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Abstract

By using Mawhin’s coincidence degree theory and some inequality techniques, this
paper establishes a new sufficient condition on the existence of at least eight positive
periodic solutions for a food-limited two-species Gilpin-Ayala competition patch
system with periodic harvesting terms. An example is given to illustrate the
effectiveness of the result.

1 Introduction
In the past years, the study of population dynamics with harvesting in mathematical bioe-
conomics, due to its theoretical and practical significance in the optimal management
of renewable resources, has attracted much attention [1-8]. Huusko and Hyvarinen in [9]
pointed out that ‘the dynamics of exploited populations are clearly affected by recruitment
and harvesting, and the changes in harvesting induced a tendency to generation cycling in
the dynamics of a freshwater fish population. Recently, some researchers have paid much
attention to the investigation of harvesting-induced multiple positive periodic solutions
for some population systems under the assumption of periodicity of the parameters by
using Mawhin’s coincidence degree theory [5—8]. In 1973, Gilpin and Ayala in [10] firstly
proposed and studied a few Gilpin-Ayala type competition models. Since then, many pa-
pers have been published on the dynamics of Gilpin-Ayala type competition models (for
example, see [11-15]).

In this paper, we consider a food-limited two-species Gilpin-Ayala competition patch
system with harvesting terms:

(1) = o (0) - an(6)x]' () - a3 (£ ()]
+ Dy (8)[x2(2) — x1(£)] = H(2),
(1) = Gt aa(8) - axn x5 ()] + Do) [x () - %, (0)] - Ha(2),

V(0 = s laa(t) - asa (0 (6) - an () (1)) - Ha(o),

(1.1)

where x; and y are the population densities of species x and y in patch 1, and x; is the
density of species x in patch 2. Species y is confined to patch 1, while species x can dif-
fuse between two patches due to the spatial heterogeneity and unbalanced food resources.
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D;(t) (i =1,2) are diffusion coeflicients of species x. a; (¢) (ax(t)) is the natural growth rate
of species x in patch 1 (patch 2), as(t) is the natural growth rate of species y, a13(t), as(¢)
are the inter-species competition coefficients. a;;(¢) (i = 1,2, 3) are the density-dependent
coefficients. k;(¢) (i = 1,2) are the population numbers of species x at saturation in patch 1
(patch 2), and k3(¢) is the population number of species y at saturation in patch 1, respec-
tively. H;(¢) (i = 1,2,3) denote the harvesting rates. 6; (i = 1,2, 3) represent a nonlinear
(l =1,2,3) are the
rate of replacement of mass in the population at saturation (mcludlng the replacement of

measure of interspecific interference. When ¢;(¢) #0 (i=1,2,3), ¢

metabolic loss and of dead organisms). In this case, system (1.1) is a food-limited popula-
tion model. For other food-limited population models, we refer to [16—19].

To our knowledge, few papers have been published on the existence of multiple positive
periodic solutions for Gilpin-Ayala type competition patch models. Motivated by the work
of Chen [20], we study the existence of multiple positive periodic solutions of (1.1) by using
Mawhin’s coincidence degree theory. Since system (1.1) involves the diffusion terms, the
rates of replacement and the interspecific interference, the methods used in [5-8] are not
available to system (1.1).

2 Existence of multiple positive periodic solutions
For the sake of convenience and simplicity, we denote

= —f () dt, g = min g(z), g" = max g(¢),

te[0,T] te(0,T]

where g is a nonnegative continuous 7T'-periodic function.
Set

sl T

From now on, we always assume that
(Hy) ki(2), ai(t), aii(t), Hi(t), ci(£) (i =1,2,3), ar3(t), azi(¢), Di(t) (i = 1,2) are positive con-
tinuous T-periodic functions. 6; (i = 1,2, 3) are positive constants.
HE O
(Hy) -4 (L) > (S3)H(£2 ) + DY + (1+6y) (L) o | Sy

kl+c”N a33

(Hs) szfm 2> D+ (1+ B[R] 5 4415
He) @ fﬁwz ()5 (SN + (L 03) (425 [ )75,

(Hs) H’ D!N; (i=1,2).

