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Abstract
The aim of this paper is to correct some ambiguities and inaccuracies in Agarwal et al.
(Commun. Nonlinear Sci. Numer. Simul. 20(1):59-73, 2015; Adv. Differ. Equ. 2013:302,
2013, doi:10.1186/1687-1847-2013-302) and to present new ideas and approaches for
fractional calculus and fractional differential equations in nonreflexive Banach spaces.

1 Introduction
One of the sections, Section , of our paper [] contains a number of ambiguities (and in-
accuracies) which we correct here. The notion of pseudo-solution in [] is not adequately
defined and assumption (h) in Theorem . is strong. Also, there is some ambiguity re-
garding the use of the space C(T , E) of all continuous functions from T into E with its
weak topology σ (C(T , E), C(T , E)∗) and the space Cw(T , E) of all weakly continuous func-
tions from T into Ew endowed with the topology of weak uniform convergence. Parts of
Corollaries .-. are no longer valid in their current form. Similar comments also apply
to []. In [] the authors developed fractional calculus for vector-valued functions us-
ing the weak Riemann integral and they established the existence of weak solutions for a
class of fractional differential equations with fractional weak derivatives. In this paper we
present new ideas in fractional calculus and we present a new approach to establishing ex-
istence to some fractional differential equations in nonreflexive Banach spaces. References
[–], and [] were helpful in presenting these new ideas.

2 Preliminaries
In the following we outline some aspects of fractional calculus in a nonreflexive Banach
space. This subject has been treated extensively in [, ]. Let E be a Banach space with norm
‖ · ‖ and let E∗ be the topological dual of E. If x∗ ∈ E∗, then its value on an element x ∈ E
will be denoted by 〈x∗, x〉. The space E endowed with the weak topology σ (E, E∗) will be
denoted by Ew. Consider an interval T = [, b] of R, the set of real numbers, endowed with
the Lebesgue σ -algebra L(T) and the Lebesgue measure λ. A function x(·) : T → E is said
to be strongly measurable on T if there exists a sequence of simple functions xn(·) : T → E
such that limn→∞ xn(t) = x(t) for a.e. t ∈ T . Also, a function x(·) : T → E is said to be weakly
measurable (or scalarly measurable) on T if, for every x∗ ∈ E∗, the real valued function
t 	→ 〈x∗, x(t)〉 is Lebesgue measurable on T .
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We denote by Lp(T) the space of all real measurable functions f : T →R, whose absolute
value raised to the pth power has finite integral, or equivalently, that

‖f ‖p :=
(∫

T

∣∣f (t)
∣∣pdt

) 
p

< ∞,

where  ≤ p < ∞. Moreover, by L∞(T) we denote the space of all measurable and essential
bounded real functions defined on T . Let C(T , E) denote the space of all strong continuous
functions y(·) : T → E, endowed with the supremum norm ‖y(·)‖c = supt∈T ‖y(t)‖. Also, we
consider the space C(T , E) with its weak topology σ (C(T , E), C(T , E)∗). It is well known
that (see [, ])

C(T , E)∗ = M
(
T , E∗),

where M(T , E∗) is the space of all bounded regular vector measures from B(T) into E∗

which are of bounded variation. Here, B(T) denotes the σ -algebra of Borel measurable
subsets of T . Therefore, a sequence {yn(·)}n≥ converges weakly to y(·) in C(T , E) if and
only if

〈
m(·), yn(·) – y(·)〉 →  as n → ∞, ()

for all m(·) ∈ M(T , E∗). In [], Lemma , it is shown that a sequence {yn(·)}n≥ converges
weakly to y(·) in C(T, E) if and only if yn(t) tends weakly to y(t) for each t ∈ T .

Let Cw(T , E) denote the space of all weakly continuous functions from T into Ew en-
dowed with the topology of weak uniform convergence. A set N ∈L(T) is called a null set
if λ(N) = .

A function x(·) : T → E is said to be pseudo-differentiable on T to a function y(·) : T → E
if, for every x∗ ∈ E∗, there exists a null set N(x∗) ∈ L(T) such that the real function t 	→
〈x∗, x(t)〉 is differentiable on T � N(x∗) and

d
dt

〈
x∗, x(t)

〉
=

〈
x∗, y(t)

〉
, t ∈ T � N

(
x∗). ()

The function y(·) is called a pseudo-derivative of x(·) and it will be denoted by x′
p(·) or by

dp
dt x(·). A pseudo-derivative x′

p(·) of a pseudo-differentiable function x(·) : T → E is weakly
measurable on T (see []).

We recall that a function x(·) : T → E is said to be weakly differentiable on T if there
exists a function x′

w(·) : T → E such that

lim
h→

〈
x∗,

x(t + h) – x(t)
h

〉
=

〈
x∗, x′

w(t)
〉
,

for every x∗ ∈ E∗. If it exists, x′
w(·) is uniquely determined and it is called the weak deriva-

tive of x(·) on T . Obviously, if x(·) : T → E is a weakly differentiable function on T , then
the real function t 	→ 〈x∗, x(t)〉 is differentiable on T . Moreover, in this case we have

d
dt

〈
x∗, x(t)

〉
=

〈
x∗, x′

w(t)
〉
, t ∈ T ,
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for every x∗ ∈ E∗. It is easy to see that, if x(·) : T → E is a function a.e. weakly differentiable
on T , then x(·) is pseudo-differentiable on T and x′

p(·) = x′
w(·) a.e. on T .

The concept of a Bochner integral and a Pettis integral are well known [–].
We recall that a weakly measurable function x(·) : T → E is said to be Pettis integrable

on T if
(a) x(·) is scalarly integrable; that is, for every x∗ ∈ E∗, the real function t 	→ 〈x∗, x(t)〉 is

Lebesgue integrable on T ;
(b) for every set A ∈L(T), there exists an element xA ∈ E such that

〈
x∗, xA

〉
=

∫
A

〈
x∗, x(s)

〉
ds, ()

for every x∗ ∈ E∗. The element xA ∈ E is called the Pettis integral on A and it will be
denoted by

∫
A x(s) ds.

