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Abstract
In the present paper, we propose three kinds of new algorithms for a finite family of
quasi-asymptotically pseudocontractive mappings in real Hilbert spaces. By using
some new analysis techniques, we prove the strong convergence of the proposed
algorithms. Some numerical examples are also included to illustrate the effectiveness
of the proposed algorithms. The results presented in this paper are interesting
extensions of those well-known results.
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1 Introduction
Throughout this paper, we assume that H is a real Hilbert space with inner product 〈·, ·〉
and the induced norm ‖ · ‖, respectively. Let C be a nonempty, closed, and convex subset
of H and T : C → C a self-mapping of C into itself. We use Fix(T) to denote the fixed point
set of T , i.e., Fix(T) = {x ∈ C : x = Tx}.

Over the past century or so, fixed point theory of Lipschitzian and non-Lipschitzian
mappings has been developed into a really important and active field of study in both
pure and applied mathematics. Especially, the research on the existence and convergence
of fixed points for nonexpansive mappings and pseudocontractive mappings in the frame-
work of Hilbert and Banach spaces has made great advancements since ; see, for in-
stance, [–] and the references therein.

As generalizations of nonexpansive mappings and pseudocontractive mappings, the
classes of asymptotically nonexpansive mappings and asymptotically pseudocontractive
mappings were introduced by some authors, respectively; see, for instance, [–].

Let E be a Banach space and C a nonempty subset of E.
Recall that a mapping T : C → C is said to be asymptotically nonexpansive [] if there

exists a sequence {kn} of positive real numbers with kn →  such that

∥
∥Tnx – Tny

∥
∥ ≤ kn‖x – y‖, (.)
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for all x, y ∈ C and all n ≥ .
The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk

[] in . From (.), we know that if T is nonexpansive, then it is asymptotically nonex-
pansive with a constant sequence {}, but the converse may be not true in general, which
can be seen from the example in [] that is asymptotically nonexpansive but it is not non-
expansive, thus, the class of asymptotically nonexpansive mappings includes properly the
class of nonexpansive mappings as a subclass. An early fundamental result, due to Goebel
and Kirk [], states that if C is a nonempty, bounded, closed, and convex subset of a uni-
formly convex Banach space E, then every asymptotically nonexpansive self-mapping T of
C has a fixed point. Further, the set Fix(T) of fixed points of T is closed and convex. Since
, many authors have studied the weak and strong convergence problems of the iter-
ative algorithms for such a class of mappings; see, for instance, [–] and the references
therein.

The class of asymptotically pseudocontractive mappings was introduced by Schu [] in
.

Recall that a mapping T : C → H is called asymptotically pseudocontractive if there
exists a sequence {kn} ⊂ [,∞) with kn →  for which the following inequality holds:

〈

Tnx – Tny, x – y
〉 ≤ kn‖x – y‖, (.)

for all x, y ∈ C and all n ≥ .
T is said to be quasi-asymptotically pseudocontractive if Fix(T) �= ∅ and there exists a

sequence {kn} ⊂ [,∞) with kn →  for which the following inequality holds:
〈

Tnx – p, x – p
〉 ≤ kn‖x – p‖, (.)

for all x ∈ C, p ∈ Fix(T) and all n ≥ .
Without loss of generality, we can assume that  ≤ kn < , for all n ≥ .
In , Liu [] introduced the class of κ-strictly asymptotically pseudocontractive map-

pings in Hilbert spaces. A mapping T : C → C is called κ-strictly asymptotically pseudo-
contractive if there exist some κ ∈ [, ) and some real sequence {kn} ⊂ [,∞) with kn → 
such that

∥
∥Tnx – Tny

∥
∥

 ≤ k
n‖x – y‖ + κ

∥
∥
(

I – Tn)x –
(

I – Tn)y
∥
∥

, (.)

for all x, y ∈ C and all n ≥ .
A mapping T : C → C is called quasi-κ-strictly asymptotically pseudocontractive if

Fix(T) �= ∅, and there exist some κ ∈ [, ) and some real sequence {kn} ⊂ [,∞) with
kn →  such that

∥
∥Tnx – y

∥
∥

 ≤ k
n‖x – y‖ + κ

∥
∥
(

I – Tn)x
∥
∥

, (.)

for all x ∈ C, y ∈ Fix(T) and n ≥ .
A mapping T : C → C is said to be uniformly L-Lipschtzian if there exists some L > 

such that
∥
∥Tnx – Tny

∥
∥ ≤ L‖x – y‖, (.)

for all x, y ∈ C and for all n ≥ .
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Remark . We note that every κ-strictly asymptotically pseudocontractive mapping is
uniformly L-Lipschitzian with the Lipschitz constant L = M+

√
κ

–
√

κ
, where M = supn{kn}. In

particular, every asymptotically nonexpansive mapping is uniformly L-Lipschitzian with
L = sup{kn : n ≥ }.

