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Abstract
We study the basic dynamical features of a stochastic SIR epidemic model
incorporating media coverage. Firstly, we discuss the positivity and boundedness of
solutions of the model within deterministic environment and then investigate the
asymptotical stability and global stability of equilibria of deterministic model.
Secondly, we show that the stochastic model has a unique global positive solution
and that this solution oscillates around the equilibria of the deterministic model
under certain conditions. Finally, we give some numerical simulations to illustrate our
analytical results.
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1 Introduction
Mathematical models plays an important role in the study of epidemiology, which provides
understanding of the underlying mechanisms that influence the spread of disease, and in
the process, it suggests control strategies. Various epidemic models have been proposed
and explored extensively, and great progress has been achieved in the studies of disease
control and prevention (see, e.g., [–]).

For establishing a mathematical model of disease transmission with the population un-
der study being divided into compartments and with assumptions about the nature and
time rate of transfer from one compartment to another, we can formulate our descriptions
as compartmental models. One of the most fundamental compartment models is the SIR
model []. This model classifies individuals to be susceptible, infectious, or removed and
permanently immune. Let S(t) be the number of susceptible individuals, I(t) the number
of infective individuals, and R(t) the number of removed individuals at time t, respectively.
A general SIR epidemic model can be formulated as

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = � – g(I)S – μS,
dI
dt = g(I)S – (μ + γ )I,
dR
dt = γ I – μR,

(.)

where � >  is the recruitment rate of the population, μ >  is the natural death rate of
the population, and γ >  is the natural recovery rate of the infective individuals. The
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transmission of the infection is governed by the incidence rate g(I)S, and g(I) is called the
infection force.

In real life, the incidence rate g(I)S may be affected by many factors, such as media cov-
erage, density of population, and life style. Especially, media coverage plays an important
role in helping both the government authority make interventions to contain the disease
and people response to the disease [, ]. Recently, many mathematical models have been
proposed to investigate the impact of media coverage on the transmission dynamics of
infectious diseases. Especially, Cui et al. [], Tchuenche et al. [], and Sun et al. [] incor-
porated a nonlinear function of the number of infective individuals in their transmission
term to investigate the effects of media coverage on the transmission dynamics:

g(I) =
(

β –
βI

m + I

)

I, (.)

where β >  is the contact rate before media alert; the terms βI/(m+ I) measure the effect
of reduction of the contact rate when infectious individuals are reported in the media.
Because the coverage report cannot prevent disease from spreading completely, we have
β ≥ β > . The half-saturation constant m >  reflects the impact of media coverage on
the contact transmission. The function I/(m + I) is a continuous bounded function that
takes into account disease saturation or psychological effects []. Hence, considering the
effects of media coverage on the transmission dynamics, model (.) can be modified as
follows:

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = � – (β – βI

m+I )SI – μS,
dI
dt = (β – βI

m+I )SI – (μ + γ )I,
dR
dt = γ I – μR.

(.)

As is known to us, real life is full of randomness and stochasticity, so it is important
whether or not the long-time behavior of the solution for deterministic dynamics system
can be changed by stochastic perturbations. In this paper, following the idea of [–],
we introduce a random noise to model (.). Following the approach used in [, ], for
�t small, it is appropriate to model X(t) = (S(t), I(t), R(t))T as a Markov process with the
following specifications:

E
[
S(t + �t) – S(t)|X(t) = x

] ≈
[

� –
(

β –
βI

m + I

)

SI – μS
]

�t,

E
[
I(t + �t) – I(t)|X(t) = x

] ≈
[(

β –
βI

m + I

)

SI – (μ + γ )I
]

�t,

E
[
R(t + �t) – R(t)|X(t) = x

] ≈ [γ I – μR]�t,

and

Var
[
S(t + �t) – S(t)|X(t) = x

] ≈ σ 
 S�t,

Var
[
I(t + �t) – I(t)|X(t) = x

] ≈ σ 
 I�t,

Var
[
R(t + �t) – R(t)|X(t) = x

] ≈ σ 
 R�t.
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More formally, we consider the following stochastic system:
⎧
⎪⎪⎨

⎪⎪⎩

dS(t) = [� – (β – βI(t)
m+I(t) )S(t)I(t) – μS(t)] dt + σS(t) dB(t),

dI(t) = [(β – βI(t)
m+I(t) )S(t)I(t) – (μ + γ )I(t)] dt + σI(t) dB(t),

dR(t) = [γ I(t) – μR(t)] dt + σR(t) dB(t).