We first make the following preparations [21].

Let X, Z be normed vector spaces, L : domL C X — Z be a linear mapping, N : X x
[0,1] — Z be a continuous mapping. The mapping L will be called a Fredholm mapping
of index zero if dimKerL = codimImL < +0o and ImL is closed in Z. If L is a Fredholm
mapping of index zero, then there exist continuous projectors P: X — X and Q: Z — Z
such that ImP = Ker L, ImL = Ker Q = Im(/ — Q). If we define Lp : domL N KerP — ImL
as the restriction L|gomznkerp Of L to dom L N Ker P, then Lp is invertible. We denote the
inverse of that map by Kp. If Q is an open bounded subset of X, the mapping N will be
called L-compact on  x [0,1] if QN(2 x [0,1]) is bounded and Kp(I- Q)N : 2 x [0,1] — X
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is compact, i.e., continuous and such that Kp(I — QN(Q x [0,1]) is relatively compact.
Since Im Q is isomorphic to Ker L, there exists an isomorphism J : Im Q — KerL.
For convenience, we introduce Mawhin’s continuation theorem [21, p.29] as follows.

Lemma 2.1 Let L be a Fredholm mapping of index zero and let N : Q@ x [0,1] — Z be
L-compact on Q x [0,1]. Suppose

(@) Lu # AN(u, ) for every u € domL N 32 and every A € (0,1);

(b) QN(u,0)#0 forevery u € 3Q2 NKerL;

(c) Brouwer degree degg(JON(-,0)|kerr, 2 NKerL,0) # 0.
Then Lu = N(u,1) has at least one solution in domL N €.

Set
c
hx)=b—-ax* - —, x€(0,+00).
x

Lemma 2.2 Assume that a, b, ¢, a are positive constants and
L [c\Ta
b>(1+a)ak <—> .
o

Then there exist 0 < x~ < x* such that

h(x_) = h(x+) =0,
h(x)>0 forxe (x‘,x*), h(x)<0 forxe (O,x_) U (x*, +oo),
W(x") >0, h/(x*) <0.

Proof Since

1

H(x) = —aax® " + % =0, «xe€(0,+00)
x

implies that

we have
C % C 1 (c %
sup h(x):b—a<—) - —=b-(1+a)aT= <—) >0.
x€(0,+00) ao (i)m o

From this, it is easy to see that the assertion holds.
Set

() () (&) -2
M)=| L (4) (@) (B _p
1) |:k{+ch1 ky ki ass !

u H*
Y (T VU L W (0, +00),
kl X
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k[ I u HY
My(x) = [#(@> —D;‘:| - (@> 1 -2, xe(0,+00),
ky + 5Ny \ k2 ks x
K as\' (an\" az \" Hy
M = —= (=) (=) N () a8 - 22, 0, ,
) [k§+C§Nz(k3> (k3> ' ] (k3> o wel0med

pilx) = <“—) _ (@>th - % (i=1,2,3),x € (0, +00),

, k;

L

u l 1 74
a; kl aii 9; H; —jD'Nl .
() = S (B e T (121,2),x € (0, +00),
@ (k,-> kf+c;‘N1(ki>x x g )% € (0, +00)

u l i
as ké (dgg) 65 H3
ms3\x)=\ — —— == ) x2% -—, x€(0,+00).
x)(&) ek . (0, +00) 0

Lemma 2.3 Assume that (Hy)-(Hs) hold. Then the following assertions hold:
(1) There exist 0 < u; < u} such that

and
Mix)>0 forxe (u;,u;),  Mix)<0 forxe (0,u;)U (u,+00),i=1,2,3.
(2) There exist 0 <x; <} such that
pil;) = pilx) = 0,
and
pi®)>0 forxe(xi,x),  pix)<0 forxe (0,x)U (xf,+00),i=1,2,3.
(3) There exist 0 < <1} such that
mi(l;7) = mi(l) = 0,

and
mi(x)>0 forxe (I7,1}), mi(x) <0 forxe (0,07) U (If,+00),i=1,2,3.
(4)
I <x; <u; <uf <xf <}, i=1,2,3. (2.1)

