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Abstract

Background: Microbial systems in which the extracellular environment varies both spatially and temporally are very
common in nature and in engineering applications. While the use of genome-scale metabolic reconstructions for
steady-state flux balance analysis (FBA) and extensions for dynamic FBA are common, the development of
spatiotemporal metabolic models has received little attention.

Results: We present a general methodology for spatiotemporal metabolic modeling based on combining genome-scale
reconstructions with fundamental transport equations that govern the relevant convective and/or diffusional processes in
time and spatially varying environments. Our solution procedure involves spatial discretization of the partial differential
equation model followed by numerical integration of the resulting system of ordinary differential equations with
embedded linear programs using DFBAlab, a MATLAB code that performs reliable and efficient dynamic FBA simulations.
We demonstrate our methodology by solving spatiotemporal metabolic models for two systems of considerable practical
interest: (1) a bubble column reactor with the syngas fermenting bacterium Clostridium ljungdahlii; and (2) a chronic
wound biofilm with the human pathogen Pseudomonas aeruginosa. Despite the complexity of the discretized models
which consist of 900 ODEs/600 LPs and 250 ODEs/250 LPs, respectively, we show that the proposed computational
framework allows efficient and robust model solution.

Conclusions: Our study establishes a new paradigm for formulating and solving genome-scale metabolic models with
both time and spatial variations and has wide applicability to natural and engineered microbial systems.
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Background
Mathematical models of cellular metabolism are a com-
plementary tool to experimentation for analyzing and
engineering metabolic function. Over the past several
decades, flux balance analysis (FBA) based on stoichio-
metric descriptions of cellular metabolism has emerged
as the dominant approach for microbial metabolic mod-
eling. FBA involves the formulation of stoichiometric
equations describing the metabolic network followed by
linear program solution of the underdetermined linear
equation system subject to an assumed cellular objective
such as growth rate maximization [1]. The advent of
genome sequencing and bioinformatic technologies has
allowed the reconstruction of large-scale metabolic net-
works in model organisms, which paved the way for the

extension of FBA to genome-scale metabolic networks
[2]. Curated genome-scale metabolic reconstructions are
now available for a wide variety of microbial species,
with new reconstructions announced on a weekly basis.
Because genome-scale modeling is now an established
tool, research has increasingly focused on novel ways to
use these reconstructions for metabolic systems analysis
and design.
Classical FBA methods assume time invariant and

spatially homogeneous extracellular conditions and gen-
erate steady-state predictions consistent with well-
mixed, continuous cultures [3]. Most microbial systems
involve time and/or spatially dependent environments
that should be incorporated within the metabolic de-
scription. The limitations of steady-state metabolic
models have been addressed through dynamic exten-
sions of stoichiometric models and classical FBA [4–7].
Dynamic flux balance models are obtained by combining
stoichiometric equations for intracellular metabolism
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with dynamic mass balances on extracellular substrates
and products under the assumption that intracellular
metabolite concentrations equilibrate rapidly in response
to extracellular perturbations [8]. The intracellular and
extracellular descriptions are coupled through the cellu-
lar growth rate, secretion fluxes and substrate uptake
kinetics, which can be formulated to include complex
regulatory effects such as growth inhibition by metabolic
byproducts. Dynamic flux balance modeling is now an
established extension of FBA.
In contrast to the dynamic case, the development of

metabolic models that account for spatially varying envi-
ronments has received little attention. Such problems
are very common in natural and engineered microbial
systems. For example, naturally occurring microbial bio-
films typically exhibit strong spatial gradients due to dif-
ferential nutrient availability at the biofilm boundaries
[9]. Spatial gradients are also present in synthesis gas
bubble column reactors because dissolved CO and H2

concentrations decrease as the gas flows up the column
due to cellular consumption [10]. The incorporation of
genome-scale metabolic reconstructions within spatio-
temporal models that account for both spatial and tem-
poral variations in the environment is desirable to
connect genes to metabolic phenotype and system func-
tion. For example, genome-scale metabolic reconstruc-
tions allow the effects of gene deletions and insertions in
mutant strains to be directly investigated. Genome-scale
spatiotemporal models have been solved using table
lookups of precomputed FBA solutions [11–13], lattice
based descriptions of nutrient diffusion [14, 15] and
agent-based simulations [16]. These methods utilize a
fixed time step over which the FBA linear program (LP)
solution is assumed to remain unchanged and the ordin-
ary differential equations (ODEs) representing the extra-
cellular environment are integrated. By contrast, our
approach allows the LP to be directly embedded within
the ODEs and to be solved with variable time steps
chosen by a stiff integrator. Therefore our computational
framework represents an important step towards solving
spatiotemporal models that combine a genome-scale de-
scription of intracellular metabolism and fundamental
transport equations for the extracellular environment.

