥ c
∞∑
j=j

(
rj
Rj

)n–

= c
∞∑
j=j


j
= +∞,

from which it follows by Theorem A that H is not a-rarefied at infinity on Cn(�).
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