Proof 1t follows from (H;)-(Hs) and Lemma 2.2 that the assertions (1)-(3) hold. Noticing

that
K () () () (i=1,2)
Kb+ cNy \ k; ki) = \ ki S
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k(e (e _(am\"
kl+C3 3 kB - kB ’

! u N u
ay ais as ay a1
= e (2)<(2),

+c1 ( 1) ( ) ﬂss) ! (kl)_<k1)
/(2 ! az)”
- Dy <{-—=1,
kl + 4N, ( 2) 2% ) - <k2
/<3 ( l <6131 ,91 < (@) - <@>u,
K + N, ks ks )~ \ ks

! DNy <H; <H' (i=12),

Hj < Hs < HY,
we have
m;(x) < pi(x) < Mi(x), i=1,2,3.
It follows from this and the assertions (1)-(3) that the assertion (4) also holds. O

Lemma 2.4 [22] Assume thatx>0,y>0,p>1,4>1, and + = 1. Then the following
inequality holds:

Q=

1
xPyd < — +

TR
R IR

Now, we are ready to state the following main result of this paper.

Theorem 2.1 Assume that (H;)-(Hs) hold. Then system (1.1) has at least eight positive
T-periodic solutions.

Proof Since we are concerned with positive solutions of (1.1), we make the change of vari-
ables

x(t) = e (j=1,2), y(t) = €9,

Then (1.1) is rewritten as

uy(t) = W[ﬂl(t) - 6111(15) ) _ ga(¢)ef343(0)]
+D1(t)[62 -1 - 2% (2.2)
uy (£) .
(1) = +c21 (©)e2® ylaz(t) - “22(t) f212(1)] 4 Dz(t)[eu;u -1]- Zzz((g,
us(t) = W[ﬂs(ﬂ — az3(£)e”"30) — ag (£)er O] — —eHj;((’;;

Take

X=Z=\u=(u,uzus3)" € C(R,R?) 1 u;(t + T) = uy(t),i = 1,2,3}
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and define

|l#]] = max |u1(t)| + max |u2(t)| + max |u3(t) . u=(upuyus3) €XorZ.
te[0,T] te[0,T] te[0,T]

Equipped with the above norm || - ||, it is easy to verify that X and Z are Banach spaces.
Set

At 1) = |:k1(f) + (1= (t)e® ] [ﬂl(f) ~ ay (£)e?1® B )»0113(1«‘)663"3“)]

ki(8) + i (t)emr® ki(2) ki(2) ki(2)
eV Hi(?)
+)»D1(t)|:m— :I_W,

Aty t,2) = [kz(t) + (1= (t)e2? :| [ﬂz(t) B ﬂzz(f)eezuz(t)]

ka(t) + ca(t)e2® ky(t) ka(£)

e H(2)
* ADZ(t)Lm(t) - } T a0’
ks() + (1= Nes(0)es DT as(t)  ass()e™sV rag ()
Ag(l/l, t, )‘-) = — —
ks(t) + c3(t)ens® k3 (t) k3 (t) k(t)
H3(t)
T o3

For any u € X, because of the periodicity, we can easily check that A;(u, ¢, 1) € C(R% R)
(i=1,2,3) are T-periodic in ¢.
Let

L:domL={ueX:uecC(RR)}sur—>u €Z,
1 T
P:Xaut——>—/ u(t)dt € X,
T Jo
1 T
Q:ZBur——)—/ u(t)dt € Z,
T Jo
N:X % [0,1]5 (1) — (A8, 1), Ao, 1,2), As(,1,1)) " € Z.