Methods
Model structure
The class of spatiotemporal metabolic models consid-
ered below is sufficiently general to encompass a wide
variety of potential applications including microbial
communities with interacting species and multiphase
systems in which the liquid and gas phases move relative
to each other. The framework is based on the standard
dynamic flux balance modeling assumption that the
intracellular metabolism is much faster than the

extracellular dynamics, which we do not believe is any
more restrictive when the environment exhibits spatial
variations. Furthermore, we assume that spatial varia-
tions occur only in a single direction z for simplicity.
Additional modeling assumptions include that constant
gas and liquid phase volume fractions and velocities,
constant gas–liquid mass transfer coefficients, constant
cell and metabolite diffusion coefficients, and cell in-
compressibility. The last assumption allows a simple
convection term to be used in the species mass balance
equations. While cell compressibility could be included
in the model if necessary, we expect that this effect
would negligible under the low velocity liquid flows en-
countered in the examples consider here as well as in
most practical applications.
Under these assumptions, a general set of model equa-

tions can be written as,
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The first equation represents a mass balances on the i-
th microbial species where Xi is the biomass concentra-
tion, μi is the growth rate obtained from the genome-
scale metabolic model, μdi is the death rate, uL is the li-
quid phase velocity, εL is the liquid volume fraction and
DiX is the cellular diffusion coefficient that accounts for
cell motility. The second equation represents a mass bal-
ance on the j-th liquid phase metabolite where vij is the
net flux of metabolite j into the liquid phase from spe-
cies i, DjL is the liquid-phase metabolite diffusion coeffi-
cient, kj is the gas–liquid mass transfer coefficient, and
Mj

* is saturation concentration in the liquid phase calcu-
lated from the associated gas-phase concentration using
Henry’s law. The net flux vij is calculated as the differ-
ence between the synthesis rate obtained from the
genome-scale metabolic model and the uptake rate cal-
culated from Michaelis-Menten type kinetic expressions
[17, 18]. The third equation represents a mass balance
on the j-th gas phase component where uG is the gas
phase velocity, εG is the gas volume fraction and DjG is
the gas-phase diffusion coefficient.
Boundary conditions for these equations are problem

specific and can account for the supply/removal of liquid
and/or gas phase components at the domain boundaries.
Although not discussed here, the general model formula-
tion can be extended to include a moving boundary as
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would be required for biofilm expansion. In the Appendix,
two examples of formulated spatiotemporal metabolic
models are presented: (1) a bubble column reactor for
bacterial conversion of synthesis gas to ethanol; and (2) a
bacterial biofilm associated with chronic wound infec-
tions. For the most part, these two models adhere to the
general set of equations presented above. However, the
species mass balance equation for the biofilm model
(Equation 12 in Additional file 1: Appendix) has a slightly
different formulation than the general equation to com-
pensate for the lack of biofilm expansion in the model
(see Additional file 1: Appendix).

Model solution
Simulation of spatiotemporal metabolic models involves
numerically solving a set of nonlinear partial differential
equations (PDEs) with embedded linear programs. The
efficient and stable solution of such models is a challen-
ging problem at the forefront of microbial metabolic
modeling. Our solution approach is based on spatial
discretization such that the PDEs are converted into a
large set of ordinary differential equations (ODEs) in time
with embedded LPs. The spatial domain is discretized
with N node points using an appropriate discretization
method such as finite difference, finite volume or orthog-
onal collocation. If the original PDE model contains NX

microbial species, NM liquid-phase metabolites and NP

gas-phase components, then the discretization procedure
will yield a dynamic FBA model with NX +NM +NP ODEs
and NX LPs at each node point.
Our approach for solving such large discretized models

involves the use of DFBAlab [19], a MATLAB code that
performs reliable and efficient dynamic FBA simulations.
Widespread implementation of dynamic FBA has been
hindered by numerical complications resulting from LPs
becoming infeasible and having nonunique solution vec-
tors. Infeasible LPs cause simulation failure as the right-
hand side of the ODEs becomes undefined, and non-
unique exchange fluxes cause this same right-hand side to
become nonunique, producing an ODE system that inte-
grators are unable to solve. These complications are ad-
dressed in our previous publication [20].
DFBAlab is a modified MATLAB implementation of