Remark . It is clear that every asymptotically nonexpansive mapping is -strictly
asymptotically pseudocontractive; while every asymptotically pseudocontractive mapping
with sequence {kn} is -strictly asymptotically pseudocontractive with sequence {kn – }.

Remark . It is also clear that every asymptotically pseudocontractive mapping with
Fix(T) �= ∅ is quasi-asymptotically pseudocontractive, but the converse may be not true in
general, which can be seen from the following counterexample.

Take C = [, π ] and define a mapping T : C →R by

Tx =



x cos(x), x ∈ C.

Then T is quasi-asymptotically pseudocontractive, but it is not asymptotically pseudo-
contractive. Indeed, assume that x = Tx, then x = , and hence Fix(T) = {}.

For all x ∈ C, we have

|Tx – | =
∣
∣
∣
∣




x cos(x)
∣
∣
∣
∣
≤ |x – |,

which means that T is quasi-nonexpansive, and hence it is quasi-asymptotically pseudo-
contractive. On the other hand, if we take x = π and y = π , then we have

〈Tx – Ty, x – y〉 = π ≥ kπ
 = k|x – y|,

which means that T is not asymptotically pseudocontractive.

Remark . The class of asymptotically pseudocontractive mappings is a generalization
of the class of pseudocontractive mappings, and the former contains properly the class of
asymptotically nonexpansive mappings as a subclass, which can be seen from the following
example.

For x ∈ [, ], define a mapping T : [, ] → [, ] by

Tx =
(

 – x


) 

 , x ∈ [, ].

Then T is asymptotically pseudocontractive but it is not asymptotically nonexpansive.

Recently, as a generalization of Haugazeau’s algorithm, the so-called hybrid projec-
tion algorithm was developed rapidly for finding the nearest fixed point of certain quasi-
nonexpansive mappings; see, for instance, Bauschke and Combettes [] and the refer-
ences therein.

By virtue of the hybrid projection methods, Nakajo and Takahashi [] established some
strong convergence results for nonexpansive mappings and nonexpansive semigroups in
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a real Hilbert space; Marino and Xu [] proved a strong convergence theorem for strict-
pseudo-contractions in a real Hilbert space; Zhou [] extended Marino and Xu’s strong
convergence theorem to the more general class of Lipschitz pseudocontractive mappings;
Zhou [] generalized and extended the main results of [] to the class of asymptotically
pseudocontractive mappings; Zhou and Su [] further extended the main results in [] to
a family of uniformly L-Lipschitz continuous and quasi-asymptotically pseudocontractive
mappings.

We observe that the construction of the half-spaces Cn in [] is complicated, and hence
the computation of the metric projections PCn x is difficult.

Our concern now is the following: Can one design some simple and new hybrid projec-
tion algorithms for finding a common fixed point for a finite family of quasi-asymptotically
pseudocontractive mappings?

The purpose of this paper is to propose three kinds of new hybrid projection algorithms
for constructing a common fixed point of a finite family of quasi-asymptotically pseudo-
contractive mappings in a real Hilbert space. By using some new analysis techniques, we
prove the strong convergence of the proposed algorithms. Some numerical examples are
also included to illustrate the effectiveness of the proposed algorithms. The results pre-
sented in this paper improve and extend the related ones obtained by some authors.

2 Preliminaries
For uniformly L-Lipschitzian mappings, the following fixed point theorem is well known;
see, for example, Cassini and Maluta [].

Theorem CM Let E be a uniformly convex Banach space with N(E) > , C be a nonempty,
bounded, and closed convex subset of E and T : C → C be a uniformly L-Lipschitzian map-
ping. If L <

√
N(E), where N(E) denotes the normal structure coefficient of E, then T has a

fixed point in C.

