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Abstract

We generalize the well-known Baker’s super-stability result for exponential mappings
with values in the field of complex numbers to the case of an arbitrary Hilbert space
with the Hadamard product. Then, we will prove an even more general result of this
type.
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1. Introduction
The stability problem of functional equations goes back to a question of Ulam [1] con-

cerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial

answer to the question of Ulam for Banach spaces (see also [3]). Hyers’s theorem was

generalized by Aoki [4] for additive mappings and by Rassias [5,6] for linear mappings

by considering an unbounded Cauchy difference. Baker et al. [7] have proved the

super-stability of the exponential functional equation: If a function f: ℝ ® ℝ is

approximately exponential function, i.e., there exists a nonnegative number a such that

|f (x + y) − f (x)f (y)| ≤ α

for x, y Î ℝ, then f is either bounded or exponential. This theorem was the first

result concerning the super-stability phenomenon of functional equations. Baker [8]

generalized this famous result to any function f: (G, +) ® ℂ where (G, +) is a semi-

group. The same result is also true for approximately exponential mappings with

values in a normed algebra with the property that the norm is multiplicative.

Theorem 1.1. Let (G, +) be a semigroup and Y be a normed algebra in which the

norm is multiplicative. Then, for a function f: G ® Y satisfying the inequality

||f (x + y) − f (x)f (y)|| ≤ α

for all x; y Î G and for some a > 0, either ||f (x)|| ≤ 1/2(1 +
√
1 + 4α) for all x Î G

or f is an exponential function.

In the other world every approximately exponential map f: (G, +) ® Y is either

bounded or exponential.

Rassias [5,6] introduced the term mixed stability of the function f: E ® ℝ, where E is

a Banach space, with respect to two operations addition and multiplication among any
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two elements of the set {x, y, f(x), f(y)}. Especially, he raised an open problem concern-

ing the behavior of solutions of the inequality:

|f (x + y) − f (x)f (y)| ≤ θ(||x||p + ||y||p),

(see also [9,10]). In connection with this open problem, Gavruta [11] gave an answer

to this problem in the spirit of Rassiass approach:

Theorem 1.2 (Gavruta). Let X and Y be a real normed space and a normed algebra

with multiplicative norm, respectively. If a function f: X ® Y satisfies the inequality

||f (x + y) − f (x)f (y)|| ≤ θ(||x||p + ||y||p),

for all x; y Î X and for some p > 0 and θ > 0, then either ||f(x)|| ≤ δ||x||p for all x Î

X with ||x|| ≥ 1 or f is an exponential function, where δ = 1/2(2p +
√
4p + 8θ) .

Baker [8] gave an example to present that the Theorem 1.1 is false if the algebra Y

does not have the multiplicative norm: Given δ > 0, choose an ε > 0 with |ε - ε2| = δ.

Let M2(ℂ) denote the space of 2 × 2 complex matrices with the usual norm and f: ℝ

® M2(ℂ) is defined by f(x) = exe11 + exe22 where eij is defined as the 2 × 2 matrix with

1 in the (i, j) entry and zeroes elsewhere. We will show that such behavior is typical

for approximately exponential mappings with values in Hilbert spaces with Hadamard

product which is not multiplicative.

Let H be a Hilbert space with a countable orthonormal basis {en: n Î N}. For two

vectors x, y Î H, we have the Hadamard product (named after French mathematician

Jacques Hadamard), also known as the entrywise product on Hilbert space H as the

following:

x ∗ y =
+∞∑
n=1

〈x, en〉
〈
y, en

〉
en (x, y ∈ H).

The Cauchy-Schwartz inequality together with the Parseval identity insure that

Hadamard multiplication is well defined. In fact,

||x ∗ y|| ≤
(

+∞∑
n=1

| 〈x, en〉 |2
)1/2( +∞∑

n=1

| 〈y, en〉 |2
)1/2

= ||x|||y||.

In the present paper, we state a super-stability result for the approximately exponen-

tial Hilbert-valued functional equation by Hadamard product, see Theorem 2.1 below.

As a consequence, we prove if a surjective function f: H ® H satisfies the inequality

||f (x ∗ y) − f (x) ∗ f (y)||H ≤ α

for some a ≥ 0 and for all x; y Î H, then it must be exponential with this product, i.e.,

f (x ∗ y) = f (x) ∗ f (y).

Then, we will prove an even more general result of this type. We also generalized

Theorem 2.1 concerning the mixed stability for Hilbert-valued functions.