our previously developed simulator [20]. DFBAlab refor-
mulates the LP locally as an algebraic system, and it in-
tegrates a differential-algebraic equation system instead
of ODEs with LPs embedded to increase speed. Hier-
archical fixed-priority preemptive (lexicographic)
optimization is used to determine uniquely all fluxes
which appear in the right-hand side of the ODEs (i.e. ex-
change fluxes). All other fluxes not optimized lexico-
graphically (i.e. internal fluxes) may still be nonunique,
but their values do not affect the right-hand side of the
ODEs. With lexicographic optimization, the right-hand

side of the ODEs is guaranteed to be unique, allowing
efficient and reliable integration. Finally, DFBAlab uses
the Phase I LP of the simplex algorithm combined with
lexicographic optimization to avoid infeasibilities.
More specifically, DFBAlab reformulates the FBA LP

as a Phase I lexicographic LP to obtain all information
required by the right-hand side of the ODEs as a unique
vector-valued solution with the following order of
objectives:

1. Minimize infeasibilities: If the first objective is equal
to zero, the LP is feasible and all other objectives are
consistent with the solution of the original FBA LP;
otherwise, the objective is positive. If the original
FBA LP is infeasible, the reformulated Phase I
lexicographic LP still returns values for growth rate
and exchange fluxes allowing the integration process
to continue. This objective can be integrated to
obtain a penalty function. This penalty function can
provide useful insights on why and under what
conditions the FBA model becomes infeasible.

2. Maximize growth rate: this is the traditional FBA
objective.

3. Maximize/minimize all of the exchange fluxes
appearing in the right-hand side of the ODEs. Each
one of these objectives involves a linear combination
of fluxes that can be minimized or maximized as ap-
propriate. If there are n fluxes appearing in the right
hand side of the ODEs, the vector-valued objective
will require at most n + 2 elements to obtain a
unique right-hand side.

DFBAlab is designed to solve ODE systems; however,
it provides a flexible framework that enables the solution
of PDE models if the equations can be transformed into
ODEs. Consider the following equation that describes
the biomass concentration of the i-th species in a bubble
column reactor:

∂Xi

∂t
¼ μi−μdið ÞXi−uL

∂Xi

∂z
ð2Þ

This PDE can be easily converted into an ODE by dis-
cretizing the spatial domain. If a simple backward differ-
ence formula is used to approximate the convection
term, then the following set of ODEs is obtained for
each point j in the spatial domain and each species i:

dXi;j

dt
¼ μi−μdið ÞXi;j−

uL
ΔL

Xi;j−Xi;j−1
� �

; ð3Þ

where L is the length of the spatial domain, ΔL = L/n
and n is the number of discretization points. In addition,
Xi,0 = Xfeed = 0 and the outlet biomass concentration of
the bubble column reactor is Xi,n. A more detailed
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explanation for the single species case can be found in
Fig. 1. A similar procedure is followed to obtain ODEs
corresponding to the discretized PDEs of the liquid and
gas phase components in (1). The flexibility of DFBAlab
allows for the easy implementation and fast simulation
of such discretized PDE systems. To ensure physically
meaningful predictions for the two case studies pre-
sented below, the species growth rate μi and the secre-
tion exchange fluxes vij were set equal to zero whenever
DFBAlab detected that the LP for the i-th species was
infeasible. This situation occurred when local nutrient
uptake rates were insufficient to meet the non-growth
ATP maintenance requirements. While this approach
had the potential to make the right-hand side of the
ODEs discontinuous, we found that DFBAlab had little
problem integrating through such points because the
growth rates and byproduct secretion rates tended to be
very small immediately prior to an infeasibility
occurring.
From a biological perspective, the additional objectives

involving the exchange fluxes represent lower level cellu-
lar strategies than the main objective of growth rate
maximization. The choice of these objectives is problem
dependent and requires assumptions about the cellular
metabolism. We typically assume that the cell regulation
machinery is configured to maximize substrate uptake
fluxes and minimize byproduct secretion fluxes, which is
consistent with the main objective by maximizing the in-
put of carbon containing and electron accepting metabo-
lites and minimizing the output of carbon wasting
byproducts. While DFBAlab requires specification of

these lower level objectives, they impact the lexico-
graphic optimization only when alternative optima
occur. Our experiences with the two examples discussed
in the following sections and other problems solved with
DFBAlab is that the ordering of these objectives has a
negligible impact on spatiotemporal model solutions be-
cause alternative optima typically occur only for short
periods of simulation time. In other words, DFBAlab al-
lows the integrator to reliably transition across short pe-
riods where alternative optima exist.