Remark . It is well known that N(H) =
√

. Thus, in the setting of a Hilbert space H , ev-
ery uniformly L-Lipschitzian mapping T : C → C from a nonempty, bounded, and closed
convex subset C of H into itself has a fixed point in C provided that L < √.

In [], a fixed point theorem was established for asymptotically pseudocontractive
mappings in Hilbert spaces.

Theorem Z Let C be a nonempty, bounded, and closed convex subset of a real Hilbert
space H and T : C → C be a uniformly L-Lipschitzian and asymptotically pseudocontrac-
tive mapping which is also uniformly asymptotically regular, i.e., limn→∞ supx∈C{‖Tn+x –
Tnx‖} = . Then T has a fixed point in C.

Theorem Z is the first fixed point theorem for asymptotically pseudocontractive map-
pings in Hilbert spaces, which is of importance and interest.

Let C be a nonempty, closed, and convex subset of a real Hilbert space H . For every
point x ∈ H there exists a unique nearest point in C, denoted by PCx, such that

‖x – PCx‖ ≤ ‖x – y‖, for all y ∈ C, (.)
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where PC is called the metric projection of H onto C. We know that PC is a nonexpansive
mapping.

The following first two lemmas are well known.

Lemma . (see, e.g., [–]) Let C be a nonempty, closed, and convex subset of real Hilbert
space H . Given x ∈ H and z ∈ C. Then z = PCx if and only if we have the relation

〈x – z, y – z〉 ≤ , for all y ∈ C. (.)

Lemma . (see, e.g., [–]) Let C be a nonempty closed convex subset of a real Hilbert
space H and PC : H → C be the metric projection from H onto C. Then the following in-
equality holds:

‖y – PCx‖ + ‖x – PCx‖ ≤ ‖x – y‖, ∀x ∈ H ,∀y ∈ C. (.)

The next lemma is due to Zhou and Su []. For the sake of completeness, we include its
proof here.

Lemma . Let C be a nonempty, bounded, and closed convex subset of a real Hilbert
space H . Let T : C → C be a uniformly L-Lipschitzian and quasi-asymptotically pseudo-
contractive mapping. Then Fix(T) is a closed convex subset of C.

Proof Since T is uniformly L-Lipschitzian continuous, Fix(T) is closed. We need to show
that Fix(T) is convex. To this aim, let pi ∈ Fix(T) (i = , ) and write p = tp + ( – t)p for
t ∈ (, ). We plan to show that p = Tp. To see this, we take α ∈ (, 

+L ), and define yα,n = (–
α)p + αTnp for each n ≥ . Then, in view of the quasi-asymptotic pseudocontractiveness
of T , we have, ∀z ∈ Fix(T),

∥
∥p – Tnp

∥
∥

 =
〈

p – Tnp, p – Tnp
〉

=

α

〈

p – yα,n, p – Tnp
〉

=

α

〈

p – yα,n, p – Tnp –
(

yα,n – Tnyα,n
)〉

+

α

〈

p – yα,n, yα,n – Tnyα,n
〉

≤  + L
α

‖p – yα,n‖ +

α

〈

p – z, yα,n – Tnyα,n
〉

+

α

〈

z – yα,n,
(

I – Tn)yα,n
〉

≤  + L
α

‖p – yα,n‖ +

α

〈

p – z,
(

I – Tn)yα,n
〉

+

α

(kn – )(diam C)

= α( + L)
∥
∥p – Tnp

∥
∥

 +

α

〈

p – z,
(

I – Tn)yα,n
〉

+

α

(kn – )(diam C),

from which it turns out that

α
[

 – ( + L)α
]∥
∥p – Tnp

∥
∥

 ≤ 〈

p – z,
(

I – Tn)yα,n
〉

+ (kn – )(diam C). (.)
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Taking z = pi (i = , ) in (.), multiplying t and ( – t) on both sides of (.), respectively,
and adding up yield

α
[

 – ( + L)α
]∥
∥p – Tnp

∥
∥

 ≤ (kn – )(diam C). (.)

Letting n → ∞ in (.) yields Tnp → p. Since T is continuous, we have Tn+p → Tp as
n → ∞, so that p = Tp. This proves that Fix(T) is a closed convex subset of C. �

Remark . In the proof of Lemma . above, the assumption of quasi-asymptotic pseu-
docontractiveness of mapping T has been used.