2. Main results
The function f(x) = ax is said to be an exponential function, where a > 0 is a fixed real

number. The exponent law of exponential functions is well represented by the expo-

nential equation f(x + y) = f(x)f(y). Hence, we call every solution function of the

Rezaei and Sharifzadeh Journal of Inequalities and Applications 2011, 2011:114
http://www.journalofinequalitiesandapplications.com/content/2011/1/114

Page 2 of 8



exponential equation as exponential function. A general solution of the exponential

equation was introduced in [12]. In fact, a function f: ℝ ® ℂ is an exponential function

if and only if either f(x) = exp(A(x) + ia(x)) for all x Î ℝ or f(x) = 0 for all x Î ℝ;

where A: ℝ ® ℝ is an additive function and a: ℝ ® ℝ satisfies

a(x + y) ≡ a(x) + a(y) mod 2π (1)

for all x, y Î ℝ. Indeed, a function f: ℝ ® ℝ continuous at a point is an exponential

function if and only if f(x) = ax for all x Î ℝ or f(x) = 0 for all x Î ℝ, where a > 0 is a

constant.

Definition 2.1. For a Hilbert space H and a semi-group (G,.), a function F: G ® H is

said to be exponential when

F(x, y) = F(x) ∗ F(y)

for every x, y Î G.

The following proposition characterizes the Hilbert-valued function satisfying the

exponential equation:

Proposition 2.2. Let H be a separable complex Hilbert space and the mapping F: ℝ

® H be exponential then either F ≡ 0 or there exist a positive integer N such that

F(x) =
N∑
n=1

exp(An(x) + an(x))en

for all x Î H where An: ℝ ® ℝ is an additive function and an is a function satisfying

(1) for n = 1, 2,..., N.

Proof. For every integer n ≥ 1, consider the function en ⊗ F: ℝ ® ℂ by

(en ⊗ F)(h) =
〈
F(h), en

〉
for every h Î H. Since F is exponential, so is en ⊗ F for every integer n ≥ 1. Indeed,

for n ≥ 1 and x, y Î H, we see that

+∞∑
n=1

(en ⊗ F)(x.y)en =
+∞∑
n=1

〈
F(x.y), en

〉
en

= F(x.y) = F(x) ∗ F(y)

=
+∞∑
n=1

〈
F(x), en

〉 〈
F(y), en

〉
en

=
+∞∑
n=1

(en ⊗ F)(x)(en ⊗ F)(y)en.

This yields the exponential property of en ⊗ F for every n ≥ 1. Hence, either

(en ⊗ F)(x) = exp(An(x) + an(x)) (2)

for all x Î ℝ or (en ⊗ F)(x) = 0 for all x Î ℝ; here An: ℝ ® ℝ is an additive function

and an is a function satisfying (1). The continuation of proof depend on the dimension

of H. In fact, if H is infinite dimensional, since

(en ⊗ F)(x) =
〈
F(x), en

〉 → 0
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for every x Î H as n ® +∞ Equation 2 is not possible for infinitely many positive

integer n and hence there exists some positive integer N such that en ⊗ F = 0 for

every integer n >N. Thus, F can be represented as

F(x) =
+∞∑
n=1

〈
F(x), en

〉
en =

N∑
n=1

〈
F(x), en

〉
en =

N∑
n=1

exp(An(x) + an(x))en.

In the case that H is of finite dimensional type, the proof is clear.

In the following theorem, we generalize the well-known Baker’s super-stability result

for exponential mappings with values in the field of complex numbers to the case of

an arbitrary Hilbert space with the Hadamard product.

Theorem 2.3. Let G be a semigroup and let a > 0 be given. If a function f: G ® H

satisfies the inequality

||f (x.y) − f (x) ∗ f (y)||H ≤ α (3)

for all x; y Î G, then either there exists an integer k ≥ 1 such that

| 〈f (x), ek〉 | ≤ 2k(1 +
√
1 + α) (4)

for all x Î G or

f (x.y) = f (x) ∗ f (y)

for all x; y Î G.

Proof. Assume that the first conclusion (i.e., (4)) is not true. Hence, for every integer

k ≥ 1, there exists a ak Î G such that

| 〈f (ak), ek〉 | > 2k(1 +
√
1 + α).

Let β := (1 +
√
1 + α) , fk(x) = 〈f(x), ek〉, and gk = 2-k fk. Then, b2 - 2b = a, b > 2 and |

fk(ak)| > 2kb whence |gk(ak)| >b. By applying the Parseval identity and definition of

Hadamard product with together relation (3), we find that each scalar-valued function

fk is approximately exponential, i.e.,

|fk(x.y) − fk(x)fk(y)| < α (5)

for every integer k ≥ 1 and x, y Î G. Let

γk = |gk(ak)| − β + 1

then gk > 1 for every integer k ≥ 1. It follows from (5) for x = y = ak that

|fk(a2k) − fk(ak)2| ≤ α

and so

|gk(a2k)| ≥ |2kgk(ak)2| − |gk(a2k )| − 2kgk(ak)2|
= 4k|gk(ak)2| − 2−k|fk(a2k) − fk(ak)2|
≥ |gk(ak)2| − |fk(a2k ) − fk(ak)2|
≥ |gk(ak)|2 − α