Simulation codes
All simulations were performed with MATLAB 8.5
(R2015a) using DFAlab for dynamic flux balance model
solution and Gurobi 6.0 for linear program solution.
DFBAlab is freely available for both education and non-
profit research purposes from https://yoric.mit.edu/dfba-
lab. Any entity desiring permission to incorporate this
software or a work based on the software into commer-
cial products or otherwise use it for commercial pur-
poses should contact Dr. Paul Barton (pib@mit.edu).
Simulation codes for the synthesis gas bubble column
reactor and bacterial biofilm models can be obtained
from www.ecs.umass.edu/che/henson_group/
downloads.html.

Results and discussion
Spatiotemporal simulation of a synthesis Gas bubble
column reactor model
An emerging route for the large-scale production of re-
newable fuels and chemicals is direct fermentation of

Fig. 1 Discretization of the biomass concentration PDE for a single species in Equation 2. The bubble column reactor is divided into sections
along the length dimension. Each section is represented by an ODE that has an accumulation term, a source/sink term due to bacterial growth
and death, and two convection terms (in/out)
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waste gas streams and synthesis gas (syngas; mainly
comprised of H2/CO/CO2) by specialized CO ferment-
ing microbes. Because syngas can be produced relatively
cheaply from a wide variety of biomass feedstocks [21,
22], the bottleneck in this route is the syngas fermenta-
tion step. Commercial development efforts are currently
focused on bubble column reactors due to their superior
gas–liquid mass transfer characteristics and enhanced
operational flexibility [10]. Because CO and H2 concen-
trations decrease as the gas flows up the column due to
cellular consumption, the column can have strong
spatial gradients that affect cellular growth and product
synthesis. The development of model-based techniques
for simulating and optimizing these complex multiphase
reactors is important to advance syngas fermentation
technology.

1. Bubble column model solution
The bubble column model was formulated by combining
a genome-scale metabolic reconstruction of the syngas
fermenting bacterium Clostridium ljungdahlii [23] with
uptake kinetics for dissolved gases and reaction-
convection–dispersion type equations for gaseous and
dissolved substrates and synthesized metabolic bypro-
ducts. Our preliminary FBA calculations with the typical
maximum growth objective showed that the only meta-
bolic byproducts for growth on CO/H2 mixtures were
ethanol, acetate and CO2. While other byproducts could
be secreted under bubble column operating conditions,
we did not attempt to determine or model other bypro-
ducts due to our focus on ethanol production. There-
fore, the spatiotemporal metabolic model was comprised
of 9 PDEs for the liquid-phase concentrations of C.
ljungdahlii biomass, ethanol, acetate, CO, H2 and CO2

and the gas-phase concentrations of CO, H2 and CO2

(see Additional file 1: Appendix). Model parameters
were obtained from the literature to the extent possible
with the remaining parameters specified within reason-
able ranges (Table 1). The interested reader is directed
to our other paper [24] for additional details about the
bubble column model formulation and model sensitivity
to various column operating and substrate uptake
parameters.
The convection terms were discretized using an up-

wind finite difference approximation with third-order ac-
curacy due to its well established numerical accuracy
and stability properties for convection dominated prob-
lems [25]. We found that the addition of axial dispersion
terms to the liquid phase mass balances greatly im-
proved numerical stability of the model (see Additional
file 1: Appendix), as has been well documented in other
applications [25]. These dispersion terms were discre-
tized using a central difference approximation with
second-order accuracy. Because the upwind formula was

not implementable at the reactor boundaries, a first-
order backward difference approximation was used at
these locations. The discretization procedure yielded a
set of 9 ODEs at each node point.
The lexicographic optimization objectives required by

DFBAlab were specified to reflect the known or ex-
pected physiology of C. ljungdahlii (Table 2). We found
that the ordering of these objectives had no noticeable
effect on predicted metabolic phenotypes and bubble
column behavior. Each node point was represented by 9
ODEs for the biomass and biochemical species concen-
trations, 3 algebraic equations for the local dissolved gas
uptake rates and 6 LPs for lexicographic optimization.
We typically employed 100 node points to obtain a
nearly converged solution using DFBAlab combined
with the LP solver Gurobi and the stiff ODE solver
ode15s.