3 Main results
In this section, we present three kinds of new hybrid projection algorithms for find-
ing a common fixed point for a finite family of uniformly Li-Lipschitzian and quasi-
asymptotically pseudocontractive mappings in Hilbert spaces. Let N be a fixed positive
integer. We put I = {, , , . . . , N – }. For any positive integer n, we write n = (h(n) – )N +
i(n), where h(n) → ∞ as n → ∞ and i(n) ∈ I , for all n ≥ .

First, we prove the following strong convergence theorem for a finite family of uniformly
Li-Lipschitzian and quasi-asymptotically pseudocontractive mappings in Hilbert spaces.

Theorem . Let C be a bounded, closed, and convex subset of a real Hilbert space H . Let
{Ti}N–

i= : C → C be a finite family of uniformly Li-Lipschitzian and quasi-asymptotically
pseudocontractive mappings such that F =

⋂N–
i= Fix(Ti) �= ∅. Assume the control sequence

{αn} is chosen so that αn ∈ [a, b] for some a, b ∈ (, 
+L ), where L = max{Li :  ≤ i ≤ N – }.

Let a sequence {xn} be generated by the following manner:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,
yn = ( – αn)xn + αnTh(n)

i(n) xn, n ≥ ,
Cn = {z ∈ C : αn[ – ( + L)αn]‖xn – Th(n)

i(n) xn‖

≤ 〈xn – z, (yn – Th(n)
i(n) yn)〉 + (kh(n) – )(diam C)}, n ≥ ,

Q = C,
Qn = {z ∈ Qn– : 〈z – xn, x – xn〉 ≤ }, n ≥ ,
xn+ = PCn∩Qn x, n ≥ ,

(.)

where kh(n) = max{kh(n),i(n) :  ≤ i(n) ≤ N – } and kh(n),i(n) are asymptotic sequences for
{Ti}N–

i= . Then the sequence {xn} generated by (.) converges strongly to PF x.

Proof We split the proof into ten steps.
Step . Show that PF x is well defined for every x ∈ C.
By Lemma ., we know that Fix(Ti) is a closed convex subset of C for every i ∈ I . Hence,

F =
⋂N–

i= Fix(Ti) is a nonempty, closed, and convex subset of C, consequently, PF x is well
defined for every x ∈ C.

Step . Show that both Cn and Qn are closed and convex, for all n ≥ . This follows from
the constructions of Cn and Qn. We omit the details.

Step . Show that

F ⊂ Cn ∩ Qn, for all n ≥ . (.)
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To this aim, we prove first that F ⊂ Cn, for all n ≥ .
Using (.), the uniform Li-Lipschitz continuity of Ti and quasi-asymptotic pseudocon-

tractiveness of Ti, we obtain, for any z ∈ F ,

∥
∥xn – Th(n)

i(n) xn
∥
∥

 =
〈

xn – Th(n)
i(n) xn, xn – Th(n)

i(n) xn
〉

=

αn

〈

xn – yn, xn – Th(n)
i(n) xn

〉

=

αn

〈

xn – yn,
(

I – Th(n)
i(n)

)

xn –
(

I – Th(n)
i(n)

)

yn
〉

+

αn

〈

xn – yn,
(

I – Th(n)
i(n)

)

yn
〉

≤  + L
αn

‖xn – yn‖ +

αn

〈

xn – z,
(

I – Th(n)
i(n)

)

yn
〉

+

αn

(kh(n) – )(diam C)

= ( + L)αn
∥
∥xn – Tnxn

∥
∥

 +

αn

〈

xn – z,
(

I – Th(n)
i(n)

)

yn
〉

+

αn

(kh(n) – )(diam C),

from which it turns out that

αn
[

 – ( + L)αn
]∥
∥xn – Th(n)

i(n) xn
∥
∥

 ≤ 〈

xn – z,
(

I – Th(n)
i(n)

)

yn
〉

+ (kh(n) – )(diam C), (.)

which shows that z ∈ Cn, for all n ≥ . This proves that F ⊂ Cn, for all n ≥ .
As shown in Marino and Xu [], by a simple induction, we can show that

F ⊂ Qn, for all n ≥ . (.)

Because this is routine, we omit the details. We have shown that (.) holds. Hence
PCn∩Qn x is well defined. Consequently, the iteration algorithm (.) is well defined.

