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Abstract
The aim of the present paper is to consider geometric properties such as starlikeness
and convexity of the Cesáro partial sums of certain analytic functions in the open unit
disk. By using the Cesáro partial sums, we improve some recent results including the
radius of convexity.
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1 Introduction
Let U := {z : |z| < } be a unit disk in the complex plane C and letH denote the space of all
analytic functions on U . Here we suppose that H is a topological vector space endowed
with the topology of uniform convergence over compact subsets of U . Also, for a ∈ C

and n ∈ N, let H[a,n] be the subspace of H consisting of functions of the form f (z) =
a + anzn + an+zn+ + · · · . Further, let A := {f ∈ H : f () = f ′() –  = } and S denote the
class of univalent functions in A. A function f ∈ A is called starlike if f (U) is a starlike
domain with respect to the origin, and the class of univalent starlike functions is denoted
by S∗. It is called convex C , if f (U) is a convex domain. Each univalent starlike function f
is characterized by the analytic condition

�
(
zf ′(z)
f (z)

)
> , z ∈U .

Also, it is known that zf ′(z) is starlike if and only if f is convex, which is characterized by
the analytic condition

�
(
 +

zf ′′(z)
f ′(z)

)
> , z ∈ U .

For a function f (z) ∈A, we introduce the partial sum of f (z) by

fk(z) = z +
k∑

n=

anzn, z ∈U . ()

For the partial sums fn(z) of f (z) ∈ S∗, Szegö [] showed that if f (z) ∈ S∗, then fn(z) ∈ S∗

for |z| < 
 and fn(z) ∈ C for |z| < 

 . Owa [] considered the starlikeness and convexity of
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partial sums,

fn(z) = z + anzn,

of certain functions in the unit disk.Moreover, Darus and Ibrahim [] determined the con-
ditions under which the partial sums of functions of bounded turning are also of bounded
turning.
In this paper, we consider the Cesáro partial sums, it is showed that this kind of par-

tial sums preserve the properties of the analytic functions in the unit disk. Robertson []
showed that if f (z) ∈A is univalent, then also all the Cesáro sums are univalent in the unit
disk. Moreover, if its ordinary partial sums () is univalent in U , then the Cesáro sums are
univalent. By employing the concept of the subordination, these results were extended
by Ruscheweyha and Salinas []. The classical Cesáro means play an important role in
geometric function theory (see [–]).
From the partial sum

sk(z) =
k∑

n=

anzn, z ∈U ,

with a = , we construct the Cesáro means σk(z) of f ∈A by

σk(z) =

k

k∑
n=

sn(z)

=

k
[
s(z) + · · · + sk(z)

]
=


k
[
z +

(
z + az

)
+ · · · + (

z + · · · + akzk
)]

=

k
[
kz + (k – )az + · · · + akzk

]

= z +
k∑

n=

(
k – n + 

k

)
anzn

= f (z) ∗
[
z +

k∑
n=

(
k – n + 

k

)
zn

]

= f (z) ∗ gk(z),

where

gk = z +
k∑

n=

(
k – n + 

k

)
zn.

Our aim is to consider geometric properties such as starlikeness and convexity of the
Cesáro partial sums of certain analytic functions in the open unit disk.

2 Main results
We define the function Sk which is a partial sum of f ∈A by

Sk(z) = z +
(
ak
k

)
zk , k ≥ ,ak �= . ()
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Theorem  The function Sk(z) satisfies

 – |ak|rk–
 – |ak |

k rk–
≤ �

(
zS′

k(z)
Sk(z)

)
≤  + |ak|rk–

 + |ak |
k rk–

()

for

 ≤ r < k–

√
k

|ak| ≤ , |ak| �= .

Furthermore, Sk(z) ∈ S∗(α) for

 ≤ r < k–

√
 – α

( – α/k)|ak| ≤ , |ak| �= .

Proof Noting that

zS′
k(z)

Sk(z)
= k –

(k – )
 + ak

k zk–
,

it follows that for cos θ → , we obtain

�
(
zS′

k(z)
Sk(z)

)
= k – (k – )

 + |ak |
k cos θrk–

 +  |ak |
k rk– cos θ + ( |ak |

k )r(k–)

≤  + |ak|rk–
 + |ak |

k rk–
.