(.)

Here we assume that Bi(t) (i = , , ) are independent Brownian motions and σi (i = , , )
are the coefficients of the effects of environmental stochastic perturbations on S(t), I(t),
and R(t).

In the following, unless otherwise specified, we assume that (�,F , {Ft}t≥, P) is a com-
plete probability space with filtration {Ft}t≥ satisfying the usual conditions (i.e., it is
increasing and right continuous, and F contains all P-null sets). Let Bi(t), i = , , ,
be Brownian motions defined on this probability space. Also, let R


+ = {x ∈ R

, xi >
 for all  ≤ i ≤ } and x(t) = (S(t), I(t), R(t))T .

The rest of the paper is organized as follows. In Section , we first show the positivity
and boundedness of the deterministic model (.); the existence and stability of equilibria
of model (.) is also investigated in this section. In Section , we first study the existence
of the global positive solution of the stochastic model (.), and then, we investigate the
asymptotic behavior around the equilibria of model (.). In Section , we give some nu-
merical simulations to support the theoretical prediction. In Section , a brief discussion
is given.

2 Deterministic model
In this section, we first discuss some basic dynamical properties of the deterministic model
(.), which is subjected to positive initial conditions

S() ≡ S > , I() ≡ I > , R() ≡ R > . (.)

2.1 Positivity and boundedness
In this subsection, we study the positivity and boundedness of solutions of system (.)
with initial condition (.).

Theorem . Solutions of system (.) with initial condition (.) are positive for all t ≥ .

Proof Let (S(t), I(t), R(t)) be a solution of system (.) with initial condition (.). Let us
consider I(t) for t ≥ . It follows from the second equation of system (.) that

I(t) = I()e
∫ t

((β– βI(s)
m+I(s) )S(s)–(μ+γ )) ds.

From the initial condition (.) we have I(t) >  for t ≥ . Then, from the third equation
of system (.) we have

dR(t)
dt

= γ I(t) – μR(t) > –dR(t).

A comparison argument shows that

R(t) ≥ R()e–μt .

From the initial condition (.) we have R(t) >  for t ≥ .



Zhao and Zhao Advances in Difference Equations  (2016) 2016:149 Page 4 of 17

Next, we prove that S(t) is positive. Assume the contrary; then let t be the first time
such that S(t) = . By the first equation of (.) we have

dS(t)
dt

∣
∣
∣
∣
t=t

= � > .

This means that S(t) <  for t ∈ (t – ε, t), where ε is an arbitrarily small positive constant.
This leads to a contradiction. It follows that S(t) is always positive for t ≥ . This ends the
proof. �

Theorem . Solutions of system (.) with initial condition (.) are ultimately bounded.

Proof From Theorem ., solutions of system (.) with initial condition (.) are positive
for all t ≥ . Let N(t) = S(t) + I(t) + R(t). From (.) we have

dN(t)
dt

= � – μN(t). (.)

Therefore, N(t) < �
μ

+ ε for all large t, where ε is an arbitrarily small positive constant.
Thus, S(t), I(t), R(t) are ultimately bounded. �

2.2 Equilibria and their existence
By the next generation method in [] the basic reproduction number for model (.) is

R =
β�

μ(μ + γ )
. (.)

Irrespective of the parameter values, system (.) always possesses a disease-free equi-
librium E( �

d , , ). We next discuss the existence of endemic equilibrium. Suppose that
E∗(S∗, I∗, R∗) is an endemic equilibrium. Then (S∗, I∗, R∗) satisfies

⎧
⎪⎨

⎪⎩

� – g(I∗)S∗I∗ – μS∗ = ,
g(I∗)S∗I∗ – (μ + γ )I∗ = ,
γ I∗ – μR∗ = .

(.)

It follows that

S∗ =
�

g(I∗)I∗ + μ
, R∗ =

γ I∗

μ
, (.)

and I∗ determined by

�

g(I∗)I∗ + μ
=

μ + γ

g(I∗)
, (.)

where g(I) = β – βI
m+I . Equation (.) is equivalent to

�g
(
I∗) = (μ + γ )

(
g
(
I∗)I∗ + μ

)
. (.)
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Denote

{
G(I) = �g(I),
H(I) = (μ + γ )(g(I)I + μ).

(.)