Here, for any k € R3, we also identify it as the constant function in X or Z with the constant
value k. It is easy to see that

T
KerL = R, ImL = {u eX:/ u(t)dt=0,i= 1,2,3}
0
is closed in Z, dimKer L = codimIm L = 3, and P, Q are continuous projectors such that
ImP=KerlL, ImL =KerQ=1Im( - Q).

Therefore, L is a Fredholm mapping of index zero. On the other hand, K, : InL +—
dom L N Ker P has the form

K,(u) = /Otu(s) ds — % /OT/Otu(s)dsdt.
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Thus,

1 T 1 T 1 T T
QN(u,A) = <—/ Al(u,t,)»)dt,—/ Az(u,t,k)dt,—/ Ag(ll,t,)»)dt) ,
T Jo T Jo T Jo

Kp(I = QN (4, 1) = (1, £, 1), Do 1, 1), B3 (1,1, 1)),

where

t 1 T t
Di(u,t, 1) =f Aj(u, s, 1) ds — —/ / Aj(u,s,A) dsdt
0 T Jo Jo

t 1
(?‘5)f A 2)ds, j=1,2.3.

Obviously, QN and K,(I - Q)N are continuous. By the Arzela-Ascoli theorem, it is not
difficult to show that K,(I — Q)N(Q x [0,1]) is compact for any open bounded set Q C X.
Moreover, QN (2 x [0,1]) is bounded. Thus, N is L-compact on € x [0,1] with any open
bounded set 2 C X.

In order to apply Lemma 2.1, we need to find eight appropriate open, bounded subsets
Q;(i=12,...,8)in X.

Corresponding to the operator equation Lu = AN (u, A), A € (0,1), we have

(0) = )\|:k1(t) + (1= (t)ent :||:“1(t) ay () B )»ﬂls(t)693”3(t)]
! ki (2) + c1(£)ema® ki (2) ki(2) ki (2)
us (t)
+ 22Dy (t) [ ] - M;Illg), (2.3)
e
u%ﬂ—x[ 2(0) + (1~ kkﬂﬂﬂﬂt]rhﬁ)_anﬁk@”m}
2 ko (£) + ¢o(2)e2® ky(2) ko (2)
+ 22Dy (1) [ ] Agf((t) ) (2.4)
W(E) = k[ks(t) + (1= A)cs(t)es ][ﬂs(t) B azs(t)e?® B )»ﬂ:al(f)e@l”l(t)}
3 ks (t) + c3(t)e*s® ks (t) ks (t) ks (t)
B *e’;[:((tf), (2.5)

Suppose that (u;(t), us(£), u3(t))” is a T-periodic solution of (2.3), (2.4) and (2.5) for some
A €(0,1).
Choose tM,t" € [0, T], i = 1,2,3, such that

w; (1) = max u;(2), u;(t”) = min u;(¢), i=1,2,3.
() max. () (£") min, ()

Then it is clear that

w (") =0,  u(t)=0, i=12,3.
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From this and (2.3), (2.4), (2.5), we obtain that

0. [/q(t% +(1- x)cl(t{")em(’f”)]
Ki(64) + 1 (eM)e @

[“l(t{w) — ay ()l @ ~ Aalg(t{v[)e%%(tfw)]

