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Abstract
By using Mawhin’s coincidence degree theory and some inequality techniques, this
paper establishes a new sufficient condition on the existence of at least eight positive
periodic solutions for a food-limited two-species Gilpin-Ayala competition patch
system with periodic harvesting terms. An example is given to illustrate the
effectiveness of the result.

1 Introduction
In the past years, the study of population dynamics with harvesting in mathematical bioe-
conomics, due to its theoretical and practical significance in the optimal management
of renewable resources, has attracted much attention [–]. Huusko and Hyvarinen in []
pointed out that ‘the dynamics of exploited populations are clearly affected by recruitment
and harvesting, and the changes in harvesting induced a tendency to generation cycling in
the dynamics of a freshwater fish population.’ Recently, some researchers have paid much
attention to the investigation of harvesting-induced multiple positive periodic solutions
for some population systems under the assumption of periodicity of the parameters by
using Mawhin’s coincidence degree theory [–]. In , Gilpin and Ayala in [] firstly
proposed and studied a few Gilpin-Ayala type competition models. Since then, many pa-
pers have been published on the dynamics of Gilpin-Ayala type competition models (for
example, see [–]).
In this paper, we consider a food-limited two-species Gilpin-Ayala competition patch

system with harvesting terms:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x′
(t) =

x(t)
k(t)+c(t)x(t)

[a(t) – a(t)xθ
 (t) – a(t)yθ (t)]

+D(t)[x(t) – x(t)] –H(t),

x′
(t) =

x(t)
k(t)+c(t)x(t)

[a(t) – a(t)xθ
 (t)] +D(t)[x(t) – x(t)] –H(t),

y′(t) = y(t)
k(t)+c(t)y(t)

[a(t) – a(t)yθ (t) – a(t)xθ
 (t)] –H(t),

(.)

where x and y are the population densities of species x and y in patch , and x is the
density of species x in patch . Species y is confined to patch , while species x can dif-
fuse between two patches due to the spatial heterogeneity and unbalanced food resources.
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Di(t) (i = , ) are diffusion coefficients of species x. a(t) (a(t)) is the natural growth rate
of species x in patch  (patch ), a(t) is the natural growth rate of species y, a(t), a(t)
are the inter-species competition coefficients. aii(t) (i = , , ) are the density-dependent
coefficients. ki(t) (i = , ) are the population numbers of species x at saturation in patch 
(patch ), and k(t) is the population number of species y at saturation in patch , respec-
tively. Hi(t) (i = , , ) denote the harvesting rates. θi (i = , , ) represent a nonlinear
measure of interspecific interference. When ci(t) �=  (i = , , ), ai(t)

ki(t)ci(t)
(i = , , ) are the

rate of replacement of mass in the population at saturation (including the replacement of
metabolic loss and of dead organisms). In this case, system (.) is a food-limited popula-
tion model. For other food-limited population models, we refer to [–].
To our knowledge, few papers have been published on the existence of multiple positive

periodic solutions forGilpin-Ayala type competition patchmodels.Motivated by thework
of Chen [], we study the existence ofmultiple positive periodic solutions of (.) by using
Mawhin’s coincidence degree theory. Since system (.) involves the diffusion terms, the
rates of replacement and the interspecific interference, the methods used in [–] are not
available to system (.).

2 Existence of multiple positive periodic solutions
For the sake of convenience and simplicity, we denote

ḡ =

T

∫ T


g(t)dt, gl = min

t∈[,T]
g(t), gu = max

t∈[,T]
g(t),

where g is a nonnegative continuous T-periodic function.
Set

N =max

{[(
a
a

)u]/θ
,
[(

a
a

)u]/θ}
, N =

[(
a
a

)u]/θ
.

From now on, we always assume that

(H) ki(t), ai(t), aii(t), Hi(t), ci(t) (i = , , ), a(t), a(t), Di(t) (i = , ) are positive con-
tinuous T-periodic functions. θi (i = , , ) are positive constants.

(H)
kl

kl+c
u
N

( ak )
l > ( ak )

u( a
a

)u +Du
 + ( + θ)[( ak )

u]


+θ [H
u


θ
]

θ
+θ .

(H)
kl

kl+c
u
N

( ak )
l >Du

 + ( + θ)[( ak )
u]


+θ [H

u


θ
]

θ
+θ .

(H)
kl

kl+c
u
N

( ak )
l > ( ak

)uNθ
 + ( + θ)[( ak )

u]


+θ [H
u


θ
]

θ
+θ .