It is easy to show that a Bochner integrable function x(·) : T → E is Pettis integrable
and both integrals of x(·) are equal on each Lebesgue measurable subset A of T ([],
Proposition ..). The best result for a descriptive definition of the Pettis integral is that
given by Pettis in [].

Proposition  Let x(·) : T → E be a weakly measurable function.
(a) If x(·) is Pettis integrable on T , then the indefinite Pettis integral

y(t) :=
∫ t


x(s) ds, t ∈ T

is AC on T and x(·) is a pseudo-derivative of y(·).
(b) If y(·) : T → E is an AC function on T and it has a pseudo-derivative x(·) on T , then

x(·) is Pettis integrable on T and

y(t) = y() +
∫ t


x(s) ds, t ∈ T .

It is well known that the Pettis integrals of two strongly measurable functions x(·) : T →
E and y(·) : T → E coincide over every Lebesgue measurable set in T if and only if x(·) = y(·)
a.e. on T ([], Theorem .). Since a pseudo-derivative of a pseudo-differentiable function
x(·) : T → E is not unique (see []) and two pseudo-derivatives of x(·) need not be a.e.
equal, the concept of weakly equivalence plays an important role in the following.

Two weak measurable functions x(·) : T → E and y(·) : T → E are said to be weakly
equivalent on T if, for every x∗ ∈ E∗, we have 〈x∗, x(t)〉 = 〈x∗, y(t)〉 for a.e. t ∈ T . In the fol-
lowing, if two weak measurable functions x(·) : T → E and y(·) : T → E are weakly equiv-
alent on T , then we will write x(·) � y(·) or x(t) � y(t), t ∈ T .

Proposition  ([]) A weakly measurable function x(·) : T → E is Pettis integrable on T
and 〈x∗, x(·)〉 ∈ L∞(T), for every x∗ ∈ E∗, if and only if the function t 	→ ϕ(t)x(t) is Pettis
integrable on T , for every ϕ(·) ∈ L(T).

Let us denote by P∞(T , E) the space of all weakly measurable and Pettis integrable func-
tions x(·) : T → E with the property that 〈x∗, x(·)〉 ∈ L∞(T), for every x∗ ∈ E∗. Since for each
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t ∈ T the real valued function s 	→ (t – s)α– is Lebesgue integrable on [, t], the fractional
Pettis integral

Iαx(t) :=
∫ t



(t – s)α–

�(α)
x(s) ds, t ∈ T ,

exists, for every function x(·) ∈ P∞(T , E), as a function from T into E (see []). Moreover,
we have

〈
x∗, Iαx(t)

〉
=

∫ t



(t – s)α–

�(α)
〈
x∗, x(s)

〉
ds, t ∈ T ,

for every x∗ ∈ E∗, and the real function t 	→ 〈x∗, Iαx(t)〉 is continuous (in fact, bounded
and uniformly continuous on T if T = R) on T , for every x∗ ∈ E∗ ([], Proposition ..).

In the following, consider α ∈ (, ) and for a given function x(·) ∈ P∞(T , E) we also
denote by x–α(t) the fractional Pettis integral

I–αx(t) =
∫ t



(t – s)–α

�( – α)
x(s) ds, t ∈ T .

Lemma  ([], Lemma .) If x(·), y(·) ∈ P∞(T , E) are weakly equivalent on T , then Iαx(t) =
Iαy(t) on T .

Lemma  ([, ]) The fractional Pettis integral is a linear operator from P∞(T , E) into
P∞(T , E). Moreover, if x(·) ∈ P∞(T , E), then for α,β >  we have

(a) IαIβx(t) = Iα+βx(t), t ∈ T ;
(b) limα→ Iαx(t) = Ix(t) = x(t) – x() weakly uniformly on T ;
(c) limα→ Iαx(t) = x(t) weakly on T .

If y(·) : T → E is a pseudo-differentiable function on T with a pseudo-derivative x(·) ∈
P∞(T , E), then the fractional Pettis integral I–αx(t) exists on T . The fractional Pettis in-
tegral I–αx(·) is called a fractional pseudo-derivative of y(·) on T and it will be denoted by
Dα

p y(·); that is,

Dα
p y(t) = I–αx(t), t ∈ T . ()

Remark  If x(·), x̃(·) ∈ P∞(T , E) are two pseudo-derivatives of y(·) : T → E, then x(·) �
x̃(·) on T . Thus, Lemma  implies that I–αx(t) = I–α x̃(t) on T , and so Dα

p y(·) does not
depend on the choice of a pseudo-derivatives of the function y(·). Therefore, we can write
() as

Dα
p y(t) = I–αy′

p(t), t ∈ T , ()

where y′
p(·) is a given pseudo-derivatives of y(·).

We recall that a function x(·) : T → E is said to be weakly absolutely continuous (wAC,
for short) on T if, for every x∗ ∈ E∗, the real valued function t 	→ 〈x∗, x(t)〉 is absolutely
continuous on T .
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Lemma  ([]) If y(·) ∈ P∞(T , E) is a pseudo-differentiable function on T with a pseudo-
derivative x(·) ∈ P∞(T , E), then the function

y–α(t) :=
∫ t



(t – s)–α

�( – α)
y(s) ds, t ∈ T ,

is wAC and it has a pseudo-derivative dp
dt y–α(·) ∈ P∞(T , E) such that

dp

dt
y–α(t) �

t–α

�( – α)
y() + I–αx(t) on T . ()

Remark  Relation () can be written as

Dα
p y(t) �

dp

dt
y–α(t) –

t–α

�( – α)
y() on T . ()

Note () suggests us that we can extend the definition of the fractional pseudo-derivative
for functions y(·) ∈ P∞(T , E) for which the function t 	→ y–α(t) is pseudo-differentiable
on T . If dp

dt y–α(t) exists on T , then dp
dt y–α(t) will be called the Riemann-Liouville frac-

tional pseudo-derivative of y(·) and it will be denoted by Dα
p y(·); that is, Dα

p y(·) = dp
dt y–α(·).

