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Abstract

throughout the life course.

Hypertension

A growing body of evidence demonstrates that the accumulation of senescent cells is a plausible ageing
mechanism. It has been proposed that the senescence of vascular cells plays a causal role in the development of
cardiovascular pathologies. A key prediction arising from this hypothesis is that cultures of cells derived from
donors with cardiovascular disease will show reduced in vitro replicative capacities compared to those derived from
disease-free controls. Accordingly, we carried out a formal review of the relationship among donor age,
cardiovascular health status and maximum population doubling level attained in vitro by cultures of vascular
smooth muscle and endothelial cells. Data were available to us on a total of 202 independent cell cultures. An
inverse relationship was found to exist between replicative capacity and donor age in both endothelial and vascular
smooth muscle cells. Cultures derived from donors with cardiovascular disease showed a lower overall replicative
potential than age-matched healthy controls. In general the replicative potential at the start of the lifespan was
found to be higher in those individuals without disease than those with disease and the difference in average
cumulative population doublings (CPDs) in age-matched individuals in the two groups remained roughly constant
throughout the lifetime. These results are consistent with the model in which the inherited replicative capacity of
vascular cells is a stronger determinant of the onset of cardiovascular disease later in life, than wear-and-tear
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Introduction

The purpose of this article

A detailed understanding of the mechanisms underlying
cardiovascular disease has important implications for the
reduction of mortality and morbidity in the aged popula-
tion. For largely historical reasons, the majority of
studies of replicative senescence have focused on human
fibroblasts, as it was in these cell types that the
phenomenon of cellular senescence was first reported.
Unfortunately, this has produced a distortion of the evi-
dence base, which renders a detailed understanding on
the relationship replicative senescence and health status
problematic. This is because very few age-associated
pathologies are directly attributable to the dermal layer
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of the skin (or other fibroblastoid tissue layers, such as
the corneal stroma).

However, a number of cell types exist in which a direct
link between the senescent phenotype and age-associated
disease is potentially easier to interrogate. Endothelial cell
(EC) and vascular smooth muscle cell (VSMC) senescence
in particular has been linked to the development of car-
diovascular disease, specifically atherosclerosis [1-3]. The
senescent phenotype has been proposed to result in an
impaired ability to replace damaged or lost cells or to pro-
duce altered tissue microenvironments within the vessel
[4]. Accordingly we reviewed the available data on
proliferative capacity, donor age and cardiovascular dis-
ease status with regard to these cell types, in order to
produce a meta-dataset spanning a range of age groups
and cardiovascular disease states, allowing provisional
conclusions to be drawn.

© 2013 Karavassilis and Faragher; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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The cell hypothesis of ageing

The hypothesis that the progressive accumulation of
senescent cells with tissue turnover during life plays a
causal role in ageing was first proposed more than 40
years ago and has gained increasing credibility in recent
years [5]. Classic studies in this area include that of
Martin et al. [6], who reported a reduction of approxi-
mately two population doublings per decade in fibroblasts
derived from individuals aged from new-born to a hundred
years, and that of Schneider and Mitsui [7], who
demonstrated a reduced average fibroblast migration rate,
lower replication rate and saturation density at confluence,
in fibroblast cultures derived from older individuals
compared to their younger counterparts.

However, several studies using fibroblast cultures have
demonstrated no statistically significant decline in repli-
cative potential with age [8,9]. One explanation for lack
of correlation is the exclusive selection of healthy
donors. Because senescent cells are highly likely to be
causal agents of age-related disease [5], it follows that
these may be absent in a study population comprising
only healthy donors.

Maier and Westendorp (2008) [10] proposed that the
relationship between senescence and ageing is attribut-
able to publication bias, and is absent in studies com-
prising large sample populations. However, this work
contains questionable methodological aspects, the
major constraint being the use of data derived from
the fibroblast literature. Skin samples are simply
not directly reflective of the pathological mechanism
underlying Alzheimer’s disease.

There are literature reports where the proliferative
capacity of fibroblasts from centenarians is not signifi-
cantly reduced compared to those from younger donors
[11]. This may reflect the fact that fibroblast replicative
capacity in culture is not representative of the key organ
systems in vivo.