ky (£ k()
2@ Hy(£M)
+AD1(t{W)[eul( 0 —1] o (2.6)
o [kz(ty) + (1= Wes(E))e2 @) } I:aZ(téw) ) am(ty)eezuzuy)]
Ky (E41) + ¢y (EM)e2®") ka(t5") ka(85")
e AGY)
+ )»Dz(téw)[euz%w) —1:| - o’ (2.7)
0= [kg(t% + (L= 2)es (e } |:ﬂs(f§w) _an(t)es 5 xasl(t%e@m(%”)}
ks(£)1) + c3(£M)es (D k(") ks (#") k(")
H;(t3")
- My (2.8)
and
0= [kl(tlm) +(1- A)01(7-‘{")6“1“{”)]
L k@) +aEnend
[al(t{”) —an (") @) (6 )}
k(8" k(&)
o [ €21 Hi(#")
+ ADy (t] )[eu1 @~ }— @ (2.9)
0- I:kz(tgq) +(1- A)cz(tg”)e”2(t5”) i| |:a2(t§”) ~ azz(tgn)eezuz(tg”)]
ko)) + co ())& ky(23") ky(23")
. et1(8") Hy ()
+ }\‘D2(t2 )|:eu2(t£n) - } - eu2(t£ﬂ) ’ (210)
_ [ka(té”) + (L= W)es (e ) :| |:613(f§”) as(ty)e>*(3) )~6131(t§n)391u1(t§n)]
ks (") + c3(£5)e3 ") ks (£5") ks (£57) ks (")
H3(t3")
R (2.11)
Claim A.

max{u (£)"), u2(£)")} <In Ny,

and

ug(téw) < iln(&>u =InN,.

03 ass

For u(t!) (i = 1,2), there are two cases to consider.

Page 8 of 17
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Case 1. Assume that u; (£M) > uy(£), then u (8M) > uy (£11).
From this and (2.6), we have

@ (8Y) - an (e 5 o

which implies

Grur (M) al(t{w) (ﬂ)u
¢ ) ﬂu(tfw) = '

That is,

Case 2. Assume that u; (£M) < uy(£7), then uy(£1) > uy (£7).
From this and (2.7), we have

() - an(B) ) >0,

which implies

u
eezuz(l‘g/l) < ﬂ2(t§/1) < (“2 ) ]

dzz(téw) N 61—22

That is,

u (87) <ux(8) < 1 ln(2>u <InNj.

&) a

Therefore,

max{u1 (), u2 (")} <In Ny (212)
For u3(£3"), it follows from (2.8) that

as(8) - ax (8)e54) >0,

which implies

us(£1) < iln(ﬁ>u = InN,. (2.13)

3 ass

Claim B.
wi(t") >Inu or w(£)) <lnu;, =123

and

wi(£") >Inu; or wi(£")<Inu;, i=1,2,3.

Page9of 17
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It follows from (2.6) that

|:k1(t{\4) +(1- )L)cl(t{v[)e”l(t{w) ] |:a1(t{w) an(t{\/f)eﬁul(tfw)] B Hl(t{VI)
eul(t{v[)

Ka(£1) + ¢y (EM)e @ KED) k)

- [kl(tM) + (1 - Aoy (EM)en @’ }alg(tM)eezus @)
Ky (E1) + ¢y (7)1 @ ke (£M1)
2@

en(@h

= 2Dy(0") s + D1 (8-

Therefore,

|:k1(tM) + (1=t

(e (] 2
ke (8)7) + e (8] )e“l ky e (6

[lq(tM)+(1 ey (EM)en @ }(m) <a3>”+Du
Ky (1) + ¢y (£M) 1@ ky as v

From this and noticing that

S1G) _ k@) +a- Men(E)en @
k(@) +a@hen@ T k(@) + e (e @

we have

kl(t{\/[) (ﬂ)l _ (@)ueﬁm(f{w) _ H{l
k(M) + a1 (t{w)eul(t{w) ki ky e (@)
a3 “ as “
<\ — ) +D¥,
( ki ) (6133) !

which implies

) ) o () e 2
k{ + Ci‘Nl k] k] as3 1 I(1 eul(t{v[)

From the assertion (1) of Lemma 2.3 and the above inequality, we have
w (8") >Inu;  or w(8)) <Inu;.

Similarly, from (2.9), we obtain
w (") >Inu;  or wi(8]") <Inuj.