Usually, Dα
p y(·) is called the Caputo fractional pseudo-derivative of y(·). Relation () can

be written as

Dα
p y(t) �Dα

p y(t) –
t–α

�( – α)
y() on T . ()

Therefore, the Caputo fractional pseudo-derivative Dα
p y(·) exists together with the

Riemann-Liouville fractional pseudo-derivative Dα
p y(·) and they satisfy (). It is easy to

see that if y() = , then

Dα
p y(t) �Dα

p y(t) on T . ()

Remark  Let y(·) : T → E be a pseudo-differentiable function with a pseudo-derivative
y′

p(·) ∈ P∞(T , E). Then from Lemma  we find that the function

yα(t) :=
∫ t



(t – s)α–

�(α)
y(s) ds, t ∈ T ,

is wAC and has a pseudo-derivative dp
dt yα(t) such that

D–α
p y(t) �

dp

dt
yα(t) –

tα–

�(α)
y() on T .

Lemma  Let α,β ∈ (, ).
(a) If y(·) ∈ P∞(T , E), then

Dα
p Iαy(t) = y(t), t ∈ T .
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(b) If y(·) ∈ P∞(T , E) and y–α(·) is pseudo-differentiable with a pseudo-derivative
dp
dt y–α(·) ∈ P∞(T , E), then

IαDα
p y(t) = y(t) – y(), t ∈ T .

Proof (a) Indeed, since y(·) ∈ P∞(T , E), then t 	→ 〈x∗, y(t)〉 is essentially bounded on T , for
every x∗ ∈ E∗. Hence we have

∣∣〈x∗, Iαy(t)
〉∣∣ =

∣∣Iα
〈
x∗, y(t)

〉∣∣ ≤ M
(
x∗) tα

�( + α)
, t ∈ T ,

where M(x∗) = ess supt∈T |〈x∗, y(t)〉| < ∞, x∗ ∈ E∗. Since the real function t 	→ 〈x∗, Iαy(t)〉
is continuous on T , it follows that 〈x∗, Iαy()〉 = , for every x∗ ∈ E∗, and thus Iαy() = .
Then by Remark  we have Dβ

p Iαy(t) = Dβ
p Iαy(t), and so by Lemma  and Proposition  we

have

Dα
p Iαy(t) = Dα

p Iαy(t) =
dp

dt
I–αIαy(t) =

dp

dt
Iy(t) =

dp

dt

∫ t


y(s) ds = y(t), t ∈ T .

(b) By Lemma  and Proposition  we have

IαDα
p y(t) = IαI–αy′

p(t) = Iy′
p(t) =

∫ t


y′

p(s) ds = y(t) – y(), t ∈ T . �

Lemma  Let y(·) : T → E be a pseudo-differentiable function on T with y′
p(·) ∈ P∞(T , E)

and  < α ≤ β < . Then we have
(a)

IαDβ
p y(t) = Dβ–α

p y(t) on T . ()

(b) If y() = , then

Dβ
p Iαy(t) = Dβ–α

p y(t) on T ()

and

IβDα
p y(t) = Iβ–αy(t) on T . ()

Proof If y(·) : T → E is a pseudo-differentiable function on T , then by Lemma  we have

IαDβ
p y(t) = IαI–βy′

p(t) = I–(β–α)y′
p(t) = Dβ–α

p y(t), t ∈ T .

If y() = , then by Remark  and () we have

Dβ
p Iαy(t) = I–β dp

dt
yα(t) = I–βD–α

p y(t) = Dβ–α
p y(t), t ∈ T .

Also, since y() = , then by Lemma  and Proposition  we have

IβDα
p y(t) = Iβ I–αy′

p(t) = Iβ–α+y′
p(t) = Iβ–αIy′

p(t) = Iβ–αy(t), t ∈ T . �
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3 Differential equations with fractional pseudo-derivatives
The existence of weak solutions or pseudo-solutions for ordinary differential equations in
Banach spaces were investigated in many papers (see [–]). In reflexive Banach spaces,
the existence of weak solutions or pseudo-solutions for fractional differential equations
were studied in [–]. In this section we establish an existence result for the following
fractional differential equation:

{
Dα

p y(t) = f (t, y(t)),
y() = y,

()

where Dα
p y(·) is a fractional pseudo-derivative of the function y(·) : T → E and f (·, ·) : T ×

E → E is a given function. Along with the Cauchy problem () consider the following
integral equation:

y(t) = y +
∫ t



(t – s)α–

�(α)
f
(
s, y(s)

)
ds, t ∈ T , ()

where the integral is in the sense of Pettis.
A continuous function y(·) : T → E is said to be a solution of () if y(·) has a pseudo-

derivative belonging to P∞(T , E), Dα
p y(t) � f (t, y(t)) for t ∈ T and y() = y.

To prove a result on the existence of solutions for () we need some preliminary results.

Lemma  Let f (·, ·) : T × E → E be a function such that f (·, y(·)) ∈ P∞(T , E), for every
continuous function y(·) : T → E. Then a continuous function y(·) : T → E is a solution of
() if and only if it satisfies the integral equation ().