The notion that senescence is a causal process driving
at least some aspects of ageing is undeniable, as senes-
cent cells have been found to be present and accumulate
in tissue in vivo as a function of organismal age [12,13].
Among the best evidence of this is provided by a study
where the number of mitotic cells in the proliferative
region of murine lens epithelium was seen to decline
with the age of the organism, with a concurrent increase
in senescent cells [14].

The presence of senescence-associated markers at
sites of pathology supports the relationship between
replicative senescence and age-related disease. Using
senescence-associated beta-galactosidase, senescent
endothelial cells have been found to accumulate after
repeated balloon endothelial denudation of the rabbit
carotid artery [15]. It has also been demonstrated
that telomeres in the endothelium shorten with age
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and this is more pronounced in atherosclerosis-
prone areas [14-16]. Moreover, cultures of vascular
smooth muscle cells derived from plaques have been
reported to show a reduced proliferative capacity [17].

The senescent phenotype of vascular cells is not
inconsistent with the potential to cause cardiovascular
disease. Senescent endothelial cells in vitro have been
found to over-express proteins characteristic of the pro-
inflammatory and pro-thrombotic phenotype of the
endothelium in human atherosclerosis, including IL-
lalpha, ICAM-1 and PAI-1 [18-20]. Burton et al. (2009)
demonstrated that key genes known to be up-regulated
in atherosclerotic plaques are also highly up-regulated in
senescent VSMCs. Most importantly, it was found that
senescent VSMCs adopt a phenotype which contributes
to the pathogenesis of vascular calcification, characterized
by the expression of genes associated with vascular calcifi-
cation, namely matrix Gla protein, bone morphogenetic
protein-2, osteoprotegerin, osteopontin and decorin [21].

Hypothesis

The relationship between senescence and disease state
throughout the lifetime can be modeled in three ways.
In the first hypothesis, all individuals are expected to
show similar inherited replicative capacities at the start
of their lifespan. In subjects without cardiovascular
disease, senescence is assumed to be the consequence of
lifelong reparative cell divisions with advancing age [22-24].
In subjects with cardiovascular disease, senescence may be
thought to represent an acceleration of the biological ageing
process, triggered by exposure to mitotic stress, oxidative
stress or DNA damage, independent of chronological age
[25-27]. Those more prone to developing disease are, there-
fore, expected to exhaust their replicative potential at an
accelerated rate compared to healthy individuals. The
expected graphical relationship shows the trend lines of dis-
eased and healthy individuals originating on the same point
on the Y-axis, from which they diverge, with the line
representing diseased individuals showing a steeper slope
(Figure 1).

It may otherwise be the case that replicative capacity
always declines consistently with chronological age, re-
gardless of health status (Figure 2). In this case, the
expected graphical relationship should show that both
trend lines coincide throughout the organism’s lifespan.

An alternative hypothesis is that individuals differ in
inherited replicative capacity at the start of their lifespan,
but exhaust their replicative potential at a similar rate.
Those more prone to developing disease are expected to
start off with a lower replicative capacity (Figure 3). The
expected graphical relationship should show the trend
line corresponding to diseased individuals to start out at
a lower point on the y-axis compared to non-diseased
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individuals, after which point the trend lines decline at
similar rates, appearing to be parallel.

Individual differences in replicative capacity may be
attributed to variations of inherited telomere lengths, as
has been suggested in several studies. In one report,
blood telomere lengths were found to range from 5.10
kb in young men from Italy to 18.64 kb in young
men from Belgium, showing a greater than three-fold
difference across populations [28]. In another study,
individuals of African-ancestry in the USA tended to
show 10% longer blood telomere lengths compared to
those of European ancestry [29]. The large variation of
telomere lengths observed in adults was suggested to
relate to adaptive evolution, differences in early life ex-
perience or growth [30], exposure to stress throughout
the lifespan [31] and, most pertinently in this case, vary-
ing paternal ages at reproduction. Kimura et al [32]
investigated the relationship between telomere length in
sperm from young (30 years) and older (50+ years)
donors with mean leukocyte telomere length in offspring
(in adult ages); they demonstrated that a subset of sperm
from older men had elongated telomeres, which
corresponded to a positive relationship between paternal
age at reproduction and offspring telomere length. The
variation of telomere length in embryo-derived cells
appears not to have been studied in detail.