By a similar argument, it follows from (2.7) that

ké a ! [75) 6 tM Hg
- £ Dt == huz( 2 0
|:kl + C2 (k2 2 k2 Z(téw) <

Page 10 of 17
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(2.15)
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From the assertion (1) of Lemma 2.3 and the above inequality, we have
w (B >nug  or (&) <Inu;. (2.16)
Similarly, from (2.10), we obtain
uy(8y) > Inug  or  uy(8)) <Inuj. (217)
By a similar argument, it follows from (2.8) and (2.12) that
i () - ()] () o= o
K + 4Ny \ k3 ks ! ks e

From the assertion (1) of Lemma 2.3 and the above inequality, we have

us (") >Inuf  or wus(8") <Inu;. (2.18)
Similarly, from (2.11), we obtain
us(ty) >Inuf  or  us(¢)) <Inuj. (2.19)
Claim C.
Ini; <u,(th)<lnl;’, i=1,2,3,
and
Inl; <u;(¢") <Inlf, i=1,2,3.

It follows from (2.6) that

|:k1(t{”) +(1- )")Cl(tM)eul ][al(t{”) ) au(t{v[)ealul(t{\’f)]
Ki(£¥) + e (8))e @D ki) Ky (£7)
N Hy(EM) - Dy (£

M
e”l(tl )

Hence, we have

ky K+ Ny k1 e

From the assertion (3) of Lemma 2.3 and the above inequality, we have
Inly <y (t{vl) <Inlf. (2.20)
Similarly, from (2.9), we obtain

Inly <wuy (") <Inlf. (2.21)
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By a similar argument, it follows from (2.7) that

ko K+ Ny \ Ky 2285

From the assertion (3) of Lemma 2.3 and the above inequality, we have
Inl; < uy(85") <Ini;.

Similarly, from (2.10), we obtain
Inly <u (&) <Inlj.

By a similar argument, it follows from (2.8) that

l
(@)u_ ks (@) s Hs o
ks k:l), + C;Nz k3 eua(té,"[)

From the assertion (3) of Lemma 2.3 and the above inequality, we have

Inly <us(8)") <Ini3.
Similarly, from (2.11), we obtain
Inl; <us(ty') <Inij.
It follows from (2.14), (2.15), (2.20), (2.21) that

u (8") € (Inf;,Inu;) U (Inug, In 1),

u (") € (Infy,Inuy) U (Inug, Inif).
It follows from (2.16), (2.17), (2.22), (2.23) that

u (") € (Inl3,Inu;) U (Inuj, Inl3),

up (t)') € (Inly,Inu;) U (Inuy, Inly).
It follows from (2.18), (2.19), (2.24), (2.25) that

uz(8)') € (Inf5,Inuz) U (Inui, Inl3),

uz(ty') € (Inl3,Inuz) U (Inuj, Inlf).

Page 12 of 17

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)
(2.27)

(2.28)
(2.29)

(2.30)

(2.31)

Clearly, I, ui" (i = 1,2,3) are independent of 1. Now, let us consider QN (u,0) with u =

(1, u2,u3)T € R®. Note that

1 1
QNG,0) = | () - (e —
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Letting QN (u,0) = 0, we have

i _ an (91%1_&:0 2.32
<k1> (k> Moo (232)
G\ _ (422 92%2_@:0 2.33
<k2> (k) ™o, (233)
43\ _ (%33 93143_&:() 2.34
(ks) <k3)e o =0 (2.34)

Therefore, it follows from the assertion (2) of Lemma 2.3 that QN (,0) = 0 has eight dis-
tinct solutions:

i = (lnx{’,lnxg,lnxg)T, Uy = (lnxf,lnx;,lnxg)T, (2.35)
i3 = (lnxl‘,lnx;,lnx;)T, iy = (lnxl‘,lnx;,lnx;)T, (2.36)
i5 = (Inxj,Inx, Inx;) r llg = (lnxl*,lnxg,lnxg)T, (2.37)
iy = (lnx[,lnxg,lnxg)T, g = (lnx[,lnx;,lnx;)T. (2.38)