From Theorem . and (.) we have I∗ ∈ [, �
μ

]. From (.) we have

G() = β�, H() = (μ + γ )μ,

G
(

�

μ

)

= �g
(

�

μ

)

, H
(

�

μ

)

= (μ + γ )μ + (μ + γ )g
(

�

μ

)
�

μ
.

(.)

Hence, for R > , we have

G() > H() and G
(

�

μ

)

= �g
(

�

μ

)

< (μ + γ )g
(

�

μ

)
�

μ
< H

(
�

μ

)

. (.)

For R < , we have

G() < H(). (.)

Moreover, we can compute that

G′(I) = –
�βm

(m + I) ,

H ′(I) = (μ + γ )
(

β –
β(mI + I)

(m + I)

)

.
(.)

Note that β ≥ β > . From (.) we can easily prove that G(I) is decreasing and H(I)
is increasing. Hence, from (.)-(.) we can verify that if R > , then the two curves
G(I) and H(I) have only one positive intersection in [, �

μ
], which gives only one endemic

equilibrium. However, if R < , then it follows that the two curves G(I) and H(I) have no
intersection in [, +∞), which implies that there is no endemic equilibria.

From the discussion above we obtain the following:

Theorem . If R < , then system (.) has no endemic equilibria. If R > , then system
(.) has only one endemic equilibrium.

Figure  shows two possible cases of the intersection of the curves G(I) and H(I). Fig-
ure (a) shows that the two curves have no intersection with parameter I varying when
R < . Figure (b) shows that the two curves have only one intersection with parameter I
varying when R > .

2.3 Stability of equilibria
In this subsection, by analyzing the corresponding characteristic equations we discuss
the local stability of a disease-free equilibrium and endemic equilibrium of system (.),
respectively.
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Figure 1 Two possible cases of the intersection of the curves G(I) and H(I) indicating the existence of
positive equilibria. (a) � = 15, β1 = 0.0008, β2 = 0.0006,m = 30, μ = 0.05, γ = 0.2. R0 = 0.96 < 1. (b) � = 15,
β1 = 0.002, β2 = 0.0018,m = 30, μ = 0.05, γ = 0.2. R0 = 2.4 > 1.

The characteristic equation of system (.) at E is

det

⎡

⎢
⎣

λ + μ
β�
μ


 λ + μ + γ – β�

μ


 –γ λ + μ

⎤

⎥
⎦ = , (.)

which is equivalent to

(λ + μ)(λ + μ)
(

λ + μ + γ –
β�

μ

)

= . (.)

It is easy to see that, when R < , (.) has three negative roots and, when R > , (.)
always has one positive root. Thus, we have the following:

Theorem .
(i) The disease-free equilibrium E of (.) is locally asymptotically stable if R < .

(ii) The disease-free equilibrium E of (.) is unstable if R > .

Next, we discuss the global stability of E. It is easy to prove the following lemma.

Lemma . The plane S + I + R = �
μ

is an invariant manifold of system (.), which is
globally attractive in R


+.

Theorem . If R < , then the disease-free equilibrium E is globally asymptotically sta-
ble.

Proof Let (S(t), I(t), R(t)) be any positive solution of system (.) with initial condi-
tion (.).

If R < , then choose ε >  sufficiently small to satisfy

β

(
�

μ
+ ε

)

< μ + γ . (.)
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It follows from the first equation of system (.) that

dS(t)
dt

= � –
(

β –
βI(t)

m + I(t)

)

S(t)I(t) – μS(t) ≤ μ

(
�

μ
– S(t)

)

.

By comparison we obtain that

lim sup
t→+∞

S(t) ≤ �

μ
. (.)

Hence, for ε >  sufficiently small to satisfy (.), there is T >  such that if t > T, then
S(t) < �

μ
+ ε.

For ε >  sufficiently small to satisfy (.), it follows from the second equation of system
(.) that, for t > T,

dI(t)
dt

=
(

β –
βI(t)

m + I(t)

)

S(t)I(t) – (μ + γ )I(t) ≤ βS(t)I(t) – (μ + γ )I(t)

< β

(
�

μ
+ ε

)

I(t) – (μ + γ )I(t).

From (.) a comparison argument shows that

lim
t→+∞ I(t) = .

Hence, for ε >  sufficiently small to satisfy (.), there is T > T such that if t > T, then
I(t) < ε.