Certainly, vascular cells with inherited short telomeres
that are also exposed to considerable amounts of stress
throughout the life course should show a much lower
replicative potential compared to healthy individuals.
The most likely hypothesis is, therefore, based on the
notion that most disease states are multi-factorial in
nature. When combining data from many individuals, it
is expected that the relationship between replicative cap-
acity and ageing in diseased individuals will show an
overall lower cumulative population doubling (CPD) po-
tential compared to healthy controls, as well as an
accelerated rate of decrease of CPD.

Materials and methods

Data mining

We mined the available peer-reviewed literature (princi-
pally using PubMed and relevant electronic journals
directly). Combinations of search terms used included:
‘endothelium); ‘vascular smooth muscle cells; ‘senescence;,
‘cumulative population doublings; ‘in vitro, ‘passage’ and
‘donor age’. The search covered over 10,000 research
articles. When available, the following information was
obtained: age of donor, replicative capacity in vitro,
vessel of origin, gender, incidence of cardiovascular-
related disease and definition of replicative senescence.
Articles were excluded if replicative capacity in vitro was
recorded in such a way that CPD could not be accurately
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deduced. Ultimately, 12 research articles were used,
published between 1978 and 2008.

Replicative capacity and health status

Studies were included in this review if donor age and
replicative capacity of EC or VSMC were recorded.
If not given, the CPD value was extrapolated from
maximum passages achieved (given the cell culture split
ratio) or approximated from scatter plots. If health sta-
tus was not mentioned, it was assumed that the donors
did not suffer any cardiovascular-related diseases.

Statistical analysis

To assess the strength of the correlation between
in vitro replicative capacity and age of donor, regression
analyses were carried out for each cell type, as well as
sample populations with/without vascular—related diseases
separately. For endothelial cells, graphs including all data
points as well as graphs excluding human umbilical vein
endothelial cells (HUVECs) are shown, as HUVEC samples
show a very large scatter, which affected the trend lines.
The mean decade CPD was plotted against donor decade
age, to balance out any effects from possible confounding
variables.

The mean rate of change of CPD with respect to age
(change in CPD per year) was calculated for the graphs
of: ‘all CPD values versus donor age, ‘mean CPD versus
donor age decade’ and for the graphs of ‘CPD versus
donor age’ in those with or without vascular-related
diseases shown separately.

To assess the contribution of confounding factors,
scatter plots were drawn to visualize clustering of data
points, per vessel type and per gender.

T-tests were performed to assess whether the differ-
ence in mean CPD for adjacent decades as well as
decades at either extreme, could be attributed to chance.
A T-test was also carried out comparing CPD of male
versus female donors for each cell type.

Results

Replicative capacity in vitro versus age of donor

The linear regression line shows a clear inverse relation-
ship between replicative capacity in vitro and donor age,
indicating a negative correlation for VSMC and EC. For
both cell types, it is evident from the graphs that in the
50+ age group there are a larger proportion of points
with low CPD values, that is, below 10 CPD in VSMCs
and below 20 CPD in ECs.

When the decade mean CPD is plotted against donor
age, a negative correlation is seen for both cell types,
with R = -0.866 for VSMC (Figure 4), R = -0.733 for
EC (Figure 5).

T-tests were carried out between datasets for adjacent
decades. The P-values for the comparisons between
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CPD -vs- DONOR AGE
Hypothesis 1

CPD

— with
- == without

DONOR AGE
Figure 1 Hypothesis 1: diseased and healthy individuals start
with similar replicative capacities. Replicative capacity is
exhausted at a faster rate in diseased individuals.

adjacent decades in both cell types (with the exception
of decades 4 and 5 in EC), indicate that one cannot say
with certainty that the observed difference for adjacent
decades cannot be attributed to chance (Table 1). The
P-values comparing the first and eighth decades indicate
that the differences are highly significant. The same
conclusion was drawn when comparing the first and last
two and three decades in VSMC and EC respectively.
Thus, based on the available dataset, although it is not
strongly evidenced that small age differences show a
decrease in CPDs, a large age difference is clearly associated
with a substantial decrease in CPD.

The mean rate of change in CPD with respect to age was
also evaluated by calculating the slope of the linear
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regression line (Table 2). Table 3 shows the mean rate of
change in CPD with respect to age, per publication. One
can see that VSMC shows a lower rate of decrease per year
(-0.19) compared to EC (-0.44) and similar rate of decrease
when excluding HUVECs (-0.15). Looking at the mean
decade CPD with respect to age decade, both cell types
gave the same value (-0.19) of rate of change.