Proof Indeed, if a continuous function y(·) : T → E is a solution of (), then y(·) has a
pseudo-derivative belonging to P∞(T , E), Dα

p y(t) � f (t, y(t)) for t ∈ T and y() = y. Then
we have IαDα

p y(t) = Iαf (t, y(t)) on T , and thus from Lemma (b) it follows that y(t) – y() =
Iαf (t, y(t)) on T ; that is, y(·) satisfies the integral equation (). Conversely, suppose that
a continuous function y(·) : T → E satisfies the integral equation (). Then the function
z(·) := f (·, y(·)) ∈ P∞(T , E) satisfies the Abel equation

∫ t



(t – s)α–

�(α)
z(s) ds = v(t), t ∈ T ,

where v(t) := y(t) – y, t ∈ T . Then from [], Theorem ., and Lemma  it follows that
v–α(·) has a pseudo-derivative on T and

z(t) �
dp

dt
v–α(t) =

dp

dt
y–α(t) –

t–α

�( – α)
y() for t ∈ T .

Then by Remark  we have z(t) � Dα
p y(t) for t ∈ T ; that is, Dα

p y(t) � f (t, y(t)) on T . �

In this section we shall discuss the existence of solutions of fractional differential equa-
tions in nonreflexive Banach spaces. We recall that a function f (·) : E → E is said to be
sequentially continuous from Ew into Ew (or weakly-weakly sequentially continuous) if, for
every weakly convergent sequence {xn}n≥ ⊂ E, the sequence {f (xn)}n≥ is weakly conver-
gent in E.
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By a Gripenberg function we mean a function g : R+ → R+ such that g(·) is continuous,
nonincreasing with g() = , and u ≡  is the only continuous solution of

u(t) ≤ 
�(α)

∫ t


(t – s)α–g

(
u(s)

)
ds, u() = . ()

The problem of uniqueness of the null solution of () was studied by Gripenberg in [].
Let us denote by Pwk(E) the set of all weakly compact subset of E. The weak measure of

noncompactness [] is the set function β : Pwk(E) → [,∞) defined by

β(A) = inf
{

r > ; there exist K ∈ Pwk(E) such A ⊂ K + rB
}

,

where B is the closed unit ball in E. The properties of the weak noncompactness measure
are analogous to the properties of the measure of noncompactness, namely (see []):

() A ⊆ B implies that β(A) ≤ β(B);
() β(A) = β(clwA), where clwA denotes the weak closure of A;
() β(A) =  if and only if clwA is weakly compact;
() β(A ∪ B) = max{β(A),β(B)};
() β(A) = β(conv(A));
() β(A + B) ≤ β(A) + β(B);
() β(x + A) = β(A), for all x ∈ E;
() β(λA) = |λ|β(A), for all λ ∈R;
() β(

⋃
≤r≤r

rA) = rβ(A);
() β(A) ≤  diam(A).

Lemma  ([]) Let H ⊂ C(T , E) be bounded and equicontinuous. Then
(i) the function t → β(H(t)) is continuous on T ,

(ii) βc(H) = supt∈T β(H(t)),
where βc(·) denote the weak noncompactness measure on C(T , E) and H(t) = {u(t), u ∈ H},
t ∈ T .

Lemma  ([]) Let E be a metrizable locally convex topological vector space and let K be
a closed convex subset of E, and let Q be a weakly sequentially continuous map of K into
itself. If for some y ∈ K the implication

V = conv
(
Q(V ) ∪ {y}) ⇒ V is relatively weakly compact

holds, for every subset V of K , then Q has a fixed point.

Theorem  Assume f (·, ·) : T × E → E is a function such that:
(H) f (t, ·) is weakly-weakly sequentially continuous, for every t ∈ T ;
(H) f (·, y(·)) ∈ P∞(T , E), for every continuous function y(·) : T → E;
(H) ‖f (t, y)‖ ≤ M, for all (t, y) ∈ T × E;
(H) for every bounded set A ⊆ E we have

β
(
f (T × A)

) ≤ g
(
β(A)

)
,
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where g(·) is a Gripenberg function. Then () admits a solution y(·) on an interval T =
[, a] with a = min{b, ( �(α+)

M )/α}.

Proof In our proof we shall use some ideas from [] and []. We define the nonlinear
operator Q(·) : C(T, E) → C(T, E) by

(Qy)(t) = y +
∫ t



(t – s)α–

�(α)
f
(
s, y(s)

)
ds, t ∈ T.

If y(·) ∈ C(T, E), then by (H) we have f (·, y(·)) ∈ P∞(T , E) and so the operator Q makes
sense. To show that Q is well defined, let t, t ∈ T with t > t. Without loss of generality,
assume that (Qy)(t) – (Qy)(t) �= . Then by the Hahn-Banach theorem, there exists a
y∗ ∈ E∗ with ‖y∗‖ =  and ‖(Qy)(t) – (Qy)(t)‖ = |〈y∗, (Qy)(t) – (Qy)(t)〉|. Then

∥∥(Qy)(t) – (Qy)(t)
∥∥

=
∣∣〈y∗, (Qy)(t) – (Qy)(t)

〉∣∣
=

∣∣∣∣
∫ t



(t – s)α–

�(α)
〈
y∗, f

(
s, y(s)

)〉
ds –

∫ t



(t – s)α–

�(α)
〈
y∗, f

(
s, y(s)

)〉
ds

∣∣∣∣
≤

∫ t



(
(t – s)α–

�(α)
–

(t – s)α–

�(α)

)∣∣〈y∗, f
(
s, y(s)

)〉∣∣ds

+
∫ t

t

(t – s)α–

�(α)
∣∣〈y∗, f

(
s, y(s)

)〉∣∣ds

≤ M
�( + α)

[
tα
 – tα

 + (t – t)α
] ≤ M

�( + α)
(t – t)α , ()

so Q maps C(T, E) into itself. Let K be the convex, closed, and equicontinuous set defined
by

K =
{

y(·) ∈ C(T, E);
∥∥y(·)∥∥c ≤ ‖y‖ + ,

∥∥y(t) – y(t)
∥∥

≤ M
�( + α)

|t – t|α , for all t, t ∈ T

}
.