From the first equation of system (.), for t > T, we have

dS(t)
dt

= � –
(

β –
βI(t)

m + I(t)

)

S(t)I(t) – μS(t) ≥ � – βε

(
�

μ
+ ε

)

– μS(t).

By comparison it follows that

lim inf
t→+∞ S(t) ≥ 

μ

(

� – βε

(
�

μ
+ ε

))

.

Letting ε → , we derive that

lim inf
t→+∞ S(t) ≥ �

μ
. (.)

Thus, by (.) and (.),

lim
t→+∞ S(t) =

�

μ
.

Note that if R < , then the disease-free equilibrium E is locally asymptotically stable.
Then, combining this with Lemma ., we conclude that if R < , then the disease-free
equilibrium E(�/μ, , ) is globally asymptotically stable. �

In the following, we suppose that R >  and E∗ is an endemic equilibrium satisfying Eqs.
(.)-(.).
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Theorem . If R > , then the endemic equilibrium E∗ is globally stable in R

+.

Proof Noting that the variable R only occurs in the third equation of system (.), by
Lemma . it suffices to investigate the subsystem

{ dS(t)
dt = � – (β – βI(t)

m+I(t) )S(t)I(t) – μS(t),
dI(t)

dt = (β – βI(t)
m+I(t) )S(t)I(t) – (μ + γ )I(t).

(.)

Taking the Dulac function D = 
S(t)I(t) , we have

∂(Df)
∂S

+
∂(Df)

∂S
= –

(


SI
+

βm
(m + I)

)

< .

From the Bendixson-Dulac theorem [] we know that system (.) has no limit cycle
in R


+. Hence, system (.) has no limit cycle in R


+.

When R > , by Theorem ., E is a hyperbolic unstable saddle point and repels solu-
tions in its neighborhood. Due to the hyperbolicity of E, it is not part of any cycle chain
in R


+. Thus, every bounded forward orbit of (.) in R


+ converges to the unique endemic

equilibrium E∗. Therefore, E∗ is globally asymptotically stable. The proof is complete. �

3 Stochastic model
In this section, we first show that the solution of system (.) is global and nonnegative.
As we know, in order for a stochastic differential equation to have a unique global (i.e.,
without explosion in finite time) solution for any given initial value, the coefficients of the
equation are generally required to satisfy the linear growth condition and local Lipschitz
condition []. However, the coefficients of Eq. (.) do not satisfy the linear growth condi-
tion, though they are locally Lipschitz continuous, so the solution of Eq. (.) may explode
in finite time []. Using the Lyapunov analysis method (mentioned in []), it is easy to
show that the solution of Eq. (.) is positive and global.

Theorem . For any given initial value (S(), I(), R()) ∈ R

+, there is a unique positive

solution (S(t), I(t), R(t)) of model (.) on t ≥ , and the solution remains in R

+ with prob-

ability , namely (S(t), I(t), R(t)) ∈R

+ for all t ≥  almost surely.

From the discussion of Section , for the deterministic model (.), there is a disease-
free equilibrium E = ( �

d , , ), which is globally stable if R = β�
μ(μ+γ ) < . However, for

the stochastic model (.), E = ( �
d , , ) is no longer a disease-free equilibrium. In this

subsection, we investigate the asymptotic behavior around E.

Theorem . Suppose that R = β�
μ(μ+γ ) <  and

σ 
 < μ, σ 

 < (μ + γ ). (.)

Then, for any given initial value (S(), I(), R()) ∈ R

+, the solution of model (.) has the

property

lim sup
t→∞


t

E
∫ t



[(

S(r) –
�

μ

)

+ I(r) + R(r)
]

dr ≤ σ 
 �

μK
,
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where

K = min

{


(
μ – σ 


)
, (μ + γ ) – σ 

 ,
(μ + γ )[μ(μ + γ ) – β�]

βμγ

}

.

Proof Let x = S – �
μ

, y = I , z = R. Then system (.) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

dx = [–(β – βy
m+y )(x + �

μ
)y – μx] dt + σ(x + �

μ
) dB(t),

dy = [(β – βy
m+y )(x + �

μ
)y – (μ + γ )y] dt + σy dB(t),

dz = [γ y – μz] dt + σz dB(t).

(.)