Let

maxejo,7] #1(t) € (Inuf,Inlf),
mingeo,r) #1(2) € (Inuf,Inlf),
max;epo,7] 42(¢) € (Inul,Inl3),
Qi =u=(u,u,u)’ €X| ) v
mingeqo, 7 #2(t) € (Inuy,Inly),
maXze(o,7] l/lg(t) € (111 M;, In l;),

mingepo,r) 4s(t) € (Inuj, Inly).

maxeo,7) #1(t) € (Inuf,Inly),
mingeo, 7 #1(2) € (Inwf, Inly),
maxejo,7] 42 (t) € (Inl;, Inuy),
Q= u=,uu)" €X| | o )
mingepo, 1) #2(t) € (Inl;, Inuy),
maXge[o,7) I/lg(t) (S (lll ug,ln l;),

mingepo, 1 #3(t) € (Inuj, Inl}).

maxeo,7) #1(t) € (Inly,Inug),
mingeo, 7 #1(2) € (Infy, Inuy),
maxejo,7] 42(t) € (Inuj,Inl3),
Q3={u=(u,upus)’ eX| | - )
mingepo, ) 42(t) € (Inuj,Inly),
maxefo,r) Us(t) € (Inuj,Inl),

mingepo, 1) #3(t) € (Inu3, Inl}).

maxeo,7) #1(t) € (Inly,Inug),
mingeo, 7 #1(2) € (Infy, Inuy),
maxejo,7) 42(t) € (Inl;, Inuy),
Qa=u=(,uu) €eX| | : _2 _2 )
mingeo,7) 42(t) € (Inl3,Inu3),

max;efo,7) 43(t) € (Inui,Inl),

mingepo, 1) #3(t) € (Inu3,Inl}).
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maxejo,r] #1(t) € (Inuf,Inlf),
mingepo,r) #1(¢) € (Inuf,Inlf),
maxe(o,r) 42(¢) € (Inu3,1nl3),
Q5= u=(u,uu3)’ €X| -
mingeqo,r) #2(t) € (Inuy,Inly),
maxeo,7] Us(t) € (Inls, Inuz),

mingeo, ) #3(t) € (Inf3,Inu3).

maxeo,7) #1(t) € (Inuf,Inly),
mingeo, 7 #1(2) € (Inwg, Inly),
maxejo,7] 42(t) € (Inl;, Inuy),
Q6 =\u= (er U, u?))T eX . © _2 —2 ’
mingepo, 1) #2(t) € (Inl;, Inuy),
maxefo,7) Us(t) € (Inls, Inuz),

mingeo, 1 #3(t) € (Inl3, Inug).

maxqefo,r) #1(t) € (Inly, Inuy),
mingepo,r) #1(¢) € (Inly, Inuy),
maxeo,7) 42(t) € (Inuj,1nl3),
Q7 = M=(M1,M2,M3)TEX . + + ’
mingepo,7) 42(t) € (Inuj,Inly),
maxefo,r] #s(t) € (Inls, Inuz),

mingepo, ) #3(t) € (Inf3,Inu3).

maxeo,7) #1(t) € (Inly, Inug),
mingeo, 7 #1(2) € (Infy, Inuy),
maxefo,7) 42(t) € (Inl;, Inuy),
QS = M=(M1,M2,M3)T€X . © _2 _2
minefo, 7y 42(t) € (Inly, Inus),

maXefo,r) Us(t) € (Inls, Inuz),

mingepo, 1) #3(t) € (Inl3, Inug).

Then 1,2, ..., Qg are bounded open subsets of X. It follows from (2.1) and (2.35)-(2.38)
that it; € Q; (i=1,2,...,8). From (2.1), (2.26)-(2.31), it is easy to see that Q; N Q; =@ (i,j =
1,2,...,8, i #j) and ; satisfies (a) in Lemma 2.1 for i =1,2,...,8. Moreover, QN («,0) # 0

for u € 0€2; N Ker L. By Lemma 2.2, a direct computation gives

]QN(, 0)|KerL, Ql n KCI'L, 0

-1, degz{/QN(-0)lkerz, 22 NKerL,0} =1,
JON(-,0)|kerz, 23 NKerL,0} =1, degz{/QN(:,0)IKkerz, Qs NKerL,0} = -1,
1;

1’ degB {]QN(’ 0)|KerL; QG n KCI'L, O} = _1,

}
J
}
J

JQN(-,0)|kerz, 27 N Ker L, 0

degB{]QN(')O”KerLr QS N KGI'L,O} =1.