We will show that Q maps K into itself and Q restricted to the set K is weakly-weakly
sequentially continuous. To show that Q : K → K , let y(·) ∈ K and t ∈ T. Again, without
loss of generality, assume that (Qy)(t) �= . By the Hahn-Banach theorem, there exists a
y∗ ∈ E∗ with ‖y∗‖ =  and ‖(Qy)(t)‖ = |〈y∗, (Qy)(t)〉|. Then by (H), we have

∥∥(Qy)(t)
∥∥ ≤ ‖y‖ +

∫ t



(t – s)α–

�(α)
∣∣〈y∗, f

(
s, y(s)

)〉∣∣ds

≤ ‖y‖ +
Maα

�(α + )
≤ ‖y‖ + ,

and using () it follows that Q maps K into K . Next, we show that Q is weakly-weakly
sequentially continuous. First, we recall that the weak convergence in K ⊂ C(T, E) is ex-
actly the weak pointwise convergence. Let {yn(·)}n≥ be a sequence in K such that yn(·)
converges weakly to y(·) in K . Then yn(t) converges weakly to y(t) in E for each t ∈ T.
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Since K is a closed convex set, by Mazur’s lemma we have y(·) ∈ K . Further, by (H) it
follows that f (t, yn(t)) converges weakly to f (t, y(t)) for each t ∈ T. Then the Lebesgue
dominated convergence theorem for the Pettis integral (see []) yields Iαyn(t) converg-
ing weakly to Iαy(t) in E for each t ∈ T. Since K is an equicontinuous subset of C(T, E)
it follows that Q(·) is weakly-weakly sequentially continuous.

Suppose that V ⊂ K is such that V = co(Q(V ) ∪ {y(·)}) for some y(·) ∈ K . We will show
that V is relatively weakly compact in C(T, E). Let

∫ t



(t – s)α–

�(α)
f
(
s, V (s)

)
ds =

{∫ t



(t – s)α–

�(α)
f
(
s, y(s)

)
ds; y(·) ∈ V

}

and (QV )(t) = y +
∫ t


(t–s)α–

�(α) f (s, V (s)) ds. Let t ∈ T and ε > . If we choose η >  such that

η < ( ε�(α+)
M )/α and

∫ t
t–η

(t–s)α–

�(α) f (s, y(s)) ds �=  then, by the Hahn-Banach theorem, there
exists a y∗ ∈ E∗ with ‖y∗‖ =  and

∥∥∥∥
∫ t

t–η

(t – s)α–

�(α)
f
(
s, y(s)

)
ds

∥∥∥∥ =
∣∣∣∣
〈
y∗,

∫ t

t–η

(t – s)α–

�(α)
f
(
s, y(s)

)
ds

〉∣∣∣∣.

It follows that
∥∥∥∥
∫ t

t–η

(t – s)α–

�(α)
f
(
s, y(s)

)
ds

∥∥∥∥ ≤
∫ t

t–η

(t – s)α–

�(α)
∣∣〈y∗, f

(
s, y(s)

)〉∣∣ds ≤ ε,

and thus using property () of the noncompactness measure we infer

β

(∫ t

t–η

(t – s)α–

�(α)
f
(
s, V (s)

)
ds

)
≤ ε. ()

Since by Lemma  the function s → v(s) := β(V (s)) is continuous on [, t – η] it follows
that s → (t – s)α–g(v(s)) is continuous on [, t – η]. Hence, there exists δ >  such that

∥∥(t – τ )α–g
(
v(τ )

)
– (t – s)α–g

(
v(s)

)∥∥ <
ε



and

∥∥g
(
v(ξ )

)
– g

(
v(τ )

)∥∥ <
ε

ηα– ,

for all τ , s, ξ ∈ [, t – η] with |τ – s| < δ and |τ – ξ | < δ. It follows that

∣∣(t – τ )α–g
(
v(ξ )

)
– (t – s)α–g

(
v(s)

)∣∣
≤ ∣∣(t – τ )α–g

(
v(τ )

)
– (t – s)α–g

(
v(s)

)∣∣ + (t – τ )α–∣∣g(
v(ξ )

)
– g

(
v(τ )

)∣∣ < ε,

that is,

∣∣(t – τ )α–g
(
v(ξ )

)
– (t – s)α–g

(
v(s)

)∣∣ < ε, ()

for all τ , s, ξ ∈ [, t – ξ ] with |τ – s| < δ and |τ – ξ | < δ. Consider a partition of the inter-
val [, t – η] into n parts  = t < t < · · · < tn = t – η such that ti – ti– < δ, i = , , . . . , n.
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From Lemma  it follows that for each i ∈ {, , . . . , n} there exists si ∈ [ti–, ti] such that
β(V ([ti–, ti])) = v(si), i = , , . . . , n. Then we have (see [], Theorem .)

∫ t–n



(t – s)α–

�(α)
f
(
s, V (s)

)
ds

⊂ 
�(α)

n∑
i=

∫ ti

ti–

(t – s)α–f
(
s, V (s)

)
ds

⊂ 
�(α)

n∑
i=

(ti – ti–)conv
{

(t – s)α–f
(
s, y(s)

)
; s ∈ [ti–, ti], y ∈ V

}
,

and so

β

(∫ t–η



(t – s)α–

�(α)
f
(
s, V (s)

)
ds

)

≤ 
�(α)

n∑
i=

(ti – ti–)β
(
conv

{
(t – s)α–f

(
s, y(s)

)
; s ∈ [ti–, ti], y ∈ V

})

=


�(α)

n∑
i=

(ti – ti–)β
({

(t – s)α–f
(
s, y(s)

)
; s ∈ [ti–, ti], y ∈ V

})

≤ 
�(α)

n∑
i=

(ti – ti–)(t – ti)α–β
(
f
(
T × V [ti–, ti]

))

≤ 
�(α)

n∑
i=

(ti – ti–)(t – ti)α–g
(
β
(
V [ti–, ti]

))

=


�(α)

n∑
i=

(ti – ti–)(t – ti)α–g
(
v(si)

)
.