By Theorem . we have x = S – �
μ

> – �
μ

, y > , z > . Define the function

V (x, y, z) = (x + y) + cy + cz,

where c and c are positive constants to be determined later. Then the function V is pos-
itive definite. Applying Itô’s formula, we obtain

dV = LV dt + σ

(

x +
�

μ

)

(x + y) dB(t) + σ(x + y + c)y dB(t) + cσz dB(t),

where

LV = –
(
μ – σ 


)
x –

[
(μ + γ ) – σ 


]
y – cμz + σ 


�

μ
x + σ 


�

μ

+
[
cβ – (μ + γ )

]
xy +

[

cγ – cβ
�

μ

(


R
– 

)]

y –
βy

m + y

(

x +
�

μ

)

y.

We can choose c = (μ+γ )
β

>  such that cβ –(μ+γ ) = , and noting that R < , we can
choose c >  such that cγ – cβ

�
μ

( 
R

– ) = ; then c = �(μ+γ )(–R)
γμR

. Thus, we obtain

LV = –
(
μ – σ 


)
x –

[
(μ + γ ) – σ 


]
y – cμz + σ 


�

μ
x + σ 


�

μ

–
βy

m + y

(

x +
�

μ

)

y

≤ –
(
μ – σ 


)
x –

[
(μ + γ ) – σ 


]
y – cμz + σ 


�

μ
x + σ 


�

μ

≤ –
(
μ – σ 


)
x –

[
(μ + γ ) – σ 


]
y – cμz + σ 

 x + σ 

�

μ

= –
(
μ – σ 


)
x –

[
(μ + γ ) – σ 


]
y – cμz + σ 


�

μ . (.)

Therefore,

dV = LV dt + σ

(

x +
�

μ

)

(x + y) dB(t) + σ(x + y + c)y dB(t)

+ cσz dB(t)
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≤
[

–
(
μ – σ 


)
x –

[
(μ + γ ) – σ 


]
y – cμz + σ 


�

μ

]

dt

+ σ

(

x +
�

μ

)

(x + y) dB(t) + σ(x + y + c)y dB(t)

+ cσz dB(t). (.)

Integrating both sides of (.) from  to t and then taking expectation yield

 ≤ E
[
V

(
x(t), y(t), z(t)

)]

≤ E
[
V

(
x(), y(), z()

)]

+ E
∫ t



[

–
(
μ – σ 


)
x(r) –

[
(μ + γ ) – σ 


]
y(r) – cμz(r) + σ 


�

μ

]

dr,

which implies

E
∫ t



[

(
μ – σ 


)
x(r) +

[
(μ + γ ) – σ 


]
y(r) + cμz(r)

]
dr

≤ E
[
V

(
x(), y(), z()

)]
+ σ 


�

μ t.

Therefore,

lim sup
t→∞


t

E
∫ t



[

(
μ – σ 


)
x(r) +

[
(μ + γ ) – σ 


]
y(r) + cμz(r)

]
dr

≤ σ 

�

μ ,

from which it follows that

lim sup
t→∞


t

E
∫ t



[


(
μ – σ 


)
(

S(r) –
�

μ

)

+
[
(μ + γ ) – σ 


]
I(r) + cμR(r)

]

dr

≤ σ 

�

μ . (.)

Letting

K = min

{


(
μ – σ 


)
, (μ + γ ) – σ 

 ,
(μ + γ )[μ(μ + γ ) – β�]

βμγ

}

,

we have

lim sup
t→∞


t

E
∫ t



[(

S(r) –
�

μ

)

+ I(r) + R(r)
]

dr ≤ σ 


�

μK
.

This ends the proof. �

Remark . From Theorem . we can conclude that if R <  and condition (.) holds,
then the solution of Eq. (.) will fluctuate around the disease-free equilibrium of Eq. (.).
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3.1 Asymptotic behavior around the endemic equilibrium of the deterministic
model

In this subsection, we assume that R > . Then model (.) has a single endemic equilib-
rium E∗, but for model (.), E∗ is not an endemic equilibrium. Similarly, we also expect to
find out whether or not the solution goes around E∗. The following result gives a positive
answer.

Theorem . If R = β�
μ(μ+γ ) >  and

σ 
 < μ, σ 

 < (μ + γ ), σ 
 < μ, (.)

then for any given initial value (S(), I(), R()) ∈ R

+, the solution of model (.) has the

property

lim sup
t→∞


t

E
∫ t



{(

S(r) –
μ

μ – σ 


S∗
)

+
[

I(r) –
μ(μ + γ – pγ )

μ(μ + γ ) – pγ  – μσ 


I∗
]

+
(

R(r) –
μ

μ – σ 


R∗
)}

dr ≤ M
K

,

where

 < p <
μ(μ + γ ) – μσ 


γ  ,

M =
μσ 


μ – σ 


S∗ +

[μ(μ + γ ) – pγ ]σ 


μ(μ + γ ) – pγ  – μσ 


I∗ +
pμσ 


(μ – σ 

 )
R∗ +

μ + γ

β
I∗σ 

 ,

K = min

{

μ –


σ 

 ,μ + γ –


σ 

 –
pγ 

μ
,

p

(
μ – σ 


)
}

.