2. Prediction of bubble column performance
Our first goal was to investigate the efficiency of DFBA-
lab for simulating startup of the bubble column reactor
with N = 100 node points, which yielded a total of 900
ODEs (9 per point) and 600 LPs (6 per point). Despite
the substantial computational complexity of this discre-
tized model, we found that a typical 1000 h dynamic
simulation for determining a steady-state solution re-
quired only about 8 min running DFBAlab and

Table 1 Parameter values for the synthesis gas bubble column
reactor model

Parameter Value Parameter Value

L 25 m vmax,CO 35 mmol/gDW/h

A 5 m2 Km,CO 0.02 mmol/L

uG 75 m/h vmax,H2 70 mmol/gDW/h

uL 0.25 m/h Km,H2 0.02 mmol/L

DA 0.25 m2/h vmax,CO2 35 mmol/gDW/h

T 37 °C Km,CO2 0.02 mmol/L

PL 1.013x105 Pa KI 10 g/L

xC 0.6 CGF 80.64 mmol/L

xH 0.4 HGF 53.76 mmol/L

xD 0 DGF 0 mmol/L

HC 8×10−4 mol/L/atm X0 0.1 g/L

HH 6.6×10−4 mol/L/atm CG0 80.64 mmol/L

HD 2.5×10−2 mol/L/atm HG0 53.76 mmol/L

km,C 80 h−1 DG0 0 mmol/L

km,H 200 h−1 CL0 1.642 mmol/L

km,D 80 h−1 HL0 0.903 mmol/L

εG 0.0646 DL0 0 mmol/L

εL 0.9354 EL0 0 g/L

AL0 0 g/L
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MATLAB version 7.11 on a Dell XPS laptop with Intel
Core i7-2760QM processor and 8 GB RAM. Time and
spatially resolved predictions obtained for reactor startup
with a simulation time of 250 h are shown in Fig. 2.
Steady-state conditions were achieved approximately
225 h after startup once the rate of biomass production
equaled the rate of biomass removal from the top of the
column. The gas and liquid phase CO and H2 concen-
trations decreased along the length of the reactor due to
gas consumption, while the biomass, acetate and ethanol
concentrations increased along the reactor due to liquid
flow. The synthesis of CO2 was negligible under these
nominal operating conditions. Because the feed gas was
relatively rich in CO, the H2 conversion was 62 % while
the CO conversion was only 29 %. As a result of H2 be-
ing depleted in the first half of the reactor, considerable
acetate was produced in the second half of the reactor
and the liquid product stream exiting the top of the col-
umn contained more acetate than ethanol (ethanol frac-
tion ~40 %). While we are not aware of any published

experimental studies that describe the startup dynamics
of syngas bubble columns, our model could be a power-
ful tool for predicting and optimization reactor startup.
To demonstrate that N = 100 node points were suffi-

cient to obtain nearly converged solutions, we performed
dynamic simulations for reactor startup with different N
values and compared the resulting steady-state solutions
obtained at t = 1000 h (Fig. 3). While completely con-
verged solutions appeared to be obtained for 300 node
points, this simulation required almost 50 min to
complete. For the purposes of this study, we decided
that 100 node points provided a suitable compromise
between solution accuracy (less than 0.2 % error com-
pared to N = 300) and computational time (~8 min per
simulation). All remaining simulations were performed
with N = 100.
To demonstrate the power of our computational

framework and to gain insights into bubble column re-
actor dynamics, we performed additional startup simula-
tions with different parameter values. First we changed

Table 2 Cellular objective functions used for C. ljungdahlii metabolism

Number Direction Objective Reason

1 Maximize Growth rate Assumed primary objective

2 Maximize CO uptake rate Maximize nutrient consumption

3 Maximize H2 uptake rate Maximize nutrient consumption

4 Minimize CO2 synthesis rate Minimize byproduct synthesis

5 Minimize Acetate synthesis rate Minimize byproduct synthesis

6 Minimize Ethanol synthesis rate Minimize byproduct synthesis

Fig. 2 Dynamic simulation of the bubble column reactor model at the nominal operating conditions (Table 1). The first two columns show time
resolved predictions at node points in the middle and at the exit of the column, while the third column show spatially resolved predictions for
the exit node point at the final time
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the feed composition from the nominal 60/40 CO/H2

mixture to a 50/50 CO/H2 mixture. The column exhib-
ited similar dynamics for this H2 rich feed, as the bio-
mass concentration still required approximately 200 h to
reach steady state (Fig. 4). However, the increased H2

feed concentration produced a more favorable dissolved

H2 profile along the column, resulting in an enhanced
ethanol titer of 102 g/L and a substantially improved
ethanol-acetate ratio of approximately 3 at the reactor
outlet once steady state was reached. The amount of
biomass produced was not noticeably changed. Due to
the increased H2 content of the feed, the H2 conversion