Replicative capacity in vitro versus age of donor with
respect to cardiovascular-related diseases

The data points from donors with cardiovascular-related
diseases show a negative correlation with age, with
R = -0.511 in VSMCs (Figure 6) and R = —0.24 in EC
(Figure 7). The data points from donors without cardiovas-
cular related disease also show a negative but slightly
weaker correlation with age R = -0.411 in VSMC (Figure 6)
and much stronger correlation with age R = -0.708
in EC (Figure 7) and -0.799 when excluding HUVEC
(Figure 8). It is useful to exclude HUVEC data points
as they show a very wide scatter. Comparing the trend lines
visually, it is clear that on average, CPDs are higher in those
without cardiovascular-related disease compared to those
with the disease for both cell types (when excluding
HUVECQ).

The T-tests between the sample populations with or
without cardiovascular-related diseases show extremely
small P-values of 3.89E-11 for VSMC and 1.21E-14 for
EC and 1.11E-2 for EC, excluding HUVEC, indicating
with a high degree of confidence that the observed
difference between the means of the two data sets is not
attributed to chance.

The change in CPD with respect to age in those with-
out cardiovascular-related disease (Table 2) shows a

CPD -vs- DONOR AGE
Hypothesis 2

CPD

— with
- = without

DONOR AGE
Figure 2 Hypothesis 2: diseased and healthy individuals coincide in terms of replicative capacity throughout lifespan.
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CPD

with
- - Without

CPD -vs- DONOR AGE
Hypothesis 3

similar rates.
AN

DONOR AGE
Figure 3 Hypothesis 3: diseased and healthy individuals start off with different replicative capacities. Replicative capacity is exhausted at

slightly lower rate of decrease per year compared to
those without cardiovascular-related disease, in both
cell types, that is, -0.14 in ECs from donors with
cardiovascular-related diseases, -0.47 in ECs without
cardiovascular-related diseases, -0.16 in ECs without
cardiovascular-related diseases, excluding HUVECs,
-0.17 in VSMCs from donors with cardiovascular-related
diseases, -0.2 from donors without cardiovascular-related
diseases.

Scatter plots were drawn to assess the effects of vessel
type and gender on EC and VSMC replicative cap-
acity (Figures 9, 10, 11, 12). Overall, the data-points

are seen to be equally spread in both cell types, re-
gardless of gender or vessel type.

Discussion

Replicative capacity in vitro versus age of donor

For both cell types there are fewer data points for the
younger ages of 0 to 30 years, which is to be expected,
as there is less availability for vessel biopsies (with the
exception of HUVECs). Comparing the graph of the
VSMCs with those of the ECs, the observed trends and
average CPD values per age are roughly similar between
the two cell types.

VSMC / Mean CPD -vs- Donor Age In Decade Bins

250

15.0 1

Mean CPD

00

] 1 2 3 4

Donor Age Decade

Figure 4 Relationship between the decade mean CPDs and donor age decade in vascular smooth muscle cells.

s 6 7 8 9
R* =0.7506
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Table 1 Table showing cell type, decades being compared, P-values and T-test interpretation

Cell type Decades being compared P-value T-test interpretation
VSMC 1,2 0.734 No Sig. Diff.
VSMC 2,3 0.386 No Sig. Diff.
VSMC 3,4 0393 No Sig. Diff.
VSMC 4,5 0.764 No Sig. Diff.
VSMC 56 0.856 No Sig. Diff.
VSMC 6,7 0.597 No Sig. Diff.
VSMC 7,8 0.638 No Sig. Diff.
VSMC 1,8 347E-04 Sig. Diff.
VSMC 142, 748 1.43E-05 Sig. Diff.

EC (all) 1,2 0.0205 Sig. Diff.

EC (all) 2,3 0.715 No Sig. Diff.
EC (all) 3,4 0.947 No Sig. Diff.
EC (all) 4,5 0.0235 Sig. Diff.

EC (all) 56 0444 No Sig. Diff.
EC (all) 6,7 0.838 No Sig. Diff.
EC (all) 7,8 0.887 No Sig. Diff.
EC (all) 8,9 0.635 No Sig. Diff.
EC (all) 1,8 4.04E-10 Sig. Diff.