Here, ] is taken as the identity mapping since Im Q = Ker L. So far we have proved that
Q; satisfies all the assumptions in Lemma 2.1. Hence, (2.2) has at least eight T-periodic
solutions (u!(2), u}y(¢), us(t))T (i = 1,2,...,8) and (L_ti,ué,ué)T € domL N Q;. Obviously,
(ud, ub, ub)T (i=1,2,...,8) are different. Letx;(t) = (7=1,2),y(t) = 50 (i=1,2,...,8).
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Then (¥} (£), %5(2), ¥ ()" (i=1,2,
(1.1). The proof is complete.

.,8) are eight different positive T-periodic solutions of

O

Corollary 2.1 Inaddition to (H1), (Hs), assume further that the following conditions hold:

(Hy)" kl+c“N ( )l (ﬂ13 u(::g )+ D¥ + (“11 “ 4 HY.
KL , )

(HS) /<2+022N1(Z ) >D (kL) +H

(H4) ( )l (a?’l )”Ngl + (‘133 )u +Hu

+C"N

Then system (1.1) has at least eight positive T-periodic solutions.

Proof By Lemma 2.4, we have

(1+9)[(ﬂu)”}“9 [H} 9 - (ﬂ)u”{u
k,' Gi - kl‘ P

i=1,2,3.

Therefore, the conditions in Theorem 2.1 are satisfied. O

Example 2.2 In (1.1), take

T=4, 6, =0,=0;=0.5,
ki(t) = 4 + sin(0.57¢t), ko(t) = 3 + sin(0.57¢), k3(t) = 1.5 + 0.5sin(0.57t),
1+ sin?(0.57¢
()= 0.02 4 0.025in(0578) (=1,2,3),  Dy(t) = Dy(t) = S (057D
2000
1 + sin?(0.57¢) 1+ sin?(0.57t) 1 + sin?(0.57¢)
H(t)= —————, H{t)=———, Hi(t)=———,
24 15 200
4 +sin(0.5m£)]?
ai(t) = [4 + sin(O.Snt)]z, an(t) = M,
[4 + sin(0.57t)]?
= ———,
ai3(t) 40
3 0.5t
a(t) = [3 + sin(O.Smf)]z, ann(t) = M,
1.5 + 0.5sin(0.57¢
as(t) = [1.5 +0.5 sin(O.Srrt)]z, ass(t) = L5+ s;n( il ,
" [1.5 + 0.5sin(0.57£)]?

a = .

3 200

Then we have

k=3 k=2 k=1 “=0.04 (i=1,2,3) Dropro L

159 2= 4% 3= 4L i : 1£19) 1 277000
He- 2 He = 2 HY= H -2 H -2

DY 2715’ 37100’ 1794’ 2715’
Nl = 25, N2 = 25,

l u
ay ai
- = 3; - = 1;
<h> (h)

(ﬂlg u_ 1
k) 8

Page 15 0f 17
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Therefore,

u u u
ﬂ _2 >2 43 & + D} + 4 +H”—g+—1 <2
k’ + Ny \ ki T30 k as3 K 1724 " 1000 7
4 “ 14 1
( ) 3 >1, D§‘+(?) +Hy = —+——«<1,
Kb+ Ny \ ko ky 15 " 1000

u u
as asy 6 ass
By -2, L) N+ (52 ) +HY =046,
+Cg (k> 2 (k3> ! (ks) :

DMN1—40, i=1,2.

Hence, the conditions in Corollary 2.1 are satisfied. By Corollary 2.1, system (1.1) has at

least eight positive four-periodic solutions.
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