Step . Show that limn→∞ ‖xn – x‖ exists.
In view of (.) and Lemma ., we have xn = PQn x and xn+ ∈ Qn, which means that

‖xn – x‖ ≤ ‖xn+ – x‖, for all n ≥ . As z ∈ F ⊂ Qn, we have also ‖xn – x‖ ≤ ‖z – x‖,
consequently, limn→∞ ‖xn – x‖ exists.

Step . Show that xn+ – xn →  as n → ∞.
By using Lemma ., we have

‖xn+ – xn‖ ≤ ‖xn+ – x‖ – ‖xn – x‖ → 

as n → ∞.
Step . Show that xn – Th(n)

i(n) xn →  as n → ∞.
It follows from Step  that xn+ – xn →  as n → ∞. Since xn+ ∈ Cn, noting that αn ∈

[a, b] for a, b ∈ (, 
+L ), {yn} and {Th(n)

i(n) yn} are all bounded, from the definition of Cn, we
have xn – Th(n)

i(n) xn →  as n → ∞.
Step . Show that xn – Ti(n)xn →  as n → ∞.
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Since n = (h(n) – ) + i(n), we have

n – N =
(

h(n) –  – 
)

N + i(n).

On the other hand, since n – N = (h(n – N) – )N + i(n – N), we have h(n) –  = h(n – N)
and i(n) = i(n – N). Observe that

‖xn – Ti(n)xn‖ ≤ ∥
∥xn – Th(n)

i(n) xn
∥
∥ +

∥
∥Th(n)

i(n) xn – Ti(n)xn
∥
∥

≤ ∥
∥xn – Th(n)

i(n) xn
∥
∥ + L

∥
∥Th(n)–

i(n) xn – xn
∥
∥

≤ ∥
∥xn – Th(n)

i(n) xn
∥
∥ + L

∥
∥Th(n–N)

i(n) xn – Th(n–N)
i(n–N) xn–N

∥
∥

+
∥
∥Th(n–N)

i(n–N) xn–N – xn–N
∥
∥ + ‖xn–N – xn‖

≤ ∥
∥xn – Th(n)

i(n) xn
∥
∥ +

(

 + L)‖xn–N – xn‖ +
∥
∥Th(n–N)

i(n–N) xn–N – xn–N
∥
∥,

from which it turns out that xn – Ti(n)xn →  as n → ∞ in view of Steps  and .
Step . Show that ∀j ∈ I , xn – Ti(n)+jxn →  as n → ∞.
Observing that

‖xn – Ti(n)+jxn‖ ≤ ‖xn – xn+j‖ + ‖xn+j – Ti(n)+jxn+j‖
+ ‖Ti(n)+jxn+j – Ti(n)+jxn‖

≤ ‖xn – xn+j‖ + ‖xn+j – Ti(n+j)xn+j‖ + L‖xn+j – xn‖
= ( + L)‖xn – xn+j‖ + ‖xn+j – Ti(n+j)xn+j‖,

by using Steps  and , we reach the desired conclusion.
Step . Show that ∀l ∈ I , xn – Tlxn →  as n → ∞.
Indeed, for arbitrary given l ∈ I , we can choose j ∈ I such that j = l – i(n) if l ≥ i(n) and

j = N + l – i(n) if l < i(n). Then, we have l = i(n + j) = i(n) + j, for all n ≥ . In view of Step ,
we obtain xn – Tlxn = xn – Ti(n+j)xn = xn – Ti(n)+jxn →  as n → ∞.

Step . Show that xn → p, where p = PF x.
For m > n, by the definition of Qn, we see that Qm ⊂ Qn. Noting that xm = PQm x and

xn = PQn x, by Lemma ., we conclude that

‖xm – xn‖ ≤ ‖xm – x‖ – ‖xn – x‖.

In view of Step , we deduce that xm – xn →  as m, n → ∞, that is, {xn} is Cauchy. Since
H is complete and C is closed, we can assume that xn → p ∈ C as n → ∞. It follows from
Step  that p ∈ F . From Step , we know that F ⊂ Qn, for all n ≥ . Hence, for arbitrary
z ∈ F , we have

〈z – xn, x – xn〉 ≤ .