= (γk + β − 1)2 − β2 + 2β

= (γk − 1)2 + 2γkβ > 2β .
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Now, make the induction hypothesis

|gk(a2nk )| > (n + 1)β . (6)

Then, by using (5) for x = y = a2
n

k and (6), we observe that

|gk(a2n+1k )| ≥ |2kgk(a2nk )2| − |gk(a2n+1k ) − 2kgk(a2
n

k )2|
= 4k|gk(a2nk )|2 − 2−k|fk(a2n+1k ) − fk(a2

n

k )2|
≥ |gk(a2nk )|2 − |fk(a2n+1k ) − fk(a2

n

k )2|
≥ |gk(a2nk )|2 − α

> (n + 1)2β2 − β2 + 2β > (n + 2)β

and (6) is established for all n Î N. Hence, by definition of fk and gk, we see that∣∣〈f (a2nk ), ek
〉∣∣ > 2k(n + 1)β . (7)

On the other hand, for every x, y, z Î G, we have

||f (x.y) ∗ f (z) − f (x) ∗ f (y.z)|| ≤ ||f (x.y) ∗ f (z) − f (x.y.z)||
+ ||f (x.y.z) − f (x) ∗ f (y.z)||

≤ 2α.

Consequently, for h(x, y) = f(x.y) - f(x) * f(y), one can see

||h(x, y) ∗ f (z)|| = ||f (x.y) ∗ f (z) − f (x) ∗ f (y) ∗ f (z)||
≤ ||f (x.y) ∗ f (z) − f (x) ∗ f (y.z)||
+ ||f (x) ∗ f (y.z) − f (x) ∗ f (y) ∗ f (z)||

≤ 2α + α||f (x)||.

Now, by using Parseval identity for h(x, y) * f(z) observe that

∣∣〈f (z), ek〉∣∣2∣∣〈h(x, y), ek〉∣∣2 ≤
+∞∑
k=1

∣∣〈f (z), ek〉∣∣2∣∣〈h(x, y), ek〉∣∣2
= ||h(x, y) ∗ f (z)||2 ≤ 2α + α||f (x)||.

Applying the last relation for z = a2
n

k and relation (7) to deduce that

4k(n + 1)2β2
∣∣〈h(x, y), ek〉∣∣2 ≤ ∣∣〈f (a2nk ), ek

〉∣∣2∣∣〈h(x, y), ek〉∣∣2
=

∣∣〈f (z), ek〉∣∣2∣∣〈h(x, y), ek〉∣∣2
≤ 2α + α||f (x)||.

It follows that

||h(x, y)||2 =
+∞∑
k=1

∣∣〈h(x, y), ek〉∣∣2 ≤ 2α + α||f (x)||
β2(n + 1)2

+∞∑
k=1

4−k

for all x, y Î G and any n Î N. Letting n ® +∞, we conclude that h(x, y) = 0 and so

f(x.y) = f(x) * f(y) for all x, y Î G.
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Notice that if f: H ® H is a surjection function, then every component function en ⊗
f is unbounded. In fact, for every positive integer n, there exists some xn Î H such that

f(xn) = nen, and so (en ⊗ f)(xn) = n. This led to the following corollary:

Corollary 2.4. If a surjective function f: H ® H satisfies the inequality

||f (x ∗ y) − f (x) ∗ f (y)||H ≤ α

for some a ≥ 0 and for all x; y Î G, then f(x * y) = f(x) * f(y) for all x; y Î G.

In the next theorem, we generalize the Gavruta Theorem on mixed stability for Hil-

bert-valued function with Hadamard product:

Theorem 2.5. Let X be a normed space and H be a separable Hilbert space. If a

function f: X ® H satisfies the inequality

||f (x + y) − f (x) ∗ f (y)|| ≤ θ(||x||p + ||y||p) (8)

for all x; y Î X and for some p > 0 and θ > 0, then either there exists an integer k ≥

1 such that∣∣〈f (x), ek〉∣∣ ≤ 2kβ (9)

for all x Î X with ||x|| ≥ 1 or

f (x + y) = f (x) ∗ f (y)

for all x; y Î X. where β = 2p +
√
4p + 4θ .

Proof. Assume that for every integer k ≥ 1 there exists an xk Î X with ||xk|| ≥ 1

such that∣∣〈f (xk), ek〉∣∣ > 2kβ .

If we set fk(x): = 〈f(x), ek〉 and gk := 2-kfk, this is equivalent with

||gk(xk)|| > β||xk||p.