Moreover, we also observe that

�
(
zS′

k(z)
Sk(z)

)
≥  – |ak|rk–

 – |ak |
k rk–

.

Now assume that

 – |ak|rk–
 – |ak |

k rk–
> α

for

 ≤ r < k–

√
 – α

( – α/k)|ak| ≤ , |ak| �= .

This completes the proof. �

Remark  For example, the values α = ., k =  and |ak| =  imply the radius of starlike-
ness of Sk(z) is r = . . . . , and for the same values, the radius of starlikeness of the
ordinary partial sums fk(z) = z + akzk is r = . . . . (see []).

Next, we derive the radius of convexity.
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Theorem  The function Sk(z) satisfies

 – k|ak|rk–
 – |ak|rk– ≤ �

(
 +

zS′′
k (z)

S′
k(z)

)
≤  + k|ak|rk–

 + |ak|rk– ()

for

 ≤ r < k–

√


|ak| ≤ , |ak| �= .

Furthermore, Sk(z) ∈ C(α) for

 ≤ r < k–

√
 – α

(k – α)|ak| ≤ , |ak| �= .

Proof A computation gives

 +
zS′′

k (z)
S′
k(z)

= k –
(k – )

 + akzk–
.

Therefore, for cos θ → , we obtain

�
(
 +

zS′′
k (z)

S′
k(z)

)
= k – (k – )

 + |ak| cos θrk–
 + |ak|rk– cos θ + |ak|r(k–)

≤  + k|ak|rk–
 + |ak|rk– .

Moreover, we impose

�
(
 +

zS′′
k (z)

S′
k(z)

)
≥  – k|ak|rk–

 – |ak|rk– .

Now, consider that

 – k|ak|rk–
 – |ak|rk– > α

for

 ≤ r < k–

√
 – α

(k – α)|ak| ≤ , |ak| �= .

This completes the proof. �

Remark  In view of Theorem , for example, the values α = ., k =  and |ak| =  pose
the radius of convexity of Sk(z) is r = . . . . and for the same values, the radius of
convexity of the ordinary partial sums fk(z) = z + akzk is r = . . . . (see []).

Next, we assume special ordinary partial sums depending so that their coefficients sat-
isfy the relation |an| ≤ ( k–n+k ).
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Theorem  Assume the partial sum

f(z) = z +
k – 
k

z +
k – 
k

z, k ≥ .

Then the function f(z) ∈ S∗(  ).

Proof We consider α such that

�
(
zf ′

(z)
f(z)

)
= �

(
 –

 + k–
k z

 + k–
k z + k–

k z

)
> α.

This implies that

�
(  + k–

k z
 + k–

k z + k–
k z

)
<  – α,

that is,

�
(  – k–

k z

 + k–
k z + k–

k z

)
=

 – k–
k r( cos θ – )

 + k–
k r cos θ + k–

k r( cos θ – )
<  – α.

By letting t = cos θ , we define the function g(t) as follows:

g(t) =
 – k–

k r(t – )
 + k–

k rt + k–
k r(t – )

.

Logarithmic derivative of g(t) yields

g ′(t)
g(t)

= –
{ (t k–k r)[ + k–

k rt + k–
k r(t – )] + ( k–k r +  k–

k rt)[ – k–
k r(t – )]

[ – k–
k r(t – )][ + k–

k rt + k–
k r(t – )]

}

:= –
{

h(t)
[ – k–

k r(t – )][ + k–
k rt + k–

k r(t – )]

}

= –
At + Bt +C

[ – k–
k r(t – )][ + k–

k rt + k–
k r(t – )]

,

where

A = r
(
k – 
k

)

,

B = r
[
k – 
k

+
k – 
k

]
,

C =
k – 
k

r
[
 +

k – 
k

r
]
.

Now, for all k ≥  and r → , the function h(t) has unique real negative zeros in the in-
terval (– 

 , ). This leads to the fact that g ′(t) has unique positive real zeros for all k ≥ 
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distributed in the interval (,  ). Therefore, we will calculate α in t ∈ [  , ). It is easy to
check that g(t) is decreasing for r →  in the interval [  , ). Moreover, we have

lim
k→∞

g
(



)
= lim

k→∞
 + k–

k

 + k–
k – k–

k
=


.

We conclude that for t ∈ [  , ),

g(t) < g
(



)
≤ 


=  – α,

thus α = 
 . This completes the proof. �

By letting k =  in Theorem , we have the following result.