Using () we have

∣∣(t – ti)α–g
(
v(si)

)
– (t – s)α–g

(
v(s)

)∣∣ < ε�(α + ).

This implies that


�(α)

n∑
i=

(ti – ti–)(t – ti)α–g
(
v(si)

) ≤
∫ t–η



(t – s)α–

�(α)
g
(
v(s)

)
ds + ε

(
tα – ηα

)
.

Thus we obtain

β

(∫ t–η



(t – s)α–

�(α)
f
(
s, V (s)

)
ds

)
≤

∫ t–η



(t – s)α–

�(α)
g
(
v(s)

)
ds + ε

(
tα – ηα

)
. ()

Now because

(QV )(t) ⊂
∫ t–η



(t – s)α–

�(α)
f
(
s, V (s)

)
ds +

∫ t

t–η

(t – s)α–

�(α)
f
(
s, V (s)

)
ds,
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then from () and () we have

β
(
(QV )(t)

) ≤
∫ t–η



(t – s)α–

�(α)
g
(
v(s)

)
ds + ε

(
tα – ηα

)
+ ε

≤
∫ t



(t – s)α–

�(α)
g
(
v(s)

)
ds + ε

(
tα – ηα + 

)
.

As the last inequality is true, for every ε > , we infer

β
(
(QV )(t)

) ≤
∫ t



(t – s)α–

�(α)
g
(
v(s)

)
ds.

Because V = co(Q(V ) ∪ {y(·)}) then

β
(
V (t)

)
= β

(
co

(
Q(V ) ∪ {

y(·)})) ≤ β
(
(QV )(t)

)

and thus

v(t) ≤
∫ t



(t – s)α–

�(α)
g
(
v(s)

)
ds for t ∈ T.

Since g(·) is a Gripenberg function, it follows that v(t) =  for t ∈ T. Since V as a subset
of K is equicontinuous, by Lemma  we infer

βc
(
V (T)

)
= sup

t∈T
β
(
V (t)

)
= .

Thus, by Arzelá-Ascoli’s theorem we find that V is weakly relatively compact in C(T, E).
Using Lemma  there exists a fixed point of the operator Q which is a solution of ().

�

If E is reflexive and f (·, ·) : T × E → E is bounded, then (H) is automatically satisfied
since a subset of a reflexive Banach space is weakly compact iff it is closed in the weak
topology and bounded in the norm topology.

If for α =  we put D
py(·) = y′

p(·), then from Theorem  we obtain the following result
(see [, ]).

Corollary  If f (·, ·) : T × E → E is a function that satisfies the conditions (H)-(H) in
Theorem , then the differential equation

{
y′

p(t) = f (t, y(t)),
y() = y,

()

has a solution on [, a] with a = min{b, /M}.

4 Multi-term fractional differential equation
The case of multi-term fractional differential equations in reflexive Banach spaces was
recently considered in [–]. Consider the following multi-term fractional differential
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equation:

(
Dαm –

m–∑
i=

aiDαi

)
y(t) = f

(
t, y(t)

)
for t ∈ [, ], y() = , ()

where Dαi y(·), i = , , . . . , m, are fractional pseudo-derivatives of order αi ∈ (, ) of a
pseudo-differentiable function y(·) : [, ] → E, f (t, ·) : [, ] × E → E is weakly-weakly se-
quentially continuous, for every t ∈ [, ], and f (·, y(·)) is Pettis integrable, for every contin-
uous function y(·) : [, ] → E, E is a nonreflexive Banach space,  < α < α < · · · < αm < 
and a, a, . . . , am– are real numbers such that a :=

∑m–
i=

|ai|
�(αm–αi+) < .

Along with the Cauchy problem () consider the following integral equation:

y(t) =
m–∑
i=

aiIαm–αi y(t) + Iαm f
(
t, y(t)

)
, ()

t ∈ T , where the integral is in the sense of Pettis and T = [, ].
A continuous function y(·) : T → E is said to be a solution of () if

(i) y(·) has Caputo fractional pseudo-derivatives of orders αi ∈ (, ), i = , , . . . , m,
(ii) (Dαm –

∑m–
i= aiDαi )y(t) � f (t, y(t)), for all t ∈ T ,

(iii) y() = .

Lemma  Assume that f (·, ·) : T × E → E satisfy the assumptions (H) and (H) in The-
orem . Then every continuous function y(·) : T → E which satisfies the integral equation
() is a solution of ().

Proof Suppose that a continuous function y(·) : T → E satisfies the integral equation ().
Then z(·) := f (·, y(·)) ∈ P∞(T , E) satisfies the Abel equation

∫ t



(t – s)αm–

�(αm)
z(s) ds = v(t), t ∈ T ,

where v(t) := y(t) –
∑m–

i= aiIαm–αi y(t), t ∈ T . From [], Theorem ., it follows that v–αm (·)
has a pseudo-derivative on T and

z(t) �
dp

dt
v–αm (t) for t ∈ T ,

Since y(·) is continuous on T and f (·, y(·)) ∈ P∞(T , E) satisfies (H), we have

lim
t→+

Iαy(t) = lim
t→+

Iαf
(
t, y(t)

)
= 

for α ∈ (, ) and thus, taking the limit as t → + on both equalities in (), we obtain
y() =  and consequently v() = . Since v() = , by Remark  we have

z(t) �
dp

dt
v–αm (t) = Dαm

p v(t) = Dαm
p v(t), t ∈ T .
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Since by Lemma (b) we have

Dαm
p v(t) = Dαm

p y(t) –
m–∑
i=

aiDαm
p Iαm–αi y(t) = Dαm

p y(t) –
m–∑
i=

aiDαi
p y(t),

we obtain

(
Dαm

p –
m–∑
i=

aiDαi
p

)
y(t) � f

(
t, y(t)

)
, t ∈ T .