It follows from Parseval identity, definition of Hadamard product and relation (8) that

|fk(x + y) − fk(x)fk(y)| < θ(||x||p + ||y||p) (10)

for every x, y Î X and k ≥ 1. In particular, for x = y = xk

||f (2xk) − f (xk)2|| ≤ 2θ ||xk||p.

Since b2 = 2p + 1 b + 2θ, hence

|gk(2xk)| ≥ |2kgk(xk)|2 − |gk(2xk) − 2kgk(xk)2|
= 4k|gk(xk)|2 − 2−k|fk(2xk) − fk(xk)2|
≥ |gk(xk)|2 − |fk(2xk) − fk(xk)2|
≥ β2||xk||2p − 2θ ||xk||p
= (β2 − 2θ)||xk||p ≥ 2p+1β||xk||p = 2β||2xk||p.

Now, make the induction hypothesis

|gk(2nxk)| > 2nβ||2nxk||p. (11)
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Then, by using (10) for x = y = 2nxk and (11), we get

|gk(2n+1xk)| ≥ |2kgk(2nxk)|2 − |gk(2n+1xk) − 2kgk(2nxk)2|
= 4k|gk(2nxk)|2 − 2−k|fk(2n+1xk) − fk(2nxk)2|
≥ |gk(2nxk)|2 − |fk(2n+1xk) − fk(2nxk)2|
> 22nβ2||2nxk||2p − 2θ ||2nxk||p
≥ (22nβ2 − 2θ)||2nxk||p
≥ 22n2p+1β||2nxk||p ≥ 2n+1β||2n+1xk||p

which in turn proves that the inequality (11) is true for all n Î N. Hence, by defini-

tion of fk and gk, we see that∣∣〈f (2nxk), ek〉∣∣ > 2k+nβ||2nxk||p > 2k+n. (12)

Choose x; y; z Î X with f(z) ≠ 0. It then follows from (8) that

||f (z) ∗ f (x + y) − f (x) ∗ f (y + z)|| ≤ ||f (z) ∗ f (x + y) − f (x + y + z)||
+ ||f (x + y + z) − f (x) ∗ f (y + z)||

≤ θ(||z||p + ||x + y||p) + θ(||x||p + ||y + z||p)

and again by (8) we get

||f (x) ∗ f (x + y) − f (x) ∗ f (y) ∗ f (z)|| ≤ θ ||f (x)||(||x||p + ||y||p)

which together with the last relation yields

||f (z) ∗ f (x + y) − f (x) ∗ f (y) ∗ f (z)|| ≤ θϕ(x, y, z), (13)

where

ϕ(x, y, z) = ||x||p + ||z||p + ||x + y||p + ||y + z||p + ||f (x)||(||x||p + ||y||p).

Let h(x, y) = f(x + y) - f(x) * f(y), then by (13)

||h(x, y) ∗ f (z)|| ≤ θϕ(x, y, z)

and so

∣∣〈f (z), ek〉∣∣2∣∣〈h(x, y), ek〉∣∣2 ≤
+∞∑
k=1

∣∣〈f (z), ek〉∣∣2∣∣〈h(x, y), ek〉∣∣2
= ||h(x, y) ∗ f (z)||2 ≤ 2θϕ(x, y, z).

In particular, by using the last relation for zk = 2nxk and by considering (12) we

deduce that

2k+n
∣∣〈h(x, y), ek〉∣∣2 ≤ ∣∣〈f (zk), ek〉∣∣2∣∣〈h(x, y), ek〉∣∣2 ≤ θϕ(x, y, z)

and consequently,

||h(x, y)||2 =
+∞∑
k=1

∣∣〈h(x, y), ek〉∣∣2 ≤ θϕ(x, y, z)
2n

+∞∑
k=1

2−k
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for all x, y Î X and any n Î N. Letting n ® +∞, we conclude that h(x, y) = 0 and so

f(x + y) = f(x) * f(y) for all x, y Î X.

At the end of this paper, let us consider the other type multiplication in a Hilbert

space. In fact, for a separable Hilbert space H and two elements x =
∑+∞

n=1 xnen and

y =
∑+∞

n=1 ynen of H, one can define the convolution product by

x • y =

(
+∞∑
n=1

x̂(n)en

)
•

(
+∞∑
n=1

ŷ(n)en

)
=

+∞∑
n=1

ẑ(n)en,

where the numbers ẑ(n) can be obtained by discrete convolution:

ẑ(n) =
n∑

k=1

x̂(k)ŷ(n − k).

Hence, it is interesting to study and to phrase the super-stability phenomenon for

functions with values in (H, •). For instance, it is desirable to have a sufficient condi-

tion for approximately exponential mappings with values in (H, •) to be exponential

with the convolution product.
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