This leads to

〈z – p, x – p〉 ≤ ,

for all z ∈ F . By Lemma ., we conclude that p = PF x. This completes the proof. �
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Remark . In contrast to [], the main difference with the paper [] consists in the fact
that the sequence {yn} in algorithm (.) is globally unique for the whole family of {Ti}N–

i= .

Remark . In the proof of Theorem ., the third step is really key. The assumption of
quasi-asymptotic pseudocontractiveness of the mappings {Ti}N–

i= has been used.

Next, we consider a simpler algorithm for a finite family of uniformly Li-Lipschitzian
and quasi-asymptotically pseudocontractive mappings in real Hilbert spaces.

Theorem . Let C be a bounded, closed, and convex subset of a real Hilbert space H . Let
{Ti}N–

i= : C → C be a finite family of uniformly Li-Lipschitzian and quasi-asymptotically
pseudocontractive mappings such that F =

⋂N–
i= Fix(Ti) �= ∅. Assume the control sequence

{αn} is chosen so that αn ∈ [a, b] for some a, b ∈ (, 
+L ), where L = max{Li :  ≤ i ≤ N – }.

Let a sequence {xn} be generated in the following manner:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ H chosen arbitrarily,
C = C, x = PC x,
yn = ( – αn)xn + αnTh(n)

i(n) xn, n ≥ ,
Cn+ = {z ∈ Cn : αn[ – ( + L)αn]‖xn – Th(n)

i(n) xn‖

≤ 〈xn – z, (yn – Th(n)
i(n) yn)〉 + (kh(n) – )(diam C)}, n ≥ ,

xn+ = PCn+ x, n ≥ ,

(.)

where kh(n) = max{kh(n),i(n) :  ≤ i(n) ≤ N – } and kh(n),i(n) are asymptotic sequences for
{Ti}N–

i= . Then the sequence {xn} generated by (.) converges strongly to PF x.

Proof Following the proof lines of Theorem ., we can show the following.
() F is a nonempty closed and convex subset of C, and hence PF x is well defined for

every x ∈ H .
() Cn is closed convex and F ⊂ Cn for every n ≥ .
In fact, for n = , C = C is closed convex. Assume that Cn is closed convex for some n ≥ ;

from the definition Cn+, we know that Cn+ is also closed convex for the same n ≥ , and
hence Cn is closed convex for every n ≥ . For n = , F ⊂ C = C. Assume that F ⊂ Cn for
some n ≥ ; from the induction assumption, (.), and the definition of Cn+, we conclude
that F ⊂ Cn+, and hence F ⊂ Cn, for all n ≥ .

() limn→∞ ‖xn – x‖ exists.
In view of (.), we have xn = PCn x. Since Cn+ ⊂ Cn and xn+ ∈ Cn+, for all n ≥ , we

have

‖xn – x‖ ≤ ‖xn+ – x‖, ∀n ≥ . (.)

On the other hand, as F ⊂ Cn by (), it follows that

‖xn – x‖ ≤ ‖z – x‖, ∀z ∈ F ,∀n ≥ . (.)

Combining (.) and (.), we see that limn→∞ ‖xn – x‖ exists.
() {xn} is a Cauchy sequence in C.
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For m > n ≥ , we have xm = PCm x ∈ Cm ⊂ Cn. By Lemma ., we have

‖xm – xn‖ ≤ ‖xm – x‖ – ‖xn – x‖. (.)

Letting m, n → ∞ and taking the limit in (.), we get xm – xn →  as m, n → ∞, which
proves that {xn} is Cauchy. We assume that xn → p ∈ C. The remainder of the proof follows
exactly from Steps - in Theorem .. This completes the proof. �

Remark . Algorithm (.) is simpler than algorithm (.). Also, the sequence {yn} in
algorithm (.) is globally unique for the whole family of {Ti}N–

i= .

Finally, we present another kind of iterative algorithm for a finite family of quasi-
asymptotically pseudocontractive mappings in real Hilbert spaces.

Theorem . Let C be a bounded and closed convex subset of a real Hilbert space H . Let
{Ti}N–

i= : C → C be a finite family of uniformly Li-Lipschitzian and quasi-asymptotically
pseudocontractive mappings such that F =

⋂N–
i= Fix(Ti) �= ∅. Assume the control sequence

{αn} is chosen so that αn ∈ [a, b] for some a, b ∈ (, 
+L ), where L = max{Li :  ≤ i ≤ N – }.