Fig. 3 Effect of the number of discretization node points (N) on biomass and ethanol concentration spatial profiles (top) and on biomass and
ethanol concentrations exiting the reactor (bottom). The chosen value of N = 100 is indicated by the dashed lines

Fig. 4 Dynamic simulation of the bubble column reactor model for a CO/H2 feed composition of 50/50. The first two columns show time
resolved predictions at node points in the middle and at the exit of the column, while the third column show spatially resolved predictions for
the exit node point at the final time
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decreased to 60 % and the CO conversion increased to
35 %. Our model predictions were in qualitative agree-
ment with published experimental studies [26–28] show-
ing that hydrogen rich feeds increase both the ethanol
titer and the ethanol/acetate split.
Next we performed a dynamic simulation with the CO

gas–liquid mass transfer coefficient changed from the
nominal value km,C = 80 h−1 to a substantially larger
value km,C = 300 h−1, which could result from syngas
microsparging and column internal packing [29]. Con-
sistent with our nominal values (Table 2), we set the H2

mass transfer coefficient to be 250 % larger than the CO
value and the CO2 mass transfer coefficient to equal the
CO value. The large increases in gas–liquid mass trans-
fer rates produced faster column dynamics with the bio-
mass concentration requiring only about 150 h to reach
steady state (Fig. 5). Once the column reached steady
state, the increased mass transfer rates also offered the
benefit of increased ethanol titer (120 g/L), a higher
ethanol-acetate ratio (3.5) and improved CO (33 %) and
H2 (86 %) conversions compared to the nominal case.
Our predictions were in qualitative agreement with pub-
lished experimental studies [27, 29, 30] showing that en-
hanced gas–liquid mass transfer increases gas
consumption, the ethanol titer and the ethanol/acetate
split.

Spatiotemporal simulation of a Bacterial Biofilm
Chronic, non-healing wounds are a growing medical
challenge associated with diabetes and obesity [31].

These wounds are typically colonized by bacterial spe-
cies such as Pseudomonas growing as biofilms on a com-
plex mixture of wound exudate [32, 33]. Bacteria in
biofilms can tolerate antimicrobial agent concentrations
10,000 times higher than the same microbes grown
planktonically, making treatment of chronic wound bio-
films a major challenge [34]. Carbon sources such as
glucose are available only from the exudate through the
tissue-biofilm interface at the bottom of the biofilm and
oxygen is primarily available through the biofilm-air
interface at the top of the biofilm. Due to limited diffu-
sion, bacterial biofilms often exhibit strong spatial gradi-
ents that affect metabolism, physiology and virulence
[35, 36]. The development of predictive metabolic
models for simulating these complex spatially structured
systems is important to advance understanding and
treatment of chronic wound infections.

1. Biofilm model solution
The bacterial biofilm model was formulated by combin-
ing a genome-scale metabolic reconstruction of the op-
portunistic human pathogen P. aeruginosa [37] with
substrate uptake kinetics and reaction–diffusion equa-
tions for substrates and metabolic byproducts. As com-
pared to alternative biofilm modeling approaches based
on unstructured intracellular descriptions [38], this
model formulation allowed the effects of substrate and
byproduct diffusion within the biofilm to be captured
with genome-scale resolution. Our preliminary FBA cal-
culations showed that the primary byproducts were

Fig. 5 Dynamic simulation of the bubble column reactor model for a CO mass transfer coefficient km,C = 300 h−1. The first two columns show
time resolved predictions at node points in the middle and at the exit of the column, while the third column show spatially resolved predictions
for the exit node point at the final time. The H2 and CO2 mass transfer coefficients were set to be 2.5km,C and km,C, respectively
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acetate and D-alanine. To obtain better agreement with
experimental data [39] showing anaerobic succinate se-
cretion by P. aeruginosa, we constrained the D-alanine
secretion flux to zero such that the only byproducts
were acetate and succinate. While other byproducts
could be secreted in different biofilm microenviron-
ments, we did not attempt to determine or model other
byproducts due to our focus on cellular growth. The
spatiotemporal metabolic model was comprised of 5
PDEs for the liquid-phase concentrations of P. aerugi-
nosa biomass, glucose, oxygen, acetate and succinate
(see Additional file 1: Appendix). Model parameters
were obtained from the literature to the extent possible
with the remaining parameters specified within reason-
able ranges (Table 3). To avoid the complications associ-
ated with solving a moving boundary problem, the
biofilm was assumed to have a fixed thickness. There-
fore, the formulated model was appropriate for predict-
ing the metabolism of P. aeruginosa biofilms of a
specified thickness rather than predicting the thickness
itself. Model simulations show the spatiotemporal dy-
namics of cellular metabolism within a fixed spatial do-
main consistent with growth between two stationary
surfaces. Steady-state solutions show the spatial distribu-
tion of cell and metabolite concentrations within a bio-
film of the prescribed thickness. As expected, we found
that growth dynamics were strongly affected and steady-
state spatial profiles were less affected by the initial cell
concentration.
The diffusion terms were discretized using a central