Hence the continuous function y(·) satisfy the conditions (i)-(iii) from definition and thus
y(·) is a solution of (). �

Lemma  ([], Theorem .) Let K be a nonempty, bounded, convex, closed set in a
Banach space E. Assume Q : K → K is weakly sequentially continuous and β-contractive
(that is, there exists  ≤ k <  such that β(Q(A)) ≤ kβ(A), for all bounded sets A ⊂ E).
Then Q has a fixed point.

Remark  Since the function σ 	→ �(σ ) is convex and �(σ ) ≥ �(/) ≈ . for
σ ∈ (, ), for every r ∈ (,�(/)) we have �(αm + ) > r.

Next we establish an existence result for the multi-term fractional integral equation ()
in nonreflexive Banach spaces.

Theorem  Suppose that f (·, ·) : T ×E → E satisfies the conditions (H)-(H) in Theorem 
and there exists L >  such that, for every bounded set A ⊆ E, we have

β
(
f (T × A)

) ≤ Lβ(A).

If r ∈ (, ) is such that �(αm + ) > r, then () admits a solution y(·) on an interval T =
[, a] with

a < min

{
r

r + L
,
[

( – a)�(αm + )
M

]/αm}
.

Proof We define the nonlinear operator Q(·) : C(T, E) → C(T, E) by

(Qy)(t) =
m–∑
i=

aiIαm–αi y(t) + Iαm f
(
t, y(t)

)
,

for all t ∈ T. We remark that a solution of integral equation () is a fixed point of the
operator Q. If y(·) ∈ C(T, E), then by (H) we have f (·, y(·)) ∈ P∞(T, E) and so the oper-
ator Q makes sense. To show that Q is well defined, let t, s ∈ T with t > s. Without loss
of generality, assume that (Qy)(t) – (Qy)(s) �= . Then by the Hahn-Banach theorem, there
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exists a y∗ ∈ E∗ with ‖y∗‖ =  and ‖(Qy)(t) – (Qy)(s)‖ = |〈y∗, (Qy)(t) – (Qy)(s)〉|. Then

∥∥(Qy)(t) – (Qy)(s)
∥∥

=
∣∣〈y∗, (Qy)(t) – (Qy)(s)

〉∣∣

≤
m–∑
i=

|ai|
�(αm – αi)

[∫ s



[
(s – τ )αm–αi– – (t – τ )αm–αi–]∣∣〈y∗, y(τ )

〉∣∣dτ

+
∫ t

s
(t – τ )αm–αi–∣∣〈y∗, y(τ )

〉∣∣dτ

]

+


�(αm)

[∫ s



[
(s – τ )αm– – (t – τ )αm–]∣∣〈y∗, f

(
τ , y(τ )

)〉∣∣dτ

+
∫ t

s
(t – τ )αm–∣∣〈y∗, f

(
τ , y(τ )

)〉∣∣dτ

]

≤ 

[m–∑
i=

|ai|
�(αm – αi + )

‖y‖c +
M

�(αm + )

]
(t – s)αm , ()

so Q maps C(T, E) into itself. Let δ ≥  and let K be the convex, closed, bounded and
equicontinuous set defined by

K =

{
y(·) ∈ C(T, E);

∥∥y(·)∥∥c ≤ δ,
∥∥y(t) – y(s)

∥∥

≤ 

[m–∑
i=

δ|ai|
�(αm – αi + )

+
M

�(αm + )

]
|t – s|αm , for all t, s ∈ T

}
.

Without loss of generality, assume that (Qy)(t) �= . By the Hahn-Banach theorem, there
exists a y∗ ∈ E∗ with ‖y∗‖ =  and ‖(Qy)(t)‖ = |〈y∗, (Qy)(t)〉|. Then by (H), we have

∥∥(Qy)(t)
∥∥ =

∣∣〈y∗, (Qy)(t)
〉∣∣

≤
m–∑
i=

|ai|
∫ t



(t – s)αm–αi–

�(αm – αi)
∣∣〈y∗, y(τ )

〉∣∣ds +
∫ t



(t – s)αm–

�(αm)
∣∣〈y∗, f

(
τ , y(τ )

)〉∣∣ds

≤
m–∑
i=

δ|ai|
�(αm – αi + )

+
Maαm


�(αm + )

≤ δa + ( – a)δ = δ

and using () it follows that Q maps K into K . Following the same reasoning as in the
proof of Theorem  it is easy to show that Q is weakly-weakly sequentially continuous
from K to K . Next, we will prove that Q has at least one fixed point y(·) ∈ K . Let V ⊂ K
be such that βc(V ) > . Next, to simplify the writing of some relations, we will use the
following notations:

A(t) :=
∫ t–η



(t – s)αm–

�(αm)
f
(
s, y(s)

)
ds,

B(t) :=
m–∑
i=

ai

∫ t–η



(t – s)αm–αi–

�(αm – αi)
y(s) ds,



Agarwal et al. Advances in Difference Equations  (2015) 2015:112 Page 16 of 18

C(t) :=
∫ t

t–η

(t – s)αm–

�(αm)
f
(
s, y(s)

)
ds,

D(t) :=
m–∑
i=

ai

∫ t

t–η

(t – s)αm–αi–

�(αm – αi)
y(s) ds,

for t ∈ T. Then it is easy to see that |〈y∗, C(t)〉| ≤ Mηαm
�(αm+) and |〈y∗, D(t)〉| ≤ ∑m–

i=
r|ai|ηαm–αi
�(αm–αi+) ,

for all y∗ ∈ E∗ with ‖y∗‖ = . Let t ∈ T and ε > . If we choose η >  such that η <
( ε�(αm+)

r[M+�(αm+)] )/αm and C(t) + D(t) �= , then by the Hahn-Banach theorem, there exists a
y∗ ∈ E∗ with ‖y∗‖ =  and

∥∥C(t) + D(t)
∥∥ =

∣∣〈y∗, C(t) + D(t)
〉∣∣

≤
m–∑
i=

r|ai|ηαm–αi

�(αm – αi + )
+

Mηαm

�(αm + )

≤ rηαm +
Mηαm

�(αm + )
≤ r

M + �(αm + )
�(αm + )

ηαm < ε,

and thus using property () of the measure of noncompactness we infer

β
(
(CV )(t) + (DV )(t)

) ≤ ε.