Proof Define the C-function V : R
+ → R̄+ by

V (x) =


(
S – S∗ + I – I∗) + a

(

I – I∗ – I∗ ln
I
I∗

)

+



p
(
R – R∗), (.)

where a >  and p >  are constants to be determined later. For simplicity, we divide (.)
into two functions: V (x) = V(x) + V(x), where

V(x) =


(
S – S∗ + I – I∗) + a

(

I – I∗ – I∗ ln
I
I∗

)

,

V(x) =



p
(
R – R∗).

Applying Itô’s formula, we obtain

dV(x) = LV dt +
(
S – S∗ + I – I∗)(σS dB(t) + σI dB(t)

)
+ a

(

 –
I
I∗

)

σI dB(t)

and

dV(x) = LV dt + p
(
R – R∗)σR dB(t),
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where

LV(x) =
(
S – S∗ + I – I∗)[� – μS – (μ + γ )I

]
+



(
σ 

 S + σ 
 I)

+a
(

 –
I
I∗

)[(

β –
βI(t)

m + I(t)

)

S(t)I(t) – (μ + γ )I(t)
]

+



aI∗σ 


=
(
S – S∗ + I – I∗)[μS∗ + (μ + γ )I∗ – μS – (μ + γ )I

]
+



(
σ 

 S + σ 
 I)

+



aI∗σ 
 + a

(
I – I∗)

(

β –
βI∗

m + I∗

)
(
S – S∗) – a

(
I – I∗)

[
βI

m + I
–

βI∗

m + I∗

]

= –μ
(
S – S∗) – (μ + γ )

(
I – I∗) +



(
σ 

 S + σ 
 I) +




aI∗σ 


+
[

a
(

β –
βI∗

m + I∗

)

– (μ + γ )
]
(
S – S∗)(I – I∗)

– a
(
I – I∗)

[
βI

m + I
–

βI∗

m + I∗

]

(.)

and

LV(x) = p
(
R – R∗)(γ I – μR) +




pσ 
 R

= p
(
R – R∗)[γ

(
I – I∗) – μ

(
R – R∗)] +




pσ 
 R

= pγ
(
I – I∗)(R – R∗) – pμ

(
R – R∗) +




pσ 
 R

≤ pγ 

μ

(
I – I∗) –

pμ


(
R – R∗) +




pσ 
 R. (.)

Choose a = μ+γ

β
>  such that aβ – (μ+γ ) = , where β = β – βI∗

m+I∗ . Noticing that (I – I∗)
and [ βI

m+I – βI∗
m+I∗ ] have the same sign, it follows from (.) that

LV(x) = –μ
(
S – S∗) – (μ + γ )

(
I – I∗) +



(
σ 

 S + σ 
 I) +




aI∗σ 


+
[

a
(

β –
βI∗

m + I∗

)

– (μ + γ )
]
(
S – S∗)(I – I∗)

– a
(
I – I∗)

[
βI

m + I
–

βI∗

m + I∗

]

≤ –μ
(
S – S∗) – (μ + γ )

(
I – I∗) +



(
σ 

 S + σ 
 I) +




aI∗σ 
 . (.)

Taking (.) and (.) together, we have

LV (x) = LV(x) + LV(x)

≤ –μ
(
S – S∗) – (μ + γ )

(
I – I∗) +



(
σ 

 S + σ 
 I) +

μ + γ

β
I∗σ 



+
pγ 

μ

(
I – I∗) –

pμ


(
R – R∗) +




pσ 
 R
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= –μ
(
S – S∗) –

(

μ + γ –
pγ 

μ

)
(
I – I∗) –

pμ


(
R – R∗)

+


(
σ 

 S + σ 
 I) +

μ + γ

β
I∗σ 

 +



pσ 
 R

= –
(

μ –


σ 



)

S + μSS∗ – μS∗ –
(

μ + γ –


σ 

 –
pγ 

μ

)