(H) Hl
i >Du

i N (i = , ).

We first make the following preparations [].
Let X, Z be normed vector spaces, L : domL ⊂ X → Z be a linear mapping, N : X ×

[, ] → Z be a continuous mapping. The mapping L will be called a Fredholm mapping
of index zero if dimKerL = codim ImL < +∞ and ImL is closed in Z. If L is a Fredholm
mapping of index zero, then there exist continuous projectors P : X → X and Q : Z → Z
such that ImP = KerL, ImL = KerQ = Im(I – Q). If we define LP : domL ∩ KerP → ImL
as the restriction L|domL∩KerP of L to domL ∩ KerP, then LP is invertible. We denote the
inverse of that map by KP . If � is an open bounded subset of X, the mapping N will be
called L-compact on �̄×[, ] ifQN(�̄×[, ]) is bounded andKP(I–Q)N : �̄×[, ] → X
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is compact, i.e., continuous and such that KP(I – Q)N(�̄ × [, ]) is relatively compact.
Since ImQ is isomorphic to KerL, there exists an isomorphism J : ImQ→KerL.
For convenience, we introduce Mawhin’s continuation theorem [, p.] as follows.

Lemma . Let L be a Fredholm mapping of index zero and let N : �̄ × [, ] → Z be
L-compact on �̄ × [, ]. Suppose
(a) Lu �= λN(u,λ) for every u ∈ domL∩ ∂� and every λ ∈ (, );
(b) QN(u, ) �=  for every u ∈ ∂� ∩KerL;
(c) Brouwer degree degB(JQN(·, )|KerL,� ∩KerL, ) �= .

Then Lu =N(u, ) has at least one solution in domL∩ �̄.

Set

h(x) = b – axα –
c
x
, x ∈ (, +∞).

Lemma . Assume that a, b, c, α are positive constants and

b > ( + α)a


+α

(
c
α

) α
+α

.

Then there exist  < x– < x+ such that

h
(
x–

)
= h

(
x+

)
= ,

h(x) >  for x ∈ (
x–,x+

)
, h(x) <  for x ∈ (

,x–
) ∪ (

x+, +∞)
,

h′(x–) > , h′(x+) < .

Proof Since

h′(x) = –aαxα– +
c
x

= , x ∈ (, +∞)

implies that

x =
(

c
aα

) 
+α

,

we have

sup
x∈(,+∞)

h(x) = b – a
(

c
aα

) α
+α

–
c

( c
aα )


+α

= b – ( + α)a


+α

(
c
α

) α
+α

> .

From this, it is easy to see that the assertion holds.
Set

M(x) =
[

kl
kl + cuN

(
a
k

)l

–
(
a
k

)u( a
a

)u

–Du


]

–
(
a
k

)u

xθ –
Hu


x
, x ∈ (, +∞),
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M(x) =
[

kl
kl + cuN

(
a
k

)l

–Du


]
–

(
a
k

)u

xθ –
Hu


x
, x ∈ (, +∞),

M(x) =
[

kl
kl + cuN

(
a
k

)l

–
(
a
k

)u

Nθ


]
–

(
a
k

)u

xθ –
Hu


x
, x ∈ (, +∞),

pi(x) =
(
ai
ki

)
–

(
aii
ki

)
xθi –

H̄i

x
(i = , , ),x ∈ (, +∞),

mi(x) =
(
ai
ki

)u

–
kli

kli + cui N

(
aii
ki

)l

xθi –
Hl

i –Du
i N

x
(i = , ),x ∈ (, +∞),

m(x) =
(
a
k

)u

–
kl

kl + cuN

(
a
k

)l

xθ –
Hl


x
, x ∈ (, +∞). �

Lemma . Assume that (H)-(H) hold. Then the following assertions hold:
() There exist  < u–i < u+i such that

Mi
(
u–i

)
=Mi

(
u+i

)
= ,

and

Mi(x) >  for x ∈ (
u–i ,u

+
i
)
, Mi(x) <  for x ∈ (

,u–i
) ∪ (

u+i , +∞)
, i = , , .

() There exist  < x–i < x+i such that

pi
(
x–i

)
= pi

(
x+i

)
= ,

and

pi(x) >  for x ∈ (
x–i ,x

+
i
)
, pi(x) <  for x ∈ (

,x–i
) ∪ (

x+i , +∞)
, i = , , .