EC (all) 14243, 7+8+9 546E-12 Sig. Diff.

EC (excluding HUVECs) 243, 7+8+9 1.98E-03 Sig. Diff.

The data presented here are consistent with previous
findings, showing a definite decline in proliferative activ-
ity in vitro with donor age. If the mean decade CPD
values are used (to balance out the effects of possible
confounding factors), the change in CPDs with age of
both cell types corresponds to the finding by Martin,
et al. [6] of approximately two CPDs per decade in
fibroblasts. The findings are also strongly consistent with
Hayflick’s observations on fibroblasts (1965) [33]; ECs

derived from human embryos underwent about 48
(mean average) CPDs in vitro, ranging from 18 to 79
CPDs, while ECs derived from adults underwent roughly
20 (mean average) CPDs, ranging from 3 to 30 CPDs
(excluding the two extreme outliers). Hayflick and
Martin also emphasized the lack of correlation in the
proliferative ability of cells derived from individuals of
intermediate ages, despite the clear difference in the
proliferative ability of cells derived from very old (70+)

-

EC/ Mean CPD -vs- Donor Age In Decade Bins

~

Mean CPD

0 1 2 3 4

Donor Age Decade

Figure 5 Relationship between the decade mean CPDs and donor age decade in endothelial cells.

5 6 . 8 9 10
R*=0.5387
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Table 2 Table showing cell type, variables and change in cumulative population doublings per year

Cell type Variables Change in CPD per year
EC CPD values -vs-donor age (all) -044
EC CPD values-vs-donor age (excluding HUVECs) -0.15
EC Mean CPD values-vs-donor age decade (all) -0.19
EC Mean CPD values-vs-donor age decade (excluding HUVECs) -0.19
VSMC CPD values -vs-donor age -0.19
VSMC Mean CPD values-vs-donor age decade -0.19
EC CPD -vs- donor age in donors with cardiovascular-related diseases (all) -0.14
EC CPD -vs- donor age in donors without cardiovascular-related diseases (all) -047
EC CPD -vs- donor age in donors without cardiovascular-related diseases (excluding HUVECs) -0.16
VSMC CPD -vs- donor age in donors with cardiovascular-related diseases -0.17
VSMC CPD -vs- donor age in donors without cardiovascular-related diseases -0.2

or very young (0 to 10) donors. The same conclusions
were drawn in this study, as demonstrated by the T-test
calculations between adjacent and extreme ages. The ex-
ception to this is the difference in CPDs between
decades 4 and 5 in ECs. The graph shows a very clear
and sudden decrease in replicative capacity between
the two decades and the P-value shows a significant
difference between the two datasets. A reason for
this may be that the decline in replicative capacity
as a function of age may not occur at a consistent
rate, possibly showing an abrupt decrease at certain
points in the lifetime. The relationship between
in vitro replicative capacity and organismal ageing
should, therefore, not be interpreted to be linear or
very tight [34].

Replicative capacity in vitro versus age of donor, with
respect to cardiovascular-related diseases

Many studies on vascular smooth muscle cells and endo-
thelial cells have reported a relationship between the
altered cellular phenotype associated with senescence
and the onset of cardiovascular disease [18-21,35,36].
In this review, the graphs show a vivid relationship
between cardiovascular-related disease and replicative
capacity in vascular cells, supported by the T-test
calculations. It is clear from the graphs that
individuals with cardiovascular-disease show a lower
cellular proliferative potential than those without
cardiovascular disease. This suggests that disease
state is more strongly associated with the onset of
senescence than donor age.

Table 3 Table showing cell type, publication, change in CPD per year, and number of samples