I

+ 
(

μ + γ –
pγ 

μ

)

II∗ –
(

μ + γ –
pγ 

μ

)

I∗ –
p

(
μ – σ 


)
R

+ pμRR∗ –
p

μR∗ +

μ + γ

β
I∗σ 



= –
(

μ –


σ 



)(

S –
μ

μ – σ 


S∗
)

–
(

μ + γ –


σ 

 –
pγ 

μ

)[

I –
μ(μ + γ – pγ )

μ(μ + γ ) – pγ  – μσ 


I∗
]

–
p

(
μ – σ 


)
(

R –
μ

μ – σ 


R∗
)

+
μσ 


μ – σ 


S∗

+
[μ(μ + γ ) – pγ ]σ 


μ(μ + γ ) – pγ  – μσ 


I∗ +

pμσ 


(μ – σ 
 )

R∗ +
μ + γ

β
I∗σ 

 . (.)

Note that σ 
 < (μ + γ ). Then we can choose  < p < μ(μ+γ )–μσ


γ  , and the condition (.)

implies that

μ –


σ 

 > , μ + γ –


σ 

 –
pγ 

μ
> ,

p

(
μ – σ 


)

> .

Thus,

dV (x) = LV (x) dt +
(
S(t) – S∗ + I(t) – I∗)(σS(t) dB(t) + σI(t) dB(t)

)

+
μ + γ

β

(
I(t) – I∗)σ dB(t) + p

(
R(t) – R∗)σR(t) dB(t). (.)

Integrating both sides of (.) from  to t, taking expectations, and considering inequality
(.), we obtain

 ≤ EV
(
x(t)

)

≤ V
(
x()

)
– E

∫ t



{(

μ –


σ 



)(

S(r) –
μ

μ – σ 


S∗
)

+
(

μ + γ –


σ 

 –
pγ 

μ

)[

I(r) –
μ(μ + γ – pγ )

μ(μ + γ ) – pγ  – μσ 


I∗
]

+
p

(
μ – σ 


)
(

R(r) –
μ

μ – σ 


R∗
)}

dr + Mt, (.)

where

M =
μσ 


μ – σ 


S∗ +

[μ(μ + γ ) – pγ ]σ 


μ(μ + γ ) – pγ  – μσ 


I∗ +
pμσ 


(μ – σ 

 )
R∗ +

μ + γ

β
I∗σ 

 .
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Thus, we have

E
∫ t



{(

μ –


σ 



)(

S(r) –
μ

μ – σ 


S∗
)

+
(

μ + γ –


σ 

 –
pγ 

μ

)[

I(r) –
μ(μ + γ – pγ )

μ(μ + γ ) – pγ  – μσ 


I∗
]

+
p

(
μ – σ 


)
(

R(r) –
μ

μ – σ 


R∗
)}

dr ≤ V
(
x()

)
+ Mt. (.)

Dividing both sides of (.) by t and letting t → ∞, we have

lim sup
t→∞


t

E
∫ t



{(

μ –


σ 



)(

S(r) –
μ

μ – σ 


S∗
)

+
(

μ + γ –


σ 

 –
pγ 

μ

)[

I(r) –
μ(μ + γ – pγ )

μ(μ + γ ) – pγ  – μσ 


I∗
]

+
p

(
μ – σ 


)
(

R(r) –
μ

μ – σ 


R∗
)}

dr ≤ M. (.)

Let K = min{μ – 
σ 

 ,μ + γ – 
σ 

 – pγ 

μ
, p

 (μ – σ 
 )}. Then from (.) we have

lim sup
t→∞


t

E
∫ t



{(

S(r) –
μ

μ – σ 


S∗
)

+
[

I(r) –
μ(μ + γ – pγ )

μ(μ + γ ) – pγ  – μσ 


I∗
]

+
(

R(r) –
μ

μ – σ 


R∗
)}

dr ≤ M
K

.

This ends the proof. �

Remark . From Theorem . we can conclude that if R >  and condition (.) holds,
then the solution of Eq. (.) fluctuates around the endemic equilibrium of Eq. (.).