Let a sequence {xn} be generated in the following manner:

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ H chosen arbitrarily,
C = C, x = PC x,
yn,i = ( – αn)xn + αnTn

i xn, n ≥ , i ∈ I,
Cn+ = {z ∈ Cn : αn[ – ( + L)αn]

∑N–
i= ‖xn – Tn

i xn‖

≤ 〈xn – z,
∑N–

i= (yn,i – Tn
i yn,i)〉 +

∑N–
i= (kn,i – )(diam C)}, n ≥ ,

xn+ = PCn+ x, n ≥ ,

(.)

where kn,i are asymptotic sequences for {Ti}N–
i= . Then the sequence {xn} generated by (.)

converges strongly to PF x.

Proof As shown in Theorem ., we easily show that PF x is well defined for every x ∈ H ,
Cn is closed convex and F ⊂ Cn for every n ≥ . Thus, {xn} is well defined, for all n ≥ .
Further, {xn} is a Cauchy sequence in C. Therefore, xn → p ∈ C as n → ∞. In particular, we
have xn+ – xn →  as n → ∞. Since  < a ≤ αn ≤ b < 

+L , xn+ ∈ Cn+, {∑N–
i= ‖(I – Tn

i )yn,i‖}
is bounded and

∑N–
i= (kn,i – ) → , from the definition of Cn+, we see that xn – Tn

i xn → 
as n → ∞, for all i ∈ I . Observe that

‖xn+ – Tixn+‖ ≤ ∥
∥xn+ – Tn+

i xn+
∥
∥ +

∥
∥Tn+

i xn+ – Tn+
i xn

∥
∥

+
∥
∥Tn+

i xn – Tixn
∥
∥ + ‖Tixn – Tixn+‖

≤ ∥
∥xn+ – Tn+

i xn+
∥
∥ + L‖xn+ – xn‖ + L

∥
∥xn – Tnxn

∥
∥,

so that xn – Tixn →  as n → ∞, for all i ∈ I . Since xn → p, we have p = Tip, for all i ∈ I
and hence p ∈ F . The remainder of the proof follows exactly from Step  of Theorem ..
This completes the proof. �

Remark . Algorithm (.) used in Theorem . is different from the ones existing in
literature.
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Remark . It is interesting to extend the algorithms of this paper to an infinite family of
quasi-asymptotically pseudocontractive mappings.

Remark . The work related to other iterative methods for asymptotically pseudocon-
tractive mappings can be found in [–].

4 Numerical experiments
In this section, we provide some numerical experiments to show our algorithms are ef-
fective. In our numerical experiments, we consider the case of N = . We take T = I , the
identity mapping on R, and use the example given in Remark . as T. For such a family
{Ti}

i=, we have L =  and L = +π
 , therefore, L = +π

 . It is easy to see that kh(n) = , for
all n ≥ . Moreover, we know also that F =

⋂
i= Fix(Ti) = {} �= ∅. We take αn = 

n+ + 
+L ,

for all n ≥ . For algorithms (.), (.), and (.), each of them iterates  steps.
Firstly, for algorithm (.), we choose x ∈ [, π ] arbitrarily, then for  different initial

values, we can see all the results are convergent in Figure .
Secondly, for algorithm (.), we choose x ∈ [–, ] arbitrarily, then for  different

initial values, we can see all the results are convergent in Figure .
Finally, for algorithm (.), we also choose x ∈ [–, ] arbitrarily, then for  different

initial values, we can also see all the results are convergent in Figure .

Figure 1 The iterative curves of algorithm (3.1) under different initial value.

Figure 2 The iterative curves of algorithm (3.5) under different initial values.
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Figure 3 The iterative curves of algorithm (3.9) under different initial values.

In addition, for Figures , , and , we can also find that the algorithms need more iter-
ative steps with the nonnegative initial value becoming larger in the majority situation.

5 Conclusion
This work contains our dedicated study aimed to develop and complement hybrid pro-
jection algorithms for finding the common fixed points of a finite family of quasi-
asymptotically pseudocontractive mappings in Hilbert spaces. We introduced three kinds
of new hybrid projection algorithms for this class of problems, and we have proven their
strong convergence. Numerical examples have been given to illustrate the effectiveness
of the proposed algorithms. The results presented in the paper are a generalization and
complement of the well-known ones existing in the literature.
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