Cell type Variables Change in CPD per year No. of samples
VSMC Eskin (1981) [47] —-0.029 64
VSMC Fukai (1994) [42] -0.168 12
VSMC Kan (1987) [48] -0.176 4
VSMC Bierman (1978) [49] -0.03 17
EC Hoshi (1986) [50] -0.206 8
EC Glassberg (1982) [51] 0 4
EC Johnson (1992) [52] -0.216 1
EC Maciag (1981) [53] NA 4
EC Nobuhiko (1988) [54] NA 2
EC Vogel (2008) [37] NA 2
EC Watkins (1993) [41] +0.45 2
EC Vogel (2007) [55] +0.119 61
VSMC TOTAL -0.19 107
EC TOTAL -0.44 113
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Figure 6 Relationship between CPDs and donor age in VSMCs, showing donors with and without cardiovascular-related diseases.
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Looking at the replicative capacity for HUVECs alone
(limited data for embryo-derived VSMCs), the extremely
wide scatter ranging from 18 to 79 CPDs already implies
a variation in terms of inherited proliferative capacity,
possibly attributed to differences in telomere length.
Inherited telomere length is, in turn, thought to be
affected by paternal age at reproduction [37]. If replica-
tive capacity can be considered a heritable trait, it
follows that neonates showing inherent low cellular
proliferative capacity will be more prone to disease later
in life. Since neonates cannot be distinguished on the
basis of liability to disease (and because none are yet
diagnosed with disease), including these in the graphical
relation between disease and replicative capacity distorts
the trend; classing all HUVECs as without disease is
misleading, as these will show the trait assumed to
underlie disease predisposition (low replicative capacity),
as do the adult donors with disease.

When HUVECs are excluded, both ECs and VSMCs
show that diseased individuals start off with a lower rep-
licative capacity than non-diseased individuals. The dif-
ference in average CPDs in age-matched individuals in
the two groups is roughly constant throughout the life-
time, that is, an average difference of 7 CPDs in ECs and
20 CPDs in VSMCs. This essentially supports the hy-
pothesis suggesting that individuals differ in terms of
inherited cellular replicative capacity from the start of
their lifespan, but exhaust this proliferative potential at
similar rates. These conclusions are in line with the as-
sumption that inter-individual inherited telomere length
varies widely. Substantial variations of telomere lengths
have been reported in some studies [29,30,32]; however,
the focus has been on adult donors. In adults, telomere
shortening may occur following reparative cell divisions,
exposure to stress or early infection, as well as
differences in inherited telomere lengths. This probably

*

EC / Donors With and Without Vascular - Related Disease

50 60 70 80 920 100
Donor Age (Years)

Figure 7 Relationship between CPDs and donor age in ECs, showing donors with and without cardiovascular-related diseases.

+ With A Without
R2=0.0557 R2=0.50195
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Figure 8 Relationship between CPDs and donor age in ECs, showing donors with and without cardiovascular-related diseases,

accounts for the scattered distribution of data points
corresponding to adult donors observed in this analysis.
It would be more interesting if variation in telomere
length of cells derived from human embryos were
investigated in association with paternal age and telo-
mere length in sperm. As far as we know, population
variations of telomere length in neonates (that is,
HUVECs) and with respect to paternal characteristics,
has not yet been studied. Further exploration to

elucidate the extent of variation of inherited telomere
length and the possible consequences for disease, as ini-
tially implied in this review, is necessary. Despite the ob-
vious inclination of these data toward inherited
proliferative activity being strongly associated with dis-
ease state, the effect of decline in replicative capacity
throughout the lifetime (that is, exogenous stress) should
not be ignored. Cells from individuals with inherited
short telomeres that are also exposed to considerable
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Figure 9 Relationship between cumulative population doublings and donor age in vascular smooth muscle cells, per vessel type.

o Renal artery




Karavassilis and Faragher Longevity & Healthspan 2013, 2:3
http://www.longevityandhealthspan.com/content/2/1/3

Page 10 of 13

80 3

70 4

60 4§

50 §

EC/ CPD -vs- Donor Age per Vessel Type

A Internal mammary artery
0 Saphenous vein

[a]
o
QO 20 4
300
A
o x a
A A . A= a 8
20 4 0
o X . o [e]
<O+ + LN .Q
+ o
® at Bads s A
10 1 o o A b e
& 4 ‘ﬁfg LN
A
0
[ 10 20 30 40 50 50 70 80 %0 100
Donor Age (Years)
N abdominal aorta < Aorticartery
A Carotid artery X Dermal microvascular endothelial cells
® HUVEC o lliacartery
+ lliac vein = Inferior venacava

Figure 10 Relationship between cumulative population doublings and donor age in endothelial cells, per vessel type.
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amounts of stress throughout the life course should un-
doubtedly show an even greater decrease in replicative
capacity compared to healthy individuals.