difference approximation with second-order accuracy,
which produced a set of 5 ODEs in time at each node
point. The lexicographic optimization objectives were
specified to reflect the known or expected physiology of
P. aeruginosa (Table 4). We found that the ordering of
these objectives had no noticeable effect on predicted
biofilm dynamics. Each node point was represented by 5
ODEs for the biomass, glucose, oxygen, acetate and

succinate concentrations, 4 algebraic equations for cal-
culating diffusion coefficients as a function of the local
biomass concentration [40], and 5 LPs for lexicographic
optimization. We used 50 node points for DFBAlab so-
lution with the LP solver Gurobi and the stiff ODE
solver ode15s.

2. Prediction of biofilm physiology
We performed a dynamic simulation for a biofilm thick-
ness of 50 μm with N = 50 node points, which produced
a discretized model with 250 ODEs (5 per point) and
250 LPs (5 per point). A 1000 h dynamic simulation for
determining a steady-state solution required about
15 min on our Dell XPS laptop. This computation time
was substantially greater than the 8 min required to
simulate the bubble column reactor model over the
same time period despite the larger size of the discre-
tized column model (900 ODEs, 600 LPs). While we
hypothesize that the increased computation times ob-
tained with the biofilm model were attributable to the
diffusion dominated behavior, these results demonstrate
the need to better understand the computational com-
plexity of these large-scale ODE/LP systems.
Figure 6 shows dynamic simulation results for the

50 μm thick biofilm, where time profiles are presented
at the bottom (tissue interface), middle and top (air
interface) of the biofilm. The bottom layer was charac-
terized by a high glucose concentration, a very low oxy-
gen concentration and a relatively small biomass
concentration with slow dynamics. By contrast, the top
layer had a very low glucose concentration, a high oxy-
gen concentration and a relatively large biomass concen-
tration with fast dynamics. Experimental studies [9, 41]
also have shown the presence of strong spatial gradients
in nutrient (e.g. oxygen) levels within biofilms. Despite
having a much lower oxygen concentration, the middle
layer exhibited similar dynamic and steady-state behav-
ior as the top layer. Spatially uniform acetate and succin-
ate concentrations were obtained throughout the biofilm
due to limited removal of the two byproducts at the
tissue-biofilm boundary.
To explore the impact of biofilm thickness on physi-

ology and to further evaluate our modeling framework,
we performed a dynamic simulation for a 100 μm thick
biofilm (Fig. 7). This thicker biofilm had slower dynam-
ics, with approximately 200 h required to reach a
steady-state solution. Major differences between the 50
and 100 μm thicknesses were observed at the top of the
biofilm. In particular, the 100 μm thick biofilm exhibited
much slower growth dynamics and less biomass accu-
mulation due to the limited glucose diffusion, a predic-
tion in qualitative agreement with experimental data [36,
42] indicating nutrient limited growth in mature bio-
films. The thicker biofilm also produced higher levels of

Table 3 Parameter values for the P. aeruginosa biofilm model

Parameter Value Parameter Value

L 100 μm vmax,O 20 mmol/gDW/h

DGW 9.4x10−6 cm2/s Km,O 0.003 mmol/L

DOW 26.8x10−6 cm2/s T 37 °C

DAW 16.2x10−6 cm2/s Gb 7.5 mmol/L

DSW 12.6x10−6 cm2/s Ob 0.21 mmol/L

kG, kA, kS 2.0x10−4 cm/s Ab 0 mmol/L

kO 2.0x10−2 cm/s Sb 0 mmol/L

μd 0.01 h−1 X0 1 g/L

Xmax 200 g/L O0 0.21 mmol/L

vmax,G 10 mmol/gDW/h A0 0 mmol/L

Km,G 0.5 mmol/L S0 0 mmol/L
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the metabolic byproducts, especially succinate, which
could potentially serve as a carbon source for aerobic
growth in glucose depleted regimes at the top of the bio-
film [43].
While the previous simulations were performed as-