4 Numerical simulations
In this section, we provide numerical simulation results to substantiate the analytical find-
ings for the stochastic model system reported in the previous sections. Using Milstein’s
higher-order method [], we get the discretization equation

⎧
⎪⎪⎨

⎪⎪⎩

Sk+ = Sk + [� – (β – βIk
m+Ik

)SkIk – μSk]�t + σSk
√

�tε,k + σ

 Sk�t(ε

,k – ),

Ik+ = Ik + [(β – βIk
m+Ik

)SkIk – (μ + γ )Ik]�t + σIk
√

�tε,k + σ

 Ik�t(ε

,k – ),

Rk+ = Rk + [γ Ik – μRk]�t + σRk
√

�tε,k + σ

 Rk�t(ε

,k – ),

(.)

where the time increment �t > , and εk,i, εk,i, εk,i, k = , , , are N(, )-distributed
independent random variables.

Example . In this case, we set � = , β = ., β = ., m = , μ = .,
γ = ., where ‘year’ is used as the unit of time [].
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Figure 2 Solutions of deterministic model (1.3) (blue) and stochastic model (1.4) (red) with � = 15,
β1 = 0.0008, β2 = 0.0006, m = 30, μ = 0.05, γ = 0.2. (a) σ1 = 0.1, σ2 = 0.05, σ3 = 0.05. (b) σ1 = 0.05,
σ2 = 0.02, σ3 = 0.02.

From Eq. (.) we compute R = . < . From the discussion of Section  we know that
system (.) has only one disease-free equilibrium E(, , ), which is globally asymp-
totically stable.

We now consider the environment noise in (.) and study the dynamics of the resulting
system (.). By Theorem . the expectations of S(t), I(t), R(t) are bounded in time average
when condition (.) is also satisfied. Obviously, the boundedness is proportional to σ;
moreover, the smaller σ, the less the boundedness. The following numerical simulations
of the strong solution of (.) confirm the results we have shown. Figure (a), (b) shows
that the curves of system (.) always fluctuate around the curves of system (.) with
different intensities of white noise. Moreover, comparison of Figure (a) and Figure (b)
suggest that the fluctuations reduce as the noise level decreases.

Example . In this case, we set � = , β = ., β = ., m = , μ = ., γ =
., where ‘year’ is used as the unit of time [].

From Eq. (.) we compute R = . > . From the discussion of Section  we know that
system (.) has an unstable disease-free equilibrium E(, , ) and a globally asymp-
totically stable endemic equilibrium E∗ = (., ., .).

We next consider the environment noise in (.) and study the dynamics of the result-
ing system (.). By Theorem . the expectations of S(t), I(t), R(t) are bounded in time
average when condition (.) is also satisfied. Similarly as before, the solution of (.) also
fluctuates around the solution of (.), which supports the results of Theorem .. In de-
tail, in Figure (a) and Figure (b), the parameters are the same except for the decreasing
intensities. From Figure (a), (b) we can also see that the fluctuation is weaker with inten-
sities decreasing.
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Figure 3 Solutions of deterministic model (1.3) (blue) and stochastic model (1.4) (red) with � = 15,
β1 = 0.002, β2 = 0.0018, m = 30, μ = 0.05, γ = 0.2. (a) σ1 = 0.1, σ2 = 0.05, σ3 = 0.05. (b) σ1 = 0.02,
σ2 = 0.02, σ3 = 0.01.

5 Discussion
In this paper, we proposed a stochastic SIR epidemic model incorporating media cover-
age. We first investigated the positivity and boundedness of the solution of model (.).
We showed that the solution of model (.) with the initial condition (.) is positive and
bounded. Our results also show that, when R < , model (.) has only one disease-free
equilibrium and, when R > , model (.) has a disease-free equilibrium and an endemic
equilibrium. Then, we studied the stability of the disease-free and endemic equilibria. Our
results show that the disease-free equilibrium is globally stable when the basic reproduc-
tion number R <  and is unstable when R > . This result shows that media coverage
cannot change the basic feature of the SIR epidemic model (.) []. That is to say, disease
eventually disappears when the basic reproduction number R < ; however, the epidemic
eventually becomes an endemic disease when R > .

Section  deals with the stochastic differential equations; by using suitable Lyapunov
functions we show that the solution of the stochastic model is positive and global, and this
solution oscillates around the equilibria of the deterministic model under certain condi-
tions. That is to say, if the effects of environmental stochastic perturbations are smaller
enough than the natural death rate, then the solution of the stochastic model (.) os-
cillates around the disease-free equilibrium when R < ; however, the solution of the
stochastic model (.) oscillates around the endemic equilibrium when R > . Moreover,
the numerical results also suggest that the fluctuations reduce as the noise level decreases.
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