Corollary  The Cesáro partial sums

σ(z) = z +


z +



z, z ∈U ,

of the function f (z) = z
–z are starlike of order α = 

 .

Theorem  Assume the partial sum f(z) as in Theorem . Then the function f(z) ∈ C(  ).

Proof We consider α such that

�
(
 +

zf ′′
 (z)
f ′
(z)

)
= �

(
 –

( k–k z + )
 +  k–

k z +  k–
k z

)
> α.

This implies that

�
( k–

k z + 
 +  k–

k z +  k–
k z

)
<
 – α


,

therefore, a computation gives

�
( k–

k z + 
 +  k–

k z +  k–
k z

)
=


+�

( 
 ( –  k–

k z)
 + ( k–k )z + ( k–k )z

)
,

thus


 ( –  k–

k r( cos θ – ))
 + ( k–k )r cos θ + ( k–k )( cos θ – )

<
 – α


.

By putting t = cos θ , we define the function G(t) as follows:

G(t) =

 ( –  k–

k r(t – ))
 + ( k–k )rt + r( k–k )(t – )

.

http://www.journalofinequalitiesandapplications.com/content/2013/1/51
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Logarithmic derivative of G(t) yields

G′(t)
G(t)

= –
{ [r k–

k t][ + ( k–k )rt + r( k–k )(t – )]
[ –  k–

k r(t – )][ + ( k–k )rt + r( k–k )(t – )]

+
[r k–

k t + r k–k ][ –  k–
k r(t – )]

[ –  k–
k r(t – )][ + ( k–k )rt + r( k–k )(t – )]

}

:= –
{

H(t)
[ –  k–

k r(t – )][ + ( k–k )rt + r( k–k )(t – )]

}

= –
At + Bt +C

[ –  k–
k r(t – )][ + ( k–k )rt + r( k–k )(t – )]

,

where

A = r
(k – )(k – )

k
,

B = r
k – 
k

[
 + r

(
k – 
k

)]
,

C = r
k – 
k

[
 + r

(
k – 
k

)]
.

Now, for all k ≥  and r → , the functionH(t) has unique real negative zeros in the inter-
val [– 

 , ). This leads to the fact that G′(t) has unique positive real zeros for all k ≥  in
the interval (,  ]. So, we calculate α in the interval t ∈ (  , ). A computation yields G(t) is
decreasing for r →  in the interval t ∈ (  , ). Thus, we have

lim
k→∞

G(t) <



=
 – α


,  > t > .,

which implies α = 
 . This completes the proof. �

Theorem  Assume the Cesáro partial sum

σ(z) = z +


z + z

of the function

f (z) =
z

( – z)
= z + z + z + · · · .

Then the function σ(z) ∈ C(  ) for all . < r < ..

Proof We consider α such that

�
(
 +

zσ ′′
 (z)

σ ′
(z)

)
= �

(
 –

( z + )
 + 

z + z

)
> α.

This implies that

�
( 

 z + 
 + 

z + z

)
<
 – α


,

http://www.journalofinequalitiesandapplications.com/content/2013/1/51
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therefore, a computation gives

�
( 

 z + 
 + 

z + z

)
=


+�

( 
 ( – z)
 + 

z + z

)
,

thus

 – r( cos θ – )
 + 

 r cos θ + ( cos θ – )
<  – α.

By putting t = cos θ , we define the function j (t) as follows:

j (t) =
 – r(t – )

 + 
 rt + r(t – )

.

Logarithmic derivative of j (t) yields

j ′(t)
j (t)

:= –
{

�(t)
[ – r(t – )][ + 

 rt + r(t – )]

}

= –
rt + rt + 

 r( + r)
[ – r(t – )][ + 

 rt + r(t – )]
.

The function �(t) has a unique real negative zero in the interval t ∈ (–, ) for all . < r <
. which is around t � – 

 . This leads to the fact that j ′(t) has a unique positive real zero
in the interval (, ) around t � 

 . A computation yields j (t) is decreasing in the interval
t ∈ (  , ) and assuming its maximums at t = . and r = .. Thus, we have

lim
r→.,t→.

j (t) <


=  – α,

which implies α = 
 . This completes the proof. �

Note that some other results related to partial sums can be found in [–].
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