suming the only source of O2 was from air at the top of
the biofilm, blood plasma has low O2 levels [44] that
could support limited aerobic growth near the tissue-
biofilm interface. To investigate this effect, we modified
the boundary condition at z = 0 for the O2 mass balance
(Equation 13 in Additional file 1: Appendix) from a no
flux boundary condition to a mass transfer limited
boundary condition with a plasma O2 concentration of
0.05 mmol/L. The inclusion of an O2 source at this
interface resulted in a higher O2 level, much faster
growth dynamics and more biomass accumulation at the
bottom of the biofilm (Fig. 8). The establishment of par-
tially aerobic conditions near the tissue-biofilm interface
also reduced the overall level of succinate in the biofilm
while the acetate level was unaffected.
Finally we performed a dynamic simulation to investi-

gate the effects of putative succinate reassimilation on
biofilm physiology. The thickness was specified as
100 μm and O2 was supplied at the tissue-biofilm inter-
face as before. Succinate consumption was included in
the model by allowing succinate uptake with the same

kinetic parameters as used for glucose (see Equation 11
in Additional file 1: Appendix and Table 3). Figure 9
shows a comparison of steady-state spatial profiles ob-
tained after 1000 h of dynamic simulation for three cases
that differ with respect to whether O2 was supplied at
the tissue-biofilm interface and whether succinate con-
sumption was allowed. If only O2 supply at the tissue-
biofilm interface was introduced (“O2 Tissue”), the main
differences from the nominal case were that more bio-
mass was produced near the interface and lower succin-
ate levels were generated throughout the biofilm. When
succinate consumption also was introduced (“Succinate
Consume”), then biomass was preferentially accumu-
lated at the top of the biofilm due to succinate oxidation,
resulting in a less dense region located in the middle.
This prediction was consistent with the known physi-
ology of nutrient limited biofilms [45]. Succinate con-
sumption also resulted in increased acetate levels
compared to the other two cases.

Conclusions
Many natural and engineered microbial systems exist in
non-homogeneous environments that require metabolic
models that account for both temporal and spatial varia-
tions. Our spatiotemporal metabolic modeling frame-
work involves combining genome-scale metabolic

Table 4 Cellular objective functions used for P. aeruginosa metabolism

Number Direction Objective Reason

1 Maximize Growth rate Assumed primary objective

2 Minimize Acetate synthesis rate Minimize byproduct synthesis

3 Minimize Succinate synthesis rate Minimize byproduct synthesis

4 Maximize Glucose uptake rate Maximize nutrient consumption

5 Maximize Oxygen uptake rate Maximize nutrient consumption

Figure 6 Dynamic simulation of the bacterial biofilm model at the nominal operating conditions (Table 3) and a width L = 50 μm. Time resolved
predictions are shown for nodes points located at the bottom, middle and top of the biofilm
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reconstructions with fundamental transport equations
that govern the relevant convective and/or diffusional
processes in the extracellular environment. The PDE
model is spatially discretized and the resulting system of
ODEs with embedded LPs is integrated using DFBAlab
[19], a MATLAB code that performs reliable and effi-
cient dynamic FBA simulations. We demonstrated the
capabilities of the method by solving large discretized
models for a convection dominated syngas bubble col-
umn reactor (900 ODEs, 600 LPs) and a diffusion driven
bacterial biofilm model (250 ODEs, 250 LPs). The pro-
posed methodology represents an important step to-
wards rigorously solving spatiotemporal models that
combine a genome-scale description of intracellular me-
tabolism and fundamental transport equations for the

extracellular environment. A possible limitation of our
modeling framework is computational cost, which de-
pends on the number of microbial species, the number
of metabolite uptake and secretion fluxes for each spe-
cies, and the number of node points used for spatial
discretization. Consequently, future research will focus
on improving computational efficiency including the re-
duction of genome-scale reconstructions to maintain the
same uptake-secretion rate behavior [46] and strategic
combination of extracellular byproducts into lumped
variables that reduce model size. While our bubble col-
umn and biofilm models produce predictions in qualita-
tive agreement with available data, we are currently
conducting detailed experimental studies to generate
spatially and time resolved data for model validation.

Fig 7 Dynamic simulation of the bacterial biofilm model at the nominal operating conditions (Table 3) and a width L = 100 μm. Time resolved
predictions are shown for nodes points located at the bottom, middle and top of the biofilm

Fig. 8 Dynamic simulation of the bacterial biofilm model at the nominal operating conditions (Table 3), width L = 50 μm and a mass transfer
limited boundary condition with a plasma O2 concentration of 0.05 mmol/L imposed at the tissue-biofilm interface. Time resolved predictions are
shown for nodes points located at the bottom, middle and top of the biofilm
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