As in the proof of Theorem , with g(t) = L, t ∈ T, we obtain

β
(
(AV )(t)

) ≤ L
∫ t–η



(t – s)αm–

�(αm)
β
(
V (s)

)
ds + ε

(
tα – ηα

)
.

Also, with y(·) instead of f (·, y(·)), we have

β

(
ai

∫ t–η



(t – s)αm–αi–

�(αm – αi)
V (s) ds

)

≤ |ai|
∫ t–η



(t – s)αm–αi–

�(αm – αi)
β
(
V (s)

)
ds +

ε

m – 
(
tα – ηα

)
,

and so

β
(
(BV )(t)

) ≤
m–∑
i=

|ai|
∫ t–η



(t – s)αm–αi–

�(αm – αi)
β
(
V (s)

)
ds + ε

(
tα – ηα

)
.

Next, since (QV )(t) = (AV )(t) + (CV )(t) + (BV )(t) + (DV )(t), t ∈ T, then from the last
inequalities and using properties of the noncompactness measure we infer

β
(
(QV )(t)

) ≤ β
(
(AV )(t)

)
+ β

(
(BV )(t)

)
+ β

(
(CV )(t) + (DV )(t)

)

≤ L
∫ t



(t – s)αm–

�(αm)
β
(
V (s)

)
ds +

m–∑
i=

|ai|
∫ t



(t – s)αm–αi–

�(αm – αi)
β
(
V (s)

)
ds

+ ε
(
tα – ηα

)
+ ε.
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As the last inequality is true, for every ε > , it follows that

β
(
(QV )(t)

) ≤ LIαmβ
(
V (t)

)
+

m–∑
i=

|ai|Iαm–αiβ
(
V (t)

)
, t ∈ T.

Since β(V (t)) ≤ βc(V ), t ∈ T, we have

β
(
(QV )(t)

) ≤
(

Ltαm

�(αm + )
+ tαm–αi

)
βc(V ) ≤

(
aL

r
+ a

)
βc(V ) ≤ kβc(V ),

where k = a( + L
r ) < . It follows that βc(QV ) < kβc(V ), for every set V ⊂ K with

βc(V ) > ; that is, Q : K → K is a βc-contractive operator. Since K is a nonempty, closed,
convex, bounded subset in C(T, E), and Q : K → K is weakly sequentially continuous
and βc-contractive, by Lemma  it follows that the operator Q has a fixed point y(·) ∈ K .

�

Using Lemma  we obtain the following result.

Corollary  If the assumptions of Theorem  are satisfied, then the problem () has at
least one solution.
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7. Salem, HAH, Cichoń, M: On solutions of fractional order boundary value problems with integral boundary conditions

in Banach spaces. J. Funct. Spaces Appl. 2013, Article ID 428094 (2013)
8. Dinuleanu, N: Vector Measures. Pergamon, New York (1967)
9. Singer, I: Linear functionals on the space of continuous mappings of a compact space into a Banach space. Rev.

Roum. Math. Pures Appl. 2, 301-315 (1957)
10. Mitchell, AR, Smith, C: An existence theorem for weak solutions of differential equations in Banach spaces. In:

Lakshmikantham, V (ed.) Nonlinear Equations in Abstract Spaces, pp. 387-404 (1978)
11. Solomon, BW: On differentiability of vector-valued functions of a real variables. Stud. Math. 29, 1-4 (1967)
12. Diestel, J, Uhl, JJ Jr.: Vector Measures. Mathematical Surveys, vol. 15. Am. Math. Soc., Providence (1977)

http://dx.doi.org/10.1186/1687-1847-2013-302


Agarwal et al. Advances in Difference Equations  (2015) 2015:112 Page 18 of 18

13. Musial, K: Topics in the Theory of Pettis Integration. In School of Measure Theory and Real Analysis, Grado, Italy, May
(1992)

14. Schwabik, S, Guoju, Y: Topics in Banach Space Integration. World Scientific, Singapore (2005)
15. Pettis, JP: On integration in vector spaces. Trans. Am. Math. Soc. 44, 277-304 (1938)
16. Salem, HAH, El-Sayed, SMA, Moustafa, OL: A note on the fractional calculus in Banach spaces. Studia Sci. Math. Hung.

42(2), 115-130 (2005)
17. Arendt, W, Batty, C, Hieber, M, Neubrander, F: Vector-Valued Laplace Transforms and Cauchy Problems. Monogr.

Math., vol. 96. Birkhäuser, Basel (2001)
18. Knight, WJ: Solutions of differential equations in Banach spaces. Duke Math. J. 41, 437-442 (1974)
19. Cramer, E, Lakshmikantham, V, Mitchell, AR: On the existence of weak solutions of differential equations in

nonreflexive Banach spaces. Nonlinear Anal. 2, 259-262 (1978)
20. Arino, O, Gautier, S, Penot, JP: A fixed point theorem for sequentially continuous mappings with application to

ordinary differential equations. Funkc. Ekvacioj 27, 273-279 (1984)
21. Kubiaczyk, I: On a fixed point theorem for weakly sequentially continuous mapping. Discuss. Math., Differ. Incl. 15,

15-20 (1995)
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28. Cichoń, M, Kubiaczyk, I, Sikorska-Nowak, A: The Henstock-Kurzweil-Pettis integrals and existence theorems for the

Cauchy problem. Czechoslov. Math. J. 54, 279-289 (2004)
29. Dutkiewicz, A, Szufla, S: Kneser’s theorem for weak solution of and integral equation with weakly singular kernel. Publ.

Inst. Math. (Belgr.) 77(91), 87-92 (2005)
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