While there is evidence that telomere shortening
controls senescence in endothelial cells [3,38], it is un-
clear whether vascular smooth muscle cells undergo
telomere-dependent senescence. It has been demonstrated
that in VSMCs telomerase reverse transcriptase (TERT) is

regulated at the transcriptional level, it is unclear whether
over-expression of telomerase can bypass senescence [3,39].
There are limitations in terms of experimental approaches
in these studies: each of these experiments involved analysis
of pooled colonies, which is unreflective, since replicative
capacity of cells in culture reflects the expansive propaga-
tion of the longest surviving clone. A more informative
approach should involve isolation of as many colonies of
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vector-infected cells as possible (if possible, approximately
n = 15). If all the isolated clones are found to be
immortalized, the cell type can be described with a high
certainty to have undergone telomerase-induced escape
from senescence.

Limitations of this study

A quantitative relationship between proliferative cap-
acity and age cannot be made with absolute certainty
from these data. Nevertheless, the correlations found
are surprisingly good, given that the studies included
span over 30 vyears, with possible differences in
donor characteristics, cell culture techniques, growth
media, explanation methods and selection of biopsy
areas.

Growth media are also well-recognized variables affecting
cell growth and proliferation. Varying concentrations of
serum used in culture result in different growth effects, as
demonstrated by Holley et al. [40], with the number of PDs
achieved directly related to the original concentration of
serum added. Studies varied in terms of serum type and
concentration used; for example, EC were cultured with
30% human serum in the study by Watkins et al. [41] while
15% fetal bovine serum was used in the study by Fukai
et al. [42].

Studies also varied in terms of their definition of
senescence, ranging from: senescence-associated morpho-
logical changes, 50% positive for SA-beta-galactosidase
staining, or less than one PD occurring within three
weeks after subculture. Diverse interpretations of ceased
proliferation may have led to inconsistencies of the
recorded replicative capacity.

Vessel type is an additional variable known to affect cellu-
lar replicative ability; for example, telomere length has been

reported to decrease more rapidly in arterial rather than
venous endothelial cells [15]. It has even been shown that
the segment of the vessel used affects telomere attrition; for
example, the distal versus the proximal segment of the ab-
dominal aorta showing accelerated telomere attrition [16].
This most likely reflects the hemodynamic stress factor
[43-46].

The scatter plots showing the effect of vessel type
and gender showed the data-points to be generally
equally distributed. Any exceptions were most likely
due to factors associated with disease, shear stress or
age, as different studies varied in terms of sample
characteristics.

It would be misleading to perform a Funnel test (to
test for publication bias) or a Cochrane-Q test (to test
for heterogeneity between studies included). Different
researchers focused on specific age ranges or disease
states; therefore, any asymmetry observed in a funnel
plot will probably not be due to systematic error or pub-
lication bias, but be due to factors associated with dis-
ease, age or sheer stress.

It should also be considered that studies included
in this analysis did not always specify the site from
which the cells were explanted. Moreover, the re-
moval of vascular tissue is much less likely to occur
in healthy individuals, compared to fibroblasts (which are
far easier to obtain), unless the donor had died in an
accident. It is, therefore, uncertain that all of the
donors classed as ‘without cardiovascular-related dis-
ease’ included in this study were entirely healthy.
For example, it is possible that senescence in endothe-
lial or vascular smooth muscle cells is also dependent on
damage induced by other, unrelated pathological conditions
in the individual.
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Despite all of this, the plots still show a clear inverse rela-
tionship between donor age and proliferative capacity
in vitro. These conclusions are supported by the T-test
values and correlation coefficients.

Conclusions

This survey of the available literature demonstrates that
a clear inverse relationship exists between the replicative
capacity of vascular endothelial and smooth muscle cells
and donor age. Individuals free of cardiovascular-related
diseases show a greater replicative capacity at given ages,
than those with defined pathologies. The mean CPD for
each diseased age group roughly corresponds to that of
older, non-diseased subjects. This suggests that disease
state rather than donor age is the primary variable correl-
ating with senescence. Perhaps surprisingly, individuals
with cardiovascular disease appear to start off with a lower
cellular replicative capacity in early life, than non-diseased
individuals. The difference in average CPDs in age-matched
individuals in the two groups is roughly constant through-
out the lifetime. This is consistent with the hypothesis that
individuals differ in terms of inherited cellular replicative
capacity, but exhaust their proliferative potential at similar
rates.
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