() There exist  < l–i < l+i such that

mi
(
l–i

)
=mi

(
l+i

)
= ,

and

mi(x) >  for x ∈ (
l–i , l

+
i
)
, mi(x) <  for x ∈ (

, l–i
) ∪ (

l+i , +∞)
, i = , , .

()

l–i < x–i < u–i < u+i < x+i < l+i , i = , , . (.)

Proof It follows from (H)-(H) and Lemma . that the assertions ()-() hold. Noticing
that

kli
kli + cui N

(
aii
ki

)l

<
(
aii
ki

)
≤

(
aii
ki

)u

(i = , ),
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kl
kl + cuN

(
a
k

)l

<
(
a
k

)
≤

(
a
k

)u

,

kl
kl + cuN

(
a
k

)l

–
(
a
k

)u( a
a

)u

–Du
 <

(
a
k

)
≤

(
a
k

)u

,

kl
kl + cuN

(
a
k

)l

–Du
 <

(
a
k

)
≤

(
a
k

)u

,

kl
kl + cuN

(
a
k

)l

–
(
a
k

)u

Nθ
 <

(
a
k

)
≤

(
a
k

)u

,

Hl
i –Du

i N < H̄i ≤ Hu
i (i = , ),

Hl
 ≤ H̄ ≤ Hu

 ,

we have

mi(x) < pi(x) <Mi(x), i = , , .

It follows from this and the assertions ()-() that the assertion () also holds. �

Lemma . [] Assume that x ≥ , y ≥ , p > , q > , and 
p +


q = . Then the following

inequality holds:

x

p y


q ≤ x

p
+
y
q
.

Now, we are ready to state the following main result of this paper.

Theorem . Assume that (H)-(H) hold. Then system (.) has at least eight positive
T-periodic solutions.

Proof Since we are concerned with positive solutions of (.), we make the change of vari-
ables

xj(t) = euj(t) (j = , ), y(t) = eu(t).

Then (.) is rewritten as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

u′
(t) =


k(t)+c(t)eu(t)

[a(t) – a(t)eθu(t) – a(t)eθu(t)]

+D(t)[ e
u(t)

eu(t)
– ] – H(t)

eu(t)
,

u′
(t) =


k(t)+c(t)eu(t)

[a(t) – a(t)eθu(t)] +D(t)[ e
u(t)

eu(t)
– ] – H(t)

eu(t)
,

u′
(t) =


k(t)+c(t)eu(t)

[a(t) – a(t)eθu(t) – a(t)eθu(t)] – H(t)
eu(t)

.

(.)

Take

X = Z =
{
u = (u,u,u)T ∈ C

(
R,R) : ui(t + T) = ui(t), i = , , 

}
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and define

‖u‖ = max
t∈[,T]

∣∣u(t)∣∣ + max
t∈[,T]

∣∣u(t)∣∣ + max
t∈[,T]

∣∣u(t)∣∣, u = (u,u,u)T ∈ X or Z.

Equipped with the above norm ‖ · ‖, it is easy to verify that X and Z are Banach spaces.
Set

�(u, t,λ) =
[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

][
a(t)
k(t)

–
a(t)eθu(t)

k(t)
–

λa(t)eθu(t)

k(t)

]

+ λD(t)
[
eu(t)

eu(t)
– 

]
–
H(t)
eu(t)

,

�(u, t,λ) =
[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

][
a(t)
k(t)

–
a(t)eθu(t)

k(t)

]

+ λD(t)
[
eu(t)

eu(t)
– 

]
–
H(t)
eu(t)

,

�(u, t,λ) =
[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

][
a(t)
k(t)

–
a(t)eθu(t)

k(t)
–

λa(t)eθu(t)

k(t)

]

–
H(t)
eu(t)

.

For any u ∈ X, because of the periodicity, we can easily check that �i(u, t,λ) ∈ C(R,R)
(i = , , ) are T-periodic in t.
Let

L : domL =
{
u ∈ X : u ∈ C

(
R,R)}  u �–→ u′ ∈ Z,

P : X  u �–→ 
T

∫ T


u(t)dt ∈ X,

Q : Z  u �–→ 
T

∫ T


u(t)dt ∈ Z,

N : X × [, ]  (u,λ) �–→ (
�(u, t,λ),�(u, t,λ),�(u, t,λ)

)T ∈ Z.

Here, for any k ∈ R, we also identify it as the constant function inX orZ with the constant
value k. It is easy to see that

KerL = R, ImL =
{
u ∈ X :

∫ T


ui(t)dt = , i = , , 

}

is closed in Z, dimKerL = codim ImL = , and P, Q are continuous projectors such that

ImP =KerL, ImL =KerQ = Im(I –Q).

Therefore, L is a Fredholm mapping of index zero. On the other hand, Kp : ImL �–→
domL∩KerP has the form

Kp(u) =
∫ t


u(s)ds –


T

∫ T



∫ t


u(s)dsdt.

http://www.journalofinequalitiesandapplications.com/content/2012/1/291
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Thus,

QN(u,λ) =
(

T

∫ T


�(u, t,λ)dt,


T

∫ T


�(u, t,λ)dt,


T

∫ T


�(u, t,λ)dt

)T

,

Kp(I –Q)N(u,λ) =
(
�(u, t,λ),�(u, t,λ),�(u, t,λ)

)T ,

where

�j(u, t,λ) =
∫ t


�j(u, s,λ)ds –


T

∫ T



∫ t


�j(u, s,λ)dsdt

–
(
t
T

–



)∫ T


�j(u, s,λ)ds, j = , , .

Obviously, QN and Kp(I – Q)N are continuous. By the Arzela-Ascoli theorem, it is not
difficult to show that Kp(I –Q)N(� × [, ]) is compact for any open bounded set � ⊂ X.
Moreover, QN(�̄ × [, ]) is bounded. Thus, N is L-compact on �̄ × [, ] with any open
bounded set � ⊂ X.
In order to apply Lemma ., we need to find eight appropriate open, bounded subsets

�i (i = , , . . . , ) in X.
Corresponding to the operator equation Lu = λN(u,λ), λ ∈ (, ), we have

u′
(t) = λ

[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

][
a(t)
k(t)

–
a(t)eθu(t)

k(t)
–

λa(t)eθu(t)

k(t)

]

+ λD(t)
[
eu(t)

eu(t)
– 

]
–

λH(t)
eu(t)

, (.)

u′
(t) = λ

[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

][
a(t)
k(t)

–
a(t)eθu(t)

k(t)

]

+ λD(t)
[
eu(t)

eu(t)
– 

]
–

λH(t)
eu(t)

, (.)

u′
(t) = λ

[
k(t) + ( – λ)c(t)eu(t)

k(t) + c(t)eu(t)

][
a(t)
k(t)

–
a(t)eθu(t)

k(t)
–

λa(t)eθu(t)

k(t)

]

–
λH(t)
eu(t)

. (.)

Suppose that (u(t),u(t),u(t))T is a T-periodic solution of (.), (.) and (.) for some
λ ∈ (, ).
Choose tMi , tmi ∈ [,T], i = , , , such that

ui
(
tMi

)
= max

t∈[,T]
ui(t), ui

(
tmi

)
= min

t∈[,T]
ui(t), i = , , .

Then it is clear that

u′
i
(
tMi

)
= , u′

i
(
tmi

)
= , i = , , .

http://www.journalofinequalitiesandapplications.com/content/2012/1/291
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From this and (.), (.), (.), we obtain that

 =
[
k(tM ) + ( – λ)c(tM )eu(tM )

k(tM ) + c(tM )eu(tM )

]

×
[
a(tM ) – a(tM )eθu(tM )

k(tM )
–

λa(tM )eθu(tM )

k(tM )

]

+ λD
(
tM

)[eu(tM )

eu(tM )
– 

]
–
H(tM )
eu(tM )

, (.)

 =
[
k(tM ) + ( – λ)c(tM )eu(tM )

k(tM ) + c(tM )eu(tM )

][
a(tM )
k(tM )

–
a(tM )eθu(tM )

k(tM )

]

+ λD
(
tM

)[ eu(tM )

eu(tM )
– 

]
–
H(tM )
eu(tM )

, (.)

 =
[
k(tM ) + ( – λ)c(tM )eu(tM )

k(tM ) + c(tM )eu(tM )

][
a(tM )
k(tM )

–
a(tM )eθu(tM )

k(tM )
–

λa(tM )eθu(tM )

k(tM )

]

–
H(tM )
eu(tM )

, (.)

and

 =
[
k(tm ) + ( – λ)c(tm )eu(t

m
 )

k(tm ) + c(tm )eu(t
m
 )

]

×
[
a(tm ) – a(tm )eθu(tm )

k(tm )
–

λa(tm )eθu(tm )

k(tm )

]

+ λD
(
tm

)[eu(tm )

eu(tm ) – 
]
–
H(tm )
eu(tm ) , (.)

 =
[
k(tm ) + ( – λ)c(tm )eu(t

m
 )

k(tm ) + c(tm )eu(t
m
 )

][
a(tm )
k(tm )

–
a(tm )eθu(tm )

k(tm )

]

+ λD
(
tm

)[ eu(tm )

eu(tm ) – 
]
–
H(tm )
eu(tm ) , (.)

 =
[
k(tm ) + ( – λ)c(tm )eu(t

m
 )

k(tm ) + c(tm )eu(t
m
 )

][
a(tm )
k(tm )

–
a(tm )eθu(tm )

k(tm )
–

λa(tm )eθu(tm )

k(tm )

]

–
H(tm )
eu(tm ) . (.)

Claim A.

max
{
u

(
tM

)
,u

(
tM

)}
< lnN,

and

u
(
tM

)
<


θ

ln

(
a
a

)u

= lnN.

For u(tMi ) (i = , ), there are two cases to consider.

http://www.journalofinequalitiesandapplications.com/content/2012/1/291
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Case . Assume that u(tM ) ≥ u(tM ), then u(tM ) ≥ u(tM ).
From this and (.), we have

a
(
tM

)
– a

(
tM

)
eθu(tM ) > ,

which implies

eθu(tM ) <
a(tM )
a(tM )

≤
(
a
a

)u

.

That is,

u
(
tM

) ≤ u
(
tM

)
<


θ

ln

(
a
a

)u

≤ lnN.

Case . Assume that u(tM ) < u(tM ), then u(tM ) > u(tM ).
From this and (.), we have

a
(
tM

)
– a

(
tM

)
eθu(tM ) > ,

which implies

eθu(tM ) <
a(tM )
a(tM )

≤
(
a
a

)u

.

That is,

u
(
tM

)
< u

(
tM

)
<


θ

ln

(
a
a

)u

≤ lnN.

Therefore,

max
{
u

(
tM

)
,u

(
tM

)}
< lnN. (.)

For u(tM ), it follows from (.) that

a
(
tM

)
– a

(
tM

)
eθu(tM ) > ,

which implies

u
(
tM

)
<


θ

ln

(
a
a

)u

= lnN. (.)

Claim B.

ui
(
tMi

)
> lnu+i or ui

(
tMi

)
< lnu–i , i = , , 

and

ui
(
tmi

)
> lnu+i or ui

(
tmi

)
< lnu–i , i = , , .
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It follows from (.) that

[
k(tM ) + ( – λ)c(tM )eu(tM )

k(tM ) + c(tM )eu(tM )

][
a(tM )
k(tM )

–
a(tM )eθu(tM )

k(tM )

]
–
H(tM )
eu(tM )

= λ

[
k(tM ) + ( – λ)c(tM )eu(tM )

k(tM ) + c(tM )eu(tM )

]
a(tM )eθu(tM )

k(tM )

– λD
(
tM

)eu(tM )

eu(tM )
+ λD

(
tM

)
.

Therefore,

[
k(tM ) + ( – λ)c(tM )eu(tM )

k(tM ) + c(tM )eu(tM )

][(
a
k

)l

–
(
a
k

)u

eθu(tM )
]
–

Hu


eu(tM )

<
[
k(tM ) + ( – λ)c(tM )eu(tM )

k(tM ) + c(tM )eu(tM )

](
a
k

)u( a
a

)u

+Du
 .

From this and noticing that

k(tM )
k(tM ) + c(tM )eu(tM )

≤ k(tM ) + ( – λ)c(tM )eu(tM )

k(tM ) + c(tM )eu(tM )
≤ ,

we have

k(tM )
k(tM ) + c(tM )eu(tM )

(
a
k

)l

–
(
a
k

)u

eθu(tM ) –
Hu



eu(tM )

<
(
a
k

)u( a
a

)u

+Du
 ,

which implies

[
kl

kl + cuN

(
a
k

)l

–
(
a
k

)u( a
a

)u

–Du


]
–

(
a
k

)u

eθu(tM ) –
Hu



eu(tM )
< .

From the assertion () of Lemma . and the above inequality, we have

u
(
tM

)
> lnu+ or u

(
tM

)
< lnu– . (.)

Similarly, from (.), we obtain

u
(
tm

)
> lnu+ or u

(
tm

)
< lnu– . (.)

By a similar argument, it follows from (.) that

[
kl

kl + cuN

(
a
k

)l

–Du


]
–

(
a
k

)u

eθu(tM ) –
Hu



eu(tM )
< .
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From the assertion () of Lemma . and the above inequality, we have

u
(
tM

)
> lnu+ or u

(
tM

)
< lnu– . (.)

Similarly, from (.), we obtain

u
(
tm

)
> lnu+ or u

(
tm

)
< lnu– . (.)

By a similar argument, it follows from (.) and (.) that

[
kl

kl + cuN

(
a
k

)l

–
(
a
k

)u

Nθ


]
–

(
a
k

)u

eθu(tM ) –
Hu



eu(tM )
< .

From the assertion () of Lemma . and the above inequality, we have

u
(
tM

)
> lnu+ or u

(
tM

)
< lnu– . (.)

Similarly, from (.), we obtain

u
(
tm

)
> lnu+ or u

(
tm

)
< lnu– . (.)

Claim C.

ln l–i < ui
(
tMi

)
< ln l+i , i = , , ,

and

ln l–i < ui
(
tmi

)
< ln l+i , i = , , .

It follows from (.) that

[
k(tM ) + ( – λ)c(tM )eu(tM )

k(tM ) + c(tM )eu(tM )

][
a(tM )
k(tM )

–
a(tM )eθu(tM )

k(tM )

]

>
H(tM ) –D(tM )eu(tM )

eu(tM )
.

Hence, we have

(
a
k

)u

–
kl

kl + cuN

(
a
k

)l

eθu(tM ) –
Hl

 –Du
N

eu(tM )
> .

From the assertion () of Lemma . and the above inequality, we have

ln l– < u
(
tM

)
< ln l+ . (.)

Similarly, from (.), we obtain

ln l– < u
(
tm

)
< ln l+ . (.)

http://www.journalofinequalitiesandapplications.com/content/2012/1/291
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By a similar argument, it follows from (.) that

(
a
k

)u

–
kl

kl + cuN

(
a
k

)l

eθu(tM ) –
Hl

 –Du
N

eu(tM )
> .

From the assertion () of Lemma . and the above inequality, we have

ln l– < u
(
tM

)
< ln l+ . (.)

Similarly, from (.), we obtain

ln l– < u
(
tm

)
< ln l+ . (.)

By a similar argument, it follows from (.) that

(
a
k

)u

–
kl

kl + cuN

(
a
k

)l

eθu(tM ) –
Hl



eu(tM )
> .

From the assertion () of Lemma . and the above inequality, we have

ln l– < u
(
tM

)
< ln l+ . (.)

Similarly, from (.), we obtain

ln l– < u
(
tm

)
< ln l+ . (.)

It follows from (.), (.), (.), (.) that

u
(
tM

) ∈ (
ln l– , lnu

–

) ∪ (

lnu+ , ln l
+

)
, (.)

u
(
tm

) ∈ (
ln l– , lnu

–

) ∪ (

lnu+ , ln l
+

)
. (.)

It follows from (.), (.), (.), (.) that

u
(
tM

) ∈ (
ln l– , lnu

–

) ∪ (

lnu+ , ln l
+

)
, (.)

u
(
tm

) ∈ (
ln l– , lnu

–

) ∪ (

lnu+ , ln l
+

)
. (.)

It follows from (.), (.), (.), (.) that

u
(
tM

) ∈ (
ln l– , lnu

–

) ∪ (

lnu+ , ln l
+

)
, (.)

u
(
tm

) ∈ (
ln l– , lnu

–

) ∪ (

lnu+ , ln l
+

)
. (.)

Clearly, l±i , u
±
i (i = , , ) are independent of λ. Now, let us consider QN(u, ) with u =

(u,u,u)T ∈ R. Note that

QN(u, ) =

⎛
⎜⎜⎝
( ak ) – ( ak )e

θu – H̄
eu

( ak ) – ( ak )e
θu – H̄

eu

( ak ) – ( ak )e
θu – H̄

eu

⎞
⎟⎟⎠ .
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Letting QN(u, ) = , we have
(
a
k

)
–

(
a
k

)
eθu –

H̄

eu
= , (.)

(
a
k

)
–

(
a
k

)
eθu –

H̄

eu
= , (.)

(
a
k

)
–

(
a
k

)
eθu –

H̄

eu
= . (.)

Therefore, it follows from the assertion () of Lemma . that QN(u, ) =  has eight dis-
tinct solutions:

ũ =
(
lnx+ , lnx

+
 , lnx

+

)T , ũ =

(
lnx+ , lnx

–
 , lnx

+

)T , (.)

ũ =
(
lnx– , lnx

+
 , lnx

+

)T , ũ =

(
lnx– , lnx

–
 , lnx

+

)T , (.)

ũ =
(
lnx+ , lnx

+
 , lnx

–

)T , ũ =

(
lnx+ , lnx

–
 , lnx

–

)T , (.)

ũ =
(
lnx– , lnx

+
 , lnx

–

)T , ũ =

(
lnx– , lnx

–
 , lnx

–

)T . (.)

Let

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = (u,u,u)T ∈ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maxt∈[,T] u(t) ∈ (lnu+ , ln l+ ),
mint∈[,T] u(t) ∈ (lnu+ , ln l+ ),
maxt∈[,T] u(t) ∈ (lnu+ , ln l+ ),
mint∈[,T] u(t) ∈ (lnu+ , ln l+ ),
maxt∈[,T] u(t) ∈ (lnu+ , ln l+ ),
mint∈[,T] u(t) ∈ (lnu+ , ln l+ ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = (u,u,u)T ∈ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maxt∈[,T] u(t) ∈ (lnu+ , ln l+ ),
mint∈[,T] u(t) ∈ (lnu+ , ln l+ ),
maxt∈[,T] u(t) ∈ (ln l– , lnu– ),
mint∈[,T] u(t) ∈ (ln l– , lnu– ),
maxt∈[,T] u(t) ∈ (lnu+ , ln l+ ),
mint∈[,T] u(t) ∈ (lnu+ , ln l+ ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = (u,u,u)T ∈ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maxt∈[,T] u(t) ∈ (ln l– , lnu– ),
mint∈[,T] u(t) ∈ (ln l– , lnu– ),
maxt∈[,T] u(t) ∈ (lnu+ , ln l+ ),
mint∈[,T] u(t) ∈ (lnu+ , ln l+ ),
maxt∈[,T] u(t) ∈ (lnu+ , ln l+ ),
mint∈[,T] u(t) ∈ (lnu+ , ln l+ ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = (u,u,u)T ∈ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maxt∈[,T] u(t) ∈ (ln l– , lnu– ),
mint∈[,T] u(t) ∈ (ln l– , lnu– ),
maxt∈[,T] u(t) ∈ (ln l– , lnu– ),
mint∈[,T] u(t) ∈ (ln l– , lnu– ),
maxt∈[,T] u(t) ∈ (lnu+ , ln l+ ),
mint∈[,T] u(t) ∈ (lnu+ , ln l+ ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
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� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = (u,u,u)T ∈ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maxt∈[,T] u(t) ∈ (lnu+ , ln l+ ),
mint∈[,T] u(t) ∈ (lnu+ , ln l+ ),
maxt∈[,T] u(t) ∈ (lnu+ , ln l+ ),
mint∈[,T] u(t) ∈ (lnu+ , ln l+ ),
maxt∈[,T] u(t) ∈ (ln l– , lnu– ),
mint∈[,T] u(t) ∈ (ln l– , lnu– ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = (u,u,u)T ∈ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maxt∈[,T] u(t) ∈ (lnu+ , ln l+ ),
mint∈[,T] u(t) ∈ (lnu+ , ln l+ ),
maxt∈[,T] u(t) ∈ (ln l– , lnu– ),
mint∈[,T] u(t) ∈ (ln l– , lnu– ),
maxt∈[,T] u(t) ∈ (ln l– , lnu– ),
mint∈[,T] u(t) ∈ (ln l– , lnu– ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = (u,u,u)T ∈ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maxt∈[,T] u(t) ∈ (ln l– , lnu– ),
mint∈[,T] u(t) ∈ (ln l– , lnu– ),
maxt∈[,T] u(t) ∈ (lnu+ , ln l+ ),
mint∈[,T] u(t) ∈ (lnu+ , ln l+ ),
maxt∈[,T] u(t) ∈ (ln l– , lnu– ),
mint∈[,T] u(t) ∈ (ln l– , lnu– ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u = (u,u,u)T ∈ X

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maxt∈[,T] u(t) ∈ (ln l– , lnu– ),
mint∈[,T] u(t) ∈ (ln l– , lnu– ),
maxt∈[,T] u(t) ∈ (ln l– , lnu– ),
mint∈[,T] u(t) ∈ (ln l– , lnu– ),
maxt∈[,T] u(t) ∈ (ln l– , lnu– ),
mint∈[,T] u(t) ∈ (ln l– , lnu– ).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Then �,�, . . . ,� are bounded open subsets of X. It follows from (.) and (.)-(.)
that ũi ∈ �i (i = , , . . . , ). From (.), (.)-(.), it is easy to see that �̄i ∩ �̄j = ∅ (i, j =
, , . . . , , i �= j) and �i satisfies (a) in Lemma . for i = , , . . . , . Moreover, QN(u, ) �= 
for u ∈ ∂�i ∩KerL. By Lemma ., a direct computation gives

degB
{
JQN(·, )|KerL,� ∩KerL, 

}
= –, degB

{
JQN(·, )|KerL,� ∩KerL, 

}
= ,

degB
{
JQN(·, )|KerL,� ∩KerL, 

}
= , degB

{
JQN(·, )|KerL,� ∩KerL, 

}
= –,

degB
{
JQN(·, )|KerL,� ∩KerL, 

}
= , degB

{
JQN(·, )|KerL,� ∩KerL, 

}
= –,

degB
{
JQN(·, )|KerL,� ∩KerL, 

}
= –, degB

{
JQN(·, )|KerL,� ∩KerL, 

}
= .

Here, J is taken as the identity mapping since ImQ = KerL. So far we have proved that
�i satisfies all the assumptions in Lemma .. Hence, (.) has at least eight T-periodic
solutions (ui(t),ui(t),ui(t))T (i = , , . . . , ) and (ui,ui,ui)T ∈ domL ∩ �̄i. Obviously,
(ui,ui,ui)T (i = , , . . . , ) are different. Let xij(t) = eu

i
j(t) (j = , ), yi(t) = eui(t) (i = , , . . . , ).
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Then (xi(t),xi(t), yi(t))T (i = , , . . . , ) are eight different positive T-periodic solutions of
(.). The proof is complete. �

Corollary . In addition to (H), (H), assume further that the following conditions hold:

(H)*
kl

kl+c
u
N

( ak )
l > ( ak )

u( a
a

)u +Du
 + ( ak )

u +Hu
 .

(H)*
kl

kl+c
u
N

( ak )
l >Du

 + ( ak )
u +Hu

 .

(H)*
kl

kl+c
u
N

( ak )
l > ( ak

)uNθ
 + ( ak )

u +Hu
 .

Then system (.) has at least eight positive T-periodic solutions.

Proof By Lemma ., we have

( + θi)
[(

aii
ki

)u] 
+θi

[
Hu

i
θi

] θi
+θi ≤

(
aii
ki

)u

+Hu
i , i = , , .

Therefore, the conditions in Theorem . are satisfied. �

Example . In (.), take

T = , θ = θ = θ = .,

k(t) =  + sin(.π t), k(t) =  + sin(.π t), k(t) = . + . sin(.π t),

ci(t) = . + . sin(.π t) (i = , , ), D(t) =D(t) =
 + sin(.π t)


,

H(t) =
 + sin(.π t)


, H(t) =

 + sin(.π t)


, H(t) =
 + sin(.π t)


,

a(t) =
[
 + sin(.π t)

], a(t) =
[ + sin(.π t)]


,

a(t) =
[ + sin(.π t)]


,

a(t) =
[
 + sin(.π t)

], a(t) =
[ + sin(.π t)]


,

a(t) =
[
. + . sin(.π t)

], a(t) =
[. + . sin(.π t)]


,

a(t) =
[. + . sin(.π t)]


.

Then we have

kl = , kl = , kl = , cui = . (i = , , ), Du
 =Du

 =



,

Hu
 =




, Hu
 =




, Hu
 =




, Hl
 =




, Hl
 =




,

N = , N = ,(
a
k

)l

= ,
(
a
k

)u

= ,
(
a
k

)u

=


,
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(
a
k

)l

= ,
(
a
k

)u

=


,

(
a
k

)l

= ,
(
a
k

)u

=


,

(
a
k

)u

= .,
(
a
a

)u

= .

Therefore,

kl
kl + cuN

(
a
k

)l

=


> ,

(
a
k

)u( a
a

)u

+Du
 +

(
a
k

)u

+Hu
 =




+



< ,

kl
kl + cuN

(
a
k

)l

=


> , Du

 +
(
a
k

)u

+Hu
 =




+



< ,

kl
kl + cuN

(
a
k

)l

=


,

(
a
k

)u

Nθ
 +

(
a
k

)u

+Hu
 = .,

Du
i N =




, i = , .

Hence, the conditions in Corollary . are satisfied. By Corollary ., system (.) has at
least eight positive four-